OpenCloudOS-Kernel/drivers/spi/spi-pxa2xx.c

1580 lines
40 KiB
C

/*
* Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
* Copyright (C) 2013, Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/spi/pxa2xx_spi.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#include <linux/acpi.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/delay.h>
#include "spi-pxa2xx.h"
MODULE_AUTHOR("Stephen Street");
MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pxa2xx-spi");
#define MAX_BUSES 3
#define TIMOUT_DFLT 1000
/*
* for testing SSCR1 changes that require SSP restart, basically
* everything except the service and interrupt enables, the pxa270 developer
* manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
* list, but the PXA255 dev man says all bits without really meaning the
* service and interrupt enables
*/
#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
| QUARK_X1000_SSCR1_EFWR \
| QUARK_X1000_SSCR1_RFT \
| QUARK_X1000_SSCR1_TFT \
| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
#define LPSS_RX_THRESH_DFLT 64
#define LPSS_TX_LOTHRESH_DFLT 160
#define LPSS_TX_HITHRESH_DFLT 224
struct quark_spi_rate {
u32 bitrate;
u32 dds_clk_rate;
u32 clk_div;
};
/*
* 'rate', 'dds', 'clk_div' lookup table, which is defined in
* the Quark SPI datasheet.
*/
static const struct quark_spi_rate quark_spi_rate_table[] = {
/* bitrate, dds_clk_rate, clk_div */
{50000000, 0x800000, 0},
{40000000, 0x666666, 0},
{25000000, 0x400000, 0},
{20000000, 0x666666, 1},
{16667000, 0x800000, 2},
{13333000, 0x666666, 2},
{12500000, 0x200000, 0},
{10000000, 0x800000, 4},
{8000000, 0x666666, 4},
{6250000, 0x400000, 3},
{5000000, 0x400000, 4},
{4000000, 0x666666, 9},
{3125000, 0x80000, 0},
{2500000, 0x400000, 9},
{2000000, 0x666666, 19},
{1563000, 0x40000, 0},
{1250000, 0x200000, 9},
{1000000, 0x400000, 24},
{800000, 0x666666, 49},
{781250, 0x20000, 0},
{625000, 0x200000, 19},
{500000, 0x400000, 49},
{400000, 0x666666, 99},
{390625, 0x10000, 0},
{250000, 0x400000, 99},
{200000, 0x666666, 199},
{195313, 0x8000, 0},
{125000, 0x100000, 49},
{100000, 0x200000, 124},
{50000, 0x100000, 124},
{25000, 0x80000, 124},
{10016, 0x20000, 77},
{5040, 0x20000, 154},
{1002, 0x8000, 194},
};
/* Offset from drv_data->lpss_base */
#define GENERAL_REG 0x08
#define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
#define SSP_REG 0x0c
#define SPI_CS_CONTROL 0x18
#define SPI_CS_CONTROL_SW_MODE BIT(0)
#define SPI_CS_CONTROL_CS_HIGH BIT(1)
static bool is_lpss_ssp(const struct driver_data *drv_data)
{
return drv_data->ssp_type == LPSS_SSP;
}
static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
{
return drv_data->ssp_type == QUARK_X1000_SSP;
}
static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
{
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
return QUARK_X1000_SSCR1_CHANGE_MASK;
default:
return SSCR1_CHANGE_MASK;
}
}
static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
{
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
return RX_THRESH_QUARK_X1000_DFLT;
default:
return RX_THRESH_DFLT;
}
}
static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
u32 mask;
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
mask = QUARK_X1000_SSSR_TFL_MASK;
break;
default:
mask = SSSR_TFL_MASK;
break;
}
return (read_SSSR(reg) & mask) == mask;
}
static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
u32 *sccr1_reg)
{
u32 mask;
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
mask = QUARK_X1000_SSCR1_RFT;
break;
default:
mask = SSCR1_RFT;
break;
}
*sccr1_reg &= ~mask;
}
static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
u32 *sccr1_reg, u32 threshold)
{
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
break;
default:
*sccr1_reg |= SSCR1_RxTresh(threshold);
break;
}
}
static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
u32 clk_div, u8 bits)
{
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
return clk_div
| QUARK_X1000_SSCR0_Motorola
| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
| SSCR0_SSE;
default:
return clk_div
| SSCR0_Motorola
| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
| SSCR0_SSE
| (bits > 16 ? SSCR0_EDSS : 0);
}
}
/*
* Read and write LPSS SSP private registers. Caller must first check that
* is_lpss_ssp() returns true before these can be called.
*/
static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
{
WARN_ON(!drv_data->lpss_base);
return readl(drv_data->lpss_base + offset);
}
static void __lpss_ssp_write_priv(struct driver_data *drv_data,
unsigned offset, u32 value)
{
WARN_ON(!drv_data->lpss_base);
writel(value, drv_data->lpss_base + offset);
}
/*
* lpss_ssp_setup - perform LPSS SSP specific setup
* @drv_data: pointer to the driver private data
*
* Perform LPSS SSP specific setup. This function must be called first if
* one is going to use LPSS SSP private registers.
*/
static void lpss_ssp_setup(struct driver_data *drv_data)
{
unsigned offset = 0x400;
u32 value, orig;
if (!is_lpss_ssp(drv_data))
return;
/*
* Perform auto-detection of the LPSS SSP private registers. They
* can be either at 1k or 2k offset from the base address.
*/
orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
/* Test SPI_CS_CONTROL_SW_MODE bit enabling */
value = orig | SPI_CS_CONTROL_SW_MODE;
writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
offset = 0x800;
goto detection_done;
}
orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
/* Test SPI_CS_CONTROL_SW_MODE bit disabling */
value = orig & ~SPI_CS_CONTROL_SW_MODE;
writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
if (value != (orig & ~SPI_CS_CONTROL_SW_MODE)) {
offset = 0x800;
goto detection_done;
}
detection_done:
/* Now set the LPSS base */
drv_data->lpss_base = drv_data->ioaddr + offset;
/* Enable software chip select control */
value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
/* Enable multiblock DMA transfers */
if (drv_data->master_info->enable_dma) {
__lpss_ssp_write_priv(drv_data, SSP_REG, 1);
value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
__lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
}
}
static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
{
u32 value;
if (!is_lpss_ssp(drv_data))
return;
value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
if (enable)
value &= ~SPI_CS_CONTROL_CS_HIGH;
else
value |= SPI_CS_CONTROL_CS_HIGH;
__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
}
static void cs_assert(struct driver_data *drv_data)
{
struct chip_data *chip = drv_data->cur_chip;
if (drv_data->ssp_type == CE4100_SSP) {
write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
return;
}
if (chip->cs_control) {
chip->cs_control(PXA2XX_CS_ASSERT);
return;
}
if (gpio_is_valid(chip->gpio_cs)) {
gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
return;
}
lpss_ssp_cs_control(drv_data, true);
}
static void cs_deassert(struct driver_data *drv_data)
{
struct chip_data *chip = drv_data->cur_chip;
if (drv_data->ssp_type == CE4100_SSP)
return;
if (chip->cs_control) {
chip->cs_control(PXA2XX_CS_DEASSERT);
return;
}
if (gpio_is_valid(chip->gpio_cs)) {
gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
return;
}
lpss_ssp_cs_control(drv_data, false);
}
int pxa2xx_spi_flush(struct driver_data *drv_data)
{
unsigned long limit = loops_per_jiffy << 1;
void __iomem *reg = drv_data->ioaddr;
do {
while (read_SSSR(reg) & SSSR_RNE) {
read_SSDR(reg);
}
} while ((read_SSSR(reg) & SSSR_BSY) && --limit);
write_SSSR_CS(drv_data, SSSR_ROR);
return limit;
}
static int null_writer(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
u8 n_bytes = drv_data->n_bytes;
if (pxa2xx_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
write_SSDR(0, reg);
drv_data->tx += n_bytes;
return 1;
}
static int null_reader(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
u8 n_bytes = drv_data->n_bytes;
while ((read_SSSR(reg) & SSSR_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
read_SSDR(reg);
drv_data->rx += n_bytes;
}
return drv_data->rx == drv_data->rx_end;
}
static int u8_writer(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
if (pxa2xx_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
write_SSDR(*(u8 *)(drv_data->tx), reg);
++drv_data->tx;
return 1;
}
static int u8_reader(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
while ((read_SSSR(reg) & SSSR_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
*(u8 *)(drv_data->rx) = read_SSDR(reg);
++drv_data->rx;
}
return drv_data->rx == drv_data->rx_end;
}
static int u16_writer(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
if (pxa2xx_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
write_SSDR(*(u16 *)(drv_data->tx), reg);
drv_data->tx += 2;
return 1;
}
static int u16_reader(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
while ((read_SSSR(reg) & SSSR_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
*(u16 *)(drv_data->rx) = read_SSDR(reg);
drv_data->rx += 2;
}
return drv_data->rx == drv_data->rx_end;
}
static int u32_writer(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
if (pxa2xx_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
write_SSDR(*(u32 *)(drv_data->tx), reg);
drv_data->tx += 4;
return 1;
}
static int u32_reader(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
while ((read_SSSR(reg) & SSSR_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
*(u32 *)(drv_data->rx) = read_SSDR(reg);
drv_data->rx += 4;
}
return drv_data->rx == drv_data->rx_end;
}
void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
{
struct spi_message *msg = drv_data->cur_msg;
struct spi_transfer *trans = drv_data->cur_transfer;
/* Move to next transfer */
if (trans->transfer_list.next != &msg->transfers) {
drv_data->cur_transfer =
list_entry(trans->transfer_list.next,
struct spi_transfer,
transfer_list);
return RUNNING_STATE;
} else
return DONE_STATE;
}
/* caller already set message->status; dma and pio irqs are blocked */
static void giveback(struct driver_data *drv_data)
{
struct spi_transfer* last_transfer;
struct spi_message *msg;
msg = drv_data->cur_msg;
drv_data->cur_msg = NULL;
drv_data->cur_transfer = NULL;
last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
transfer_list);
/* Delay if requested before any change in chip select */
if (last_transfer->delay_usecs)
udelay(last_transfer->delay_usecs);
/* Drop chip select UNLESS cs_change is true or we are returning
* a message with an error, or next message is for another chip
*/
if (!last_transfer->cs_change)
cs_deassert(drv_data);
else {
struct spi_message *next_msg;
/* Holding of cs was hinted, but we need to make sure
* the next message is for the same chip. Don't waste
* time with the following tests unless this was hinted.
*
* We cannot postpone this until pump_messages, because
* after calling msg->complete (below) the driver that
* sent the current message could be unloaded, which
* could invalidate the cs_control() callback...
*/
/* get a pointer to the next message, if any */
next_msg = spi_get_next_queued_message(drv_data->master);
/* see if the next and current messages point
* to the same chip
*/
if (next_msg && next_msg->spi != msg->spi)
next_msg = NULL;
if (!next_msg || msg->state == ERROR_STATE)
cs_deassert(drv_data);
}
drv_data->cur_chip = NULL;
spi_finalize_current_message(drv_data->master);
}
static void reset_sccr1(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
struct chip_data *chip = drv_data->cur_chip;
u32 sccr1_reg;
sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
sccr1_reg &= ~SSCR1_RFT;
sccr1_reg |= chip->threshold;
write_SSCR1(sccr1_reg, reg);
}
static void int_error_stop(struct driver_data *drv_data, const char* msg)
{
void __iomem *reg = drv_data->ioaddr;
/* Stop and reset SSP */
write_SSSR_CS(drv_data, drv_data->clear_sr);
reset_sccr1(drv_data);
if (!pxa25x_ssp_comp(drv_data))
write_SSTO(0, reg);
pxa2xx_spi_flush(drv_data);
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
dev_err(&drv_data->pdev->dev, "%s\n", msg);
drv_data->cur_msg->state = ERROR_STATE;
tasklet_schedule(&drv_data->pump_transfers);
}
static void int_transfer_complete(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
/* Stop SSP */
write_SSSR_CS(drv_data, drv_data->clear_sr);
reset_sccr1(drv_data);
if (!pxa25x_ssp_comp(drv_data))
write_SSTO(0, reg);
/* Update total byte transferred return count actual bytes read */
drv_data->cur_msg->actual_length += drv_data->len -
(drv_data->rx_end - drv_data->rx);
/* Transfer delays and chip select release are
* handled in pump_transfers or giveback
*/
/* Move to next transfer */
drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
/* Schedule transfer tasklet */
tasklet_schedule(&drv_data->pump_transfers);
}
static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
{
void __iomem *reg = drv_data->ioaddr;
u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
u32 irq_status = read_SSSR(reg) & irq_mask;
if (irq_status & SSSR_ROR) {
int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
return IRQ_HANDLED;
}
if (irq_status & SSSR_TINT) {
write_SSSR(SSSR_TINT, reg);
if (drv_data->read(drv_data)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
}
/* Drain rx fifo, Fill tx fifo and prevent overruns */
do {
if (drv_data->read(drv_data)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
} while (drv_data->write(drv_data));
if (drv_data->read(drv_data)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
if (drv_data->tx == drv_data->tx_end) {
u32 bytes_left;
u32 sccr1_reg;
sccr1_reg = read_SSCR1(reg);
sccr1_reg &= ~SSCR1_TIE;
/*
* PXA25x_SSP has no timeout, set up rx threshould for the
* remaining RX bytes.
*/
if (pxa25x_ssp_comp(drv_data)) {
u32 rx_thre;
pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
bytes_left = drv_data->rx_end - drv_data->rx;
switch (drv_data->n_bytes) {
case 4:
bytes_left >>= 1;
case 2:
bytes_left >>= 1;
}
rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
if (rx_thre > bytes_left)
rx_thre = bytes_left;
pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
}
write_SSCR1(sccr1_reg, reg);
}
/* We did something */
return IRQ_HANDLED;
}
static irqreturn_t ssp_int(int irq, void *dev_id)
{
struct driver_data *drv_data = dev_id;
void __iomem *reg = drv_data->ioaddr;
u32 sccr1_reg;
u32 mask = drv_data->mask_sr;
u32 status;
/*
* The IRQ might be shared with other peripherals so we must first
* check that are we RPM suspended or not. If we are we assume that
* the IRQ was not for us (we shouldn't be RPM suspended when the
* interrupt is enabled).
*/
if (pm_runtime_suspended(&drv_data->pdev->dev))
return IRQ_NONE;
/*
* If the device is not yet in RPM suspended state and we get an
* interrupt that is meant for another device, check if status bits
* are all set to one. That means that the device is already
* powered off.
*/
status = read_SSSR(reg);
if (status == ~0)
return IRQ_NONE;
sccr1_reg = read_SSCR1(reg);
/* Ignore possible writes if we don't need to write */
if (!(sccr1_reg & SSCR1_TIE))
mask &= ~SSSR_TFS;
if (!(status & mask))
return IRQ_NONE;
if (!drv_data->cur_msg) {
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
if (!pxa25x_ssp_comp(drv_data))
write_SSTO(0, reg);
write_SSSR_CS(drv_data, drv_data->clear_sr);
dev_err(&drv_data->pdev->dev,
"bad message state in interrupt handler\n");
/* Never fail */
return IRQ_HANDLED;
}
return drv_data->transfer_handler(drv_data);
}
/*
* The Quark SPI data sheet gives a table, and for the given 'rate',
* the 'dds' and 'clk_div' can be found in the table.
*/
static u32 quark_x1000_set_clk_regvals(u32 rate, u32 *dds, u32 *clk_div)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(quark_spi_rate_table); i++) {
if (rate >= quark_spi_rate_table[i].bitrate) {
*dds = quark_spi_rate_table[i].dds_clk_rate;
*clk_div = quark_spi_rate_table[i].clk_div;
return quark_spi_rate_table[i].bitrate;
}
}
*dds = quark_spi_rate_table[i-1].dds_clk_rate;
*clk_div = quark_spi_rate_table[i-1].clk_div;
return quark_spi_rate_table[i-1].bitrate;
}
static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
{
unsigned long ssp_clk = drv_data->max_clk_rate;
const struct ssp_device *ssp = drv_data->ssp;
rate = min_t(int, ssp_clk, rate);
if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
else
return ((ssp_clk / rate - 1) & 0xfff) << 8;
}
static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
struct chip_data *chip, int rate)
{
u32 clk_div;
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
quark_x1000_set_clk_regvals(rate, &chip->dds_rate, &clk_div);
return clk_div << 8;
default:
return ssp_get_clk_div(drv_data, rate);
}
}
static void pump_transfers(unsigned long data)
{
struct driver_data *drv_data = (struct driver_data *)data;
struct spi_message *message = NULL;
struct spi_transfer *transfer = NULL;
struct spi_transfer *previous = NULL;
struct chip_data *chip = NULL;
void __iomem *reg = drv_data->ioaddr;
u32 clk_div = 0;
u8 bits = 0;
u32 speed = 0;
u32 cr0;
u32 cr1;
u32 dma_thresh = drv_data->cur_chip->dma_threshold;
u32 dma_burst = drv_data->cur_chip->dma_burst_size;
u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
/* Get current state information */
message = drv_data->cur_msg;
transfer = drv_data->cur_transfer;
chip = drv_data->cur_chip;
/* Handle for abort */
if (message->state == ERROR_STATE) {
message->status = -EIO;
giveback(drv_data);
return;
}
/* Handle end of message */
if (message->state == DONE_STATE) {
message->status = 0;
giveback(drv_data);
return;
}
/* Delay if requested at end of transfer before CS change */
if (message->state == RUNNING_STATE) {
previous = list_entry(transfer->transfer_list.prev,
struct spi_transfer,
transfer_list);
if (previous->delay_usecs)
udelay(previous->delay_usecs);
/* Drop chip select only if cs_change is requested */
if (previous->cs_change)
cs_deassert(drv_data);
}
/* Check if we can DMA this transfer */
if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
/* reject already-mapped transfers; PIO won't always work */
if (message->is_dma_mapped
|| transfer->rx_dma || transfer->tx_dma) {
dev_err(&drv_data->pdev->dev,
"pump_transfers: mapped transfer length of "
"%u is greater than %d\n",
transfer->len, MAX_DMA_LEN);
message->status = -EINVAL;
giveback(drv_data);
return;
}
/* warn ... we force this to PIO mode */
dev_warn_ratelimited(&message->spi->dev,
"pump_transfers: DMA disabled for transfer length %ld "
"greater than %d\n",
(long)drv_data->len, MAX_DMA_LEN);
}
/* Setup the transfer state based on the type of transfer */
if (pxa2xx_spi_flush(drv_data) == 0) {
dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
message->status = -EIO;
giveback(drv_data);
return;
}
drv_data->n_bytes = chip->n_bytes;
drv_data->tx = (void *)transfer->tx_buf;
drv_data->tx_end = drv_data->tx + transfer->len;
drv_data->rx = transfer->rx_buf;
drv_data->rx_end = drv_data->rx + transfer->len;
drv_data->rx_dma = transfer->rx_dma;
drv_data->tx_dma = transfer->tx_dma;
drv_data->len = transfer->len;
drv_data->write = drv_data->tx ? chip->write : null_writer;
drv_data->read = drv_data->rx ? chip->read : null_reader;
/* Change speed and bit per word on a per transfer */
cr0 = chip->cr0;
if (transfer->speed_hz || transfer->bits_per_word) {
bits = chip->bits_per_word;
speed = chip->speed_hz;
if (transfer->speed_hz)
speed = transfer->speed_hz;
if (transfer->bits_per_word)
bits = transfer->bits_per_word;
clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
if (bits <= 8) {
drv_data->n_bytes = 1;
drv_data->read = drv_data->read != null_reader ?
u8_reader : null_reader;
drv_data->write = drv_data->write != null_writer ?
u8_writer : null_writer;
} else if (bits <= 16) {
drv_data->n_bytes = 2;
drv_data->read = drv_data->read != null_reader ?
u16_reader : null_reader;
drv_data->write = drv_data->write != null_writer ?
u16_writer : null_writer;
} else if (bits <= 32) {
drv_data->n_bytes = 4;
drv_data->read = drv_data->read != null_reader ?
u32_reader : null_reader;
drv_data->write = drv_data->write != null_writer ?
u32_writer : null_writer;
}
/* if bits/word is changed in dma mode, then must check the
* thresholds and burst also */
if (chip->enable_dma) {
if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
message->spi,
bits, &dma_burst,
&dma_thresh))
dev_warn_ratelimited(&message->spi->dev,
"pump_transfers: DMA burst size reduced to match bits_per_word\n");
}
cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
}
message->state = RUNNING_STATE;
drv_data->dma_mapped = 0;
if (pxa2xx_spi_dma_is_possible(drv_data->len))
drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
if (drv_data->dma_mapped) {
/* Ensure we have the correct interrupt handler */
drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
pxa2xx_spi_dma_prepare(drv_data, dma_burst);
/* Clear status and start DMA engine */
cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
write_SSSR(drv_data->clear_sr, reg);
pxa2xx_spi_dma_start(drv_data);
} else {
/* Ensure we have the correct interrupt handler */
drv_data->transfer_handler = interrupt_transfer;
/* Clear status */
cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
write_SSSR_CS(drv_data, drv_data->clear_sr);
}
if (is_lpss_ssp(drv_data)) {
if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
write_SSIRF(chip->lpss_rx_threshold, reg);
if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
write_SSITF(chip->lpss_tx_threshold, reg);
}
if (is_quark_x1000_ssp(drv_data) &&
(read_DDS_RATE(reg) != chip->dds_rate))
write_DDS_RATE(chip->dds_rate, reg);
/* see if we need to reload the config registers */
if ((read_SSCR0(reg) != cr0) ||
(read_SSCR1(reg) & change_mask) != (cr1 & change_mask)) {
/* stop the SSP, and update the other bits */
write_SSCR0(cr0 & ~SSCR0_SSE, reg);
if (!pxa25x_ssp_comp(drv_data))
write_SSTO(chip->timeout, reg);
/* first set CR1 without interrupt and service enables */
write_SSCR1(cr1 & change_mask, reg);
/* restart the SSP */
write_SSCR0(cr0, reg);
} else {
if (!pxa25x_ssp_comp(drv_data))
write_SSTO(chip->timeout, reg);
}
cs_assert(drv_data);
/* after chip select, release the data by enabling service
* requests and interrupts, without changing any mode bits */
write_SSCR1(cr1, reg);
}
static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct driver_data *drv_data = spi_master_get_devdata(master);
drv_data->cur_msg = msg;
/* Initial message state*/
drv_data->cur_msg->state = START_STATE;
drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
struct spi_transfer,
transfer_list);
/* prepare to setup the SSP, in pump_transfers, using the per
* chip configuration */
drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
/* Mark as busy and launch transfers */
tasklet_schedule(&drv_data->pump_transfers);
return 0;
}
static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
{
struct driver_data *drv_data = spi_master_get_devdata(master);
/* Disable the SSP now */
write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
drv_data->ioaddr);
return 0;
}
static int setup_cs(struct spi_device *spi, struct chip_data *chip,
struct pxa2xx_spi_chip *chip_info)
{
int err = 0;
if (chip == NULL || chip_info == NULL)
return 0;
/* NOTE: setup() can be called multiple times, possibly with
* different chip_info, release previously requested GPIO
*/
if (gpio_is_valid(chip->gpio_cs))
gpio_free(chip->gpio_cs);
/* If (*cs_control) is provided, ignore GPIO chip select */
if (chip_info->cs_control) {
chip->cs_control = chip_info->cs_control;
return 0;
}
if (gpio_is_valid(chip_info->gpio_cs)) {
err = gpio_request(chip_info->gpio_cs, "SPI_CS");
if (err) {
dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
chip_info->gpio_cs);
return err;
}
chip->gpio_cs = chip_info->gpio_cs;
chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
err = gpio_direction_output(chip->gpio_cs,
!chip->gpio_cs_inverted);
}
return err;
}
static int setup(struct spi_device *spi)
{
struct pxa2xx_spi_chip *chip_info = NULL;
struct chip_data *chip;
struct driver_data *drv_data = spi_master_get_devdata(spi->master);
unsigned int clk_div;
uint tx_thres, tx_hi_thres, rx_thres;
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
tx_thres = TX_THRESH_QUARK_X1000_DFLT;
tx_hi_thres = 0;
rx_thres = RX_THRESH_QUARK_X1000_DFLT;
break;
case LPSS_SSP:
tx_thres = LPSS_TX_LOTHRESH_DFLT;
tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
rx_thres = LPSS_RX_THRESH_DFLT;
break;
default:
tx_thres = TX_THRESH_DFLT;
tx_hi_thres = 0;
rx_thres = RX_THRESH_DFLT;
break;
}
/* Only alloc on first setup */
chip = spi_get_ctldata(spi);
if (!chip) {
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
if (!chip)
return -ENOMEM;
if (drv_data->ssp_type == CE4100_SSP) {
if (spi->chip_select > 4) {
dev_err(&spi->dev,
"failed setup: cs number must not be > 4.\n");
kfree(chip);
return -EINVAL;
}
chip->frm = spi->chip_select;
} else
chip->gpio_cs = -1;
chip->enable_dma = 0;
chip->timeout = TIMOUT_DFLT;
}
/* protocol drivers may change the chip settings, so...
* if chip_info exists, use it */
chip_info = spi->controller_data;
/* chip_info isn't always needed */
chip->cr1 = 0;
if (chip_info) {
if (chip_info->timeout)
chip->timeout = chip_info->timeout;
if (chip_info->tx_threshold)
tx_thres = chip_info->tx_threshold;
if (chip_info->tx_hi_threshold)
tx_hi_thres = chip_info->tx_hi_threshold;
if (chip_info->rx_threshold)
rx_thres = chip_info->rx_threshold;
chip->enable_dma = drv_data->master_info->enable_dma;
chip->dma_threshold = 0;
if (chip_info->enable_loopback)
chip->cr1 = SSCR1_LBM;
} else if (ACPI_HANDLE(&spi->dev)) {
/*
* Slave devices enumerated from ACPI namespace don't
* usually have chip_info but we still might want to use
* DMA with them.
*/
chip->enable_dma = drv_data->master_info->enable_dma;
}
chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
| SSITF_TxHiThresh(tx_hi_thres);
/* set dma burst and threshold outside of chip_info path so that if
* chip_info goes away after setting chip->enable_dma, the
* burst and threshold can still respond to changes in bits_per_word */
if (chip->enable_dma) {
/* set up legal burst and threshold for dma */
if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
spi->bits_per_word,
&chip->dma_burst_size,
&chip->dma_threshold)) {
dev_warn(&spi->dev,
"in setup: DMA burst size reduced to match bits_per_word\n");
}
}
clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
chip->speed_hz = spi->max_speed_hz;
chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
spi->bits_per_word);
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
& QUARK_X1000_SSCR1_RFT)
| (QUARK_X1000_SSCR1_TxTresh(tx_thres)
& QUARK_X1000_SSCR1_TFT);
break;
default:
chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
break;
}
chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
if (spi->mode & SPI_LOOP)
chip->cr1 |= SSCR1_LBM;
/* NOTE: PXA25x_SSP _could_ use external clocking ... */
if (!pxa25x_ssp_comp(drv_data))
dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
drv_data->max_clk_rate
/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
chip->enable_dma ? "DMA" : "PIO");
else
dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
drv_data->max_clk_rate / 2
/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
chip->enable_dma ? "DMA" : "PIO");
if (spi->bits_per_word <= 8) {
chip->n_bytes = 1;
chip->read = u8_reader;
chip->write = u8_writer;
} else if (spi->bits_per_word <= 16) {
chip->n_bytes = 2;
chip->read = u16_reader;
chip->write = u16_writer;
} else if (spi->bits_per_word <= 32) {
if (!is_quark_x1000_ssp(drv_data))
chip->cr0 |= SSCR0_EDSS;
chip->n_bytes = 4;
chip->read = u32_reader;
chip->write = u32_writer;
}
chip->bits_per_word = spi->bits_per_word;
spi_set_ctldata(spi, chip);
if (drv_data->ssp_type == CE4100_SSP)
return 0;
return setup_cs(spi, chip, chip_info);
}
static void cleanup(struct spi_device *spi)
{
struct chip_data *chip = spi_get_ctldata(spi);
struct driver_data *drv_data = spi_master_get_devdata(spi->master);
if (!chip)
return;
if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
gpio_free(chip->gpio_cs);
kfree(chip);
}
#ifdef CONFIG_ACPI
static struct pxa2xx_spi_master *
pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
{
struct pxa2xx_spi_master *pdata;
struct acpi_device *adev;
struct ssp_device *ssp;
struct resource *res;
int devid;
if (!ACPI_HANDLE(&pdev->dev) ||
acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
return NULL;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return NULL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return NULL;
ssp = &pdata->ssp;
ssp->phys_base = res->start;
ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ssp->mmio_base))
return NULL;
ssp->clk = devm_clk_get(&pdev->dev, NULL);
ssp->irq = platform_get_irq(pdev, 0);
ssp->type = LPSS_SSP;
ssp->pdev = pdev;
ssp->port_id = -1;
if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
ssp->port_id = devid;
pdata->num_chipselect = 1;
pdata->enable_dma = true;
return pdata;
}
static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
{ "INT33C0", 0 },
{ "INT33C1", 0 },
{ "INT3430", 0 },
{ "INT3431", 0 },
{ "80860F0E", 0 },
{ "8086228E", 0 },
{ },
};
MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
#else
static inline struct pxa2xx_spi_master *
pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
{
return NULL;
}
#endif
static int pxa2xx_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct pxa2xx_spi_master *platform_info;
struct spi_master *master;
struct driver_data *drv_data;
struct ssp_device *ssp;
int status;
platform_info = dev_get_platdata(dev);
if (!platform_info) {
platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
if (!platform_info) {
dev_err(&pdev->dev, "missing platform data\n");
return -ENODEV;
}
}
ssp = pxa_ssp_request(pdev->id, pdev->name);
if (!ssp)
ssp = &platform_info->ssp;
if (!ssp->mmio_base) {
dev_err(&pdev->dev, "failed to get ssp\n");
return -ENODEV;
}
/* Allocate master with space for drv_data and null dma buffer */
master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
if (!master) {
dev_err(&pdev->dev, "cannot alloc spi_master\n");
pxa_ssp_free(ssp);
return -ENOMEM;
}
drv_data = spi_master_get_devdata(master);
drv_data->master = master;
drv_data->master_info = platform_info;
drv_data->pdev = pdev;
drv_data->ssp = ssp;
master->dev.parent = &pdev->dev;
master->dev.of_node = pdev->dev.of_node;
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
master->bus_num = ssp->port_id;
master->num_chipselect = platform_info->num_chipselect;
master->dma_alignment = DMA_ALIGNMENT;
master->cleanup = cleanup;
master->setup = setup;
master->transfer_one_message = pxa2xx_spi_transfer_one_message;
master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
master->auto_runtime_pm = true;
drv_data->ssp_type = ssp->type;
drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
drv_data->ioaddr = ssp->mmio_base;
drv_data->ssdr_physical = ssp->phys_base + SSDR;
if (pxa25x_ssp_comp(drv_data)) {
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
break;
default:
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
break;
}
drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
drv_data->dma_cr1 = 0;
drv_data->clear_sr = SSSR_ROR;
drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
} else {
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
drv_data->dma_cr1 = DEFAULT_DMA_CR1;
drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
}
status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
drv_data);
if (status < 0) {
dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
goto out_error_master_alloc;
}
/* Setup DMA if requested */
drv_data->tx_channel = -1;
drv_data->rx_channel = -1;
if (platform_info->enable_dma) {
status = pxa2xx_spi_dma_setup(drv_data);
if (status) {
dev_dbg(dev, "no DMA channels available, using PIO\n");
platform_info->enable_dma = false;
}
}
/* Enable SOC clock */
clk_prepare_enable(ssp->clk);
drv_data->max_clk_rate = clk_get_rate(ssp->clk);
/* Load default SSP configuration */
write_SSCR0(0, drv_data->ioaddr);
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
write_SSCR1(QUARK_X1000_SSCR1_RxTresh(
RX_THRESH_QUARK_X1000_DFLT) |
QUARK_X1000_SSCR1_TxTresh(
TX_THRESH_QUARK_X1000_DFLT),
drv_data->ioaddr);
/* using the Motorola SPI protocol and use 8 bit frame */
write_SSCR0(QUARK_X1000_SSCR0_Motorola
| QUARK_X1000_SSCR0_DataSize(8),
drv_data->ioaddr);
break;
default:
write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
SSCR1_TxTresh(TX_THRESH_DFLT),
drv_data->ioaddr);
write_SSCR0(SSCR0_SCR(2)
| SSCR0_Motorola
| SSCR0_DataSize(8),
drv_data->ioaddr);
break;
}
if (!pxa25x_ssp_comp(drv_data))
write_SSTO(0, drv_data->ioaddr);
if (!is_quark_x1000_ssp(drv_data))
write_SSPSP(0, drv_data->ioaddr);
lpss_ssp_setup(drv_data);
tasklet_init(&drv_data->pump_transfers, pump_transfers,
(unsigned long)drv_data);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
/* Register with the SPI framework */
platform_set_drvdata(pdev, drv_data);
status = devm_spi_register_master(&pdev->dev, master);
if (status != 0) {
dev_err(&pdev->dev, "problem registering spi master\n");
goto out_error_clock_enabled;
}
return status;
out_error_clock_enabled:
clk_disable_unprepare(ssp->clk);
pxa2xx_spi_dma_release(drv_data);
free_irq(ssp->irq, drv_data);
out_error_master_alloc:
spi_master_put(master);
pxa_ssp_free(ssp);
return status;
}
static int pxa2xx_spi_remove(struct platform_device *pdev)
{
struct driver_data *drv_data = platform_get_drvdata(pdev);
struct ssp_device *ssp;
if (!drv_data)
return 0;
ssp = drv_data->ssp;
pm_runtime_get_sync(&pdev->dev);
/* Disable the SSP at the peripheral and SOC level */
write_SSCR0(0, drv_data->ioaddr);
clk_disable_unprepare(ssp->clk);
/* Release DMA */
if (drv_data->master_info->enable_dma)
pxa2xx_spi_dma_release(drv_data);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
/* Release IRQ */
free_irq(ssp->irq, drv_data);
/* Release SSP */
pxa_ssp_free(ssp);
return 0;
}
static void pxa2xx_spi_shutdown(struct platform_device *pdev)
{
int status = 0;
if ((status = pxa2xx_spi_remove(pdev)) != 0)
dev_err(&pdev->dev, "shutdown failed with %d\n", status);
}
#ifdef CONFIG_PM_SLEEP
static int pxa2xx_spi_suspend(struct device *dev)
{
struct driver_data *drv_data = dev_get_drvdata(dev);
struct ssp_device *ssp = drv_data->ssp;
int status = 0;
status = spi_master_suspend(drv_data->master);
if (status != 0)
return status;
write_SSCR0(0, drv_data->ioaddr);
if (!pm_runtime_suspended(dev))
clk_disable_unprepare(ssp->clk);
return 0;
}
static int pxa2xx_spi_resume(struct device *dev)
{
struct driver_data *drv_data = dev_get_drvdata(dev);
struct ssp_device *ssp = drv_data->ssp;
int status = 0;
pxa2xx_spi_dma_resume(drv_data);
/* Enable the SSP clock */
if (!pm_runtime_suspended(dev))
clk_prepare_enable(ssp->clk);
/* Restore LPSS private register bits */
lpss_ssp_setup(drv_data);
/* Start the queue running */
status = spi_master_resume(drv_data->master);
if (status != 0) {
dev_err(dev, "problem starting queue (%d)\n", status);
return status;
}
return 0;
}
#endif
#ifdef CONFIG_PM
static int pxa2xx_spi_runtime_suspend(struct device *dev)
{
struct driver_data *drv_data = dev_get_drvdata(dev);
clk_disable_unprepare(drv_data->ssp->clk);
return 0;
}
static int pxa2xx_spi_runtime_resume(struct device *dev)
{
struct driver_data *drv_data = dev_get_drvdata(dev);
clk_prepare_enable(drv_data->ssp->clk);
return 0;
}
#endif
static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
pxa2xx_spi_runtime_resume, NULL)
};
static struct platform_driver driver = {
.driver = {
.name = "pxa2xx-spi",
.pm = &pxa2xx_spi_pm_ops,
.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
},
.probe = pxa2xx_spi_probe,
.remove = pxa2xx_spi_remove,
.shutdown = pxa2xx_spi_shutdown,
};
static int __init pxa2xx_spi_init(void)
{
return platform_driver_register(&driver);
}
subsys_initcall(pxa2xx_spi_init);
static void __exit pxa2xx_spi_exit(void)
{
platform_driver_unregister(&driver);
}
module_exit(pxa2xx_spi_exit);