OpenCloudOS-Kernel/drivers/gpu/drm/i915/intel_psr.c

1226 lines
35 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: Panel Self Refresh (PSR/SRD)
*
* Since Haswell Display controller supports Panel Self-Refresh on display
* panels witch have a remote frame buffer (RFB) implemented according to PSR
* spec in eDP1.3. PSR feature allows the display to go to lower standby states
* when system is idle but display is on as it eliminates display refresh
* request to DDR memory completely as long as the frame buffer for that
* display is unchanged.
*
* Panel Self Refresh must be supported by both Hardware (source) and
* Panel (sink).
*
* PSR saves power by caching the framebuffer in the panel RFB, which allows us
* to power down the link and memory controller. For DSI panels the same idea
* is called "manual mode".
*
* The implementation uses the hardware-based PSR support which automatically
* enters/exits self-refresh mode. The hardware takes care of sending the
* required DP aux message and could even retrain the link (that part isn't
* enabled yet though). The hardware also keeps track of any frontbuffer
* changes to know when to exit self-refresh mode again. Unfortunately that
* part doesn't work too well, hence why the i915 PSR support uses the
* software frontbuffer tracking to make sure it doesn't miss a screen
* update. For this integration intel_psr_invalidate() and intel_psr_flush()
* get called by the frontbuffer tracking code. Note that because of locking
* issues the self-refresh re-enable code is done from a work queue, which
* must be correctly synchronized/cancelled when shutting down the pipe."
*/
#include <drm/drmP.h>
#include "intel_drv.h"
#include "i915_drv.h"
static bool psr_global_enabled(u32 debug)
{
switch (debug & I915_PSR_DEBUG_MODE_MASK) {
case I915_PSR_DEBUG_DEFAULT:
return i915_modparams.enable_psr;
case I915_PSR_DEBUG_DISABLE:
return false;
default:
return true;
}
}
static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
const struct intel_crtc_state *crtc_state)
{
/* Disable PSR2 by default for all platforms */
if (i915_modparams.enable_psr == -1)
return false;
/* Cannot enable DSC and PSR2 simultaneously */
WARN_ON(crtc_state->dsc_params.compression_enable &&
crtc_state->has_psr2);
switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
case I915_PSR_DEBUG_FORCE_PSR1:
return false;
default:
return crtc_state->has_psr2;
}
}
static int edp_psr_shift(enum transcoder cpu_transcoder)
{
switch (cpu_transcoder) {
case TRANSCODER_A:
return EDP_PSR_TRANSCODER_A_SHIFT;
case TRANSCODER_B:
return EDP_PSR_TRANSCODER_B_SHIFT;
case TRANSCODER_C:
return EDP_PSR_TRANSCODER_C_SHIFT;
default:
MISSING_CASE(cpu_transcoder);
/* fallthrough */
case TRANSCODER_EDP:
return EDP_PSR_TRANSCODER_EDP_SHIFT;
}
}
void intel_psr_irq_control(struct drm_i915_private *dev_priv, u32 debug)
{
u32 debug_mask, mask;
enum transcoder cpu_transcoder;
u32 transcoders = BIT(TRANSCODER_EDP);
if (INTEL_GEN(dev_priv) >= 8)
transcoders |= BIT(TRANSCODER_A) |
BIT(TRANSCODER_B) |
BIT(TRANSCODER_C);
debug_mask = 0;
mask = 0;
for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
int shift = edp_psr_shift(cpu_transcoder);
mask |= EDP_PSR_ERROR(shift);
debug_mask |= EDP_PSR_POST_EXIT(shift) |
EDP_PSR_PRE_ENTRY(shift);
}
if (debug & I915_PSR_DEBUG_IRQ)
mask |= debug_mask;
I915_WRITE(EDP_PSR_IMR, ~mask);
}
static void psr_event_print(u32 val, bool psr2_enabled)
{
DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
DRM_DEBUG_KMS("\tPSR2 disabled\n");
if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
if (val & PSR_EVENT_GRAPHICS_RESET)
DRM_DEBUG_KMS("\tGraphics reset\n");
if (val & PSR_EVENT_PCH_INTERRUPT)
DRM_DEBUG_KMS("\tPCH interrupt\n");
if (val & PSR_EVENT_MEMORY_UP)
DRM_DEBUG_KMS("\tMemory up\n");
if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
DRM_DEBUG_KMS("\tFront buffer modification\n");
if (val & PSR_EVENT_WD_TIMER_EXPIRE)
DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
DRM_DEBUG_KMS("\tPIPE registers updated\n");
if (val & PSR_EVENT_REGISTER_UPDATE)
DRM_DEBUG_KMS("\tRegister updated\n");
if (val & PSR_EVENT_HDCP_ENABLE)
DRM_DEBUG_KMS("\tHDCP enabled\n");
if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
DRM_DEBUG_KMS("\tKVMR session enabled\n");
if (val & PSR_EVENT_VBI_ENABLE)
DRM_DEBUG_KMS("\tVBI enabled\n");
if (val & PSR_EVENT_LPSP_MODE_EXIT)
DRM_DEBUG_KMS("\tLPSP mode exited\n");
if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
DRM_DEBUG_KMS("\tPSR disabled\n");
}
void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
{
u32 transcoders = BIT(TRANSCODER_EDP);
enum transcoder cpu_transcoder;
ktime_t time_ns = ktime_get();
u32 mask = 0;
if (INTEL_GEN(dev_priv) >= 8)
transcoders |= BIT(TRANSCODER_A) |
BIT(TRANSCODER_B) |
BIT(TRANSCODER_C);
for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
int shift = edp_psr_shift(cpu_transcoder);
if (psr_iir & EDP_PSR_ERROR(shift)) {
DRM_WARN("[transcoder %s] PSR aux error\n",
transcoder_name(cpu_transcoder));
dev_priv->psr.irq_aux_error = true;
/*
* If this interruption is not masked it will keep
* interrupting so fast that it prevents the scheduled
* work to run.
* Also after a PSR error, we don't want to arm PSR
* again so we don't care about unmask the interruption
* or unset irq_aux_error.
*/
mask |= EDP_PSR_ERROR(shift);
}
if (psr_iir & EDP_PSR_PRE_ENTRY(shift)) {
dev_priv->psr.last_entry_attempt = time_ns;
DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
transcoder_name(cpu_transcoder));
}
if (psr_iir & EDP_PSR_POST_EXIT(shift)) {
dev_priv->psr.last_exit = time_ns;
DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
transcoder_name(cpu_transcoder));
if (INTEL_GEN(dev_priv) >= 9) {
u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
bool psr2_enabled = dev_priv->psr.psr2_enabled;
I915_WRITE(PSR_EVENT(cpu_transcoder), val);
psr_event_print(val, psr2_enabled);
}
}
}
if (mask) {
mask |= I915_READ(EDP_PSR_IMR);
I915_WRITE(EDP_PSR_IMR, mask);
schedule_work(&dev_priv->psr.work);
}
}
static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
uint8_t dprx = 0;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
&dprx) != 1)
return false;
return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}
static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
{
uint8_t alpm_caps = 0;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
&alpm_caps) != 1)
return false;
return alpm_caps & DP_ALPM_CAP;
}
static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
{
u8 val = 8; /* assume the worst if we can't read the value */
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
else
DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
return val;
}
void intel_psr_init_dpcd(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv =
to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
sizeof(intel_dp->psr_dpcd));
if (!intel_dp->psr_dpcd[0])
return;
DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
intel_dp->psr_dpcd[0]);
if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
DRM_DEBUG_KMS("PSR support not currently available for this panel\n");
return;
}
if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
return;
}
dev_priv->psr.sink_support = true;
dev_priv->psr.sink_sync_latency =
intel_dp_get_sink_sync_latency(intel_dp);
WARN_ON(dev_priv->psr.dp);
dev_priv->psr.dp = intel_dp;
if (INTEL_GEN(dev_priv) >= 9 &&
(intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
bool y_req = intel_dp->psr_dpcd[1] &
DP_PSR2_SU_Y_COORDINATE_REQUIRED;
bool alpm = intel_dp_get_alpm_status(intel_dp);
/*
* All panels that supports PSR version 03h (PSR2 +
* Y-coordinate) can handle Y-coordinates in VSC but we are
* only sure that it is going to be used when required by the
* panel. This way panel is capable to do selective update
* without a aux frame sync.
*
* To support PSR version 02h and PSR version 03h without
* Y-coordinate requirement panels we would need to enable
* GTC first.
*/
dev_priv->psr.sink_psr2_support = y_req && alpm;
DRM_DEBUG_KMS("PSR2 %ssupported\n",
dev_priv->psr.sink_psr2_support ? "" : "not ");
if (dev_priv->psr.sink_psr2_support) {
dev_priv->psr.colorimetry_support =
intel_dp_get_colorimetry_status(intel_dp);
}
}
}
static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct edp_vsc_psr psr_vsc;
if (dev_priv->psr.psr2_enabled) {
/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
if (dev_priv->psr.colorimetry_support) {
psr_vsc.sdp_header.HB2 = 0x5;
psr_vsc.sdp_header.HB3 = 0x13;
} else {
psr_vsc.sdp_header.HB2 = 0x4;
psr_vsc.sdp_header.HB3 = 0xe;
}
} else {
/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
psr_vsc.sdp_header.HB2 = 0x2;
psr_vsc.sdp_header.HB3 = 0x8;
}
intel_dig_port->write_infoframe(&intel_dig_port->base,
crtc_state,
DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
}
static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
u32 aux_clock_divider, aux_ctl;
int i;
static const uint8_t aux_msg[] = {
[0] = DP_AUX_NATIVE_WRITE << 4,
[1] = DP_SET_POWER >> 8,
[2] = DP_SET_POWER & 0xff,
[3] = 1 - 1,
[4] = DP_SET_POWER_D0,
};
u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
BUILD_BUG_ON(sizeof(aux_msg) > 20);
for (i = 0; i < sizeof(aux_msg); i += 4)
I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
/* Start with bits set for DDI_AUX_CTL register */
aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
aux_clock_divider);
/* Select only valid bits for SRD_AUX_CTL */
aux_ctl &= psr_aux_mask;
I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
}
static void intel_psr_enable_sink(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
u8 dpcd_val = DP_PSR_ENABLE;
/* Enable ALPM at sink for psr2 */
if (dev_priv->psr.psr2_enabled) {
drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
DP_ALPM_ENABLE);
dpcd_val |= DP_PSR_ENABLE_PSR2;
}
if (dev_priv->psr.link_standby)
dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
if (!dev_priv->psr.psr2_enabled && INTEL_GEN(dev_priv) >= 8)
dpcd_val |= DP_PSR_CRC_VERIFICATION;
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
}
static void hsw_activate_psr1(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
u32 max_sleep_time = 0x1f;
u32 val = EDP_PSR_ENABLE;
/* Let's use 6 as the minimum to cover all known cases including the
* off-by-one issue that HW has in some cases.
*/
int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
/* sink_sync_latency of 8 means source has to wait for more than 8
* frames, we'll go with 9 frames for now
*/
idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
if (IS_HASWELL(dev_priv))
val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
if (dev_priv->psr.link_standby)
val |= EDP_PSR_LINK_STANDBY;
if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
val |= EDP_PSR_TP1_TIME_0us;
else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
val |= EDP_PSR_TP1_TIME_100us;
else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
val |= EDP_PSR_TP1_TIME_500us;
else
val |= EDP_PSR_TP1_TIME_2500us;
if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
val |= EDP_PSR_TP2_TP3_TIME_0us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
val |= EDP_PSR_TP2_TP3_TIME_100us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
val |= EDP_PSR_TP2_TP3_TIME_500us;
else
val |= EDP_PSR_TP2_TP3_TIME_2500us;
if (intel_dp_source_supports_hbr2(intel_dp) &&
drm_dp_tps3_supported(intel_dp->dpcd))
val |= EDP_PSR_TP1_TP3_SEL;
else
val |= EDP_PSR_TP1_TP2_SEL;
if (INTEL_GEN(dev_priv) >= 8)
val |= EDP_PSR_CRC_ENABLE;
val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
I915_WRITE(EDP_PSR_CTL, val);
}
static void hsw_activate_psr2(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
u32 val;
/* Let's use 6 as the minimum to cover all known cases including the
* off-by-one issue that HW has in some cases.
*/
int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
/* FIXME: selective update is probably totally broken because it doesn't
* mesh at all with our frontbuffer tracking. And the hw alone isn't
* good enough. */
val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
val |= EDP_Y_COORDINATE_ENABLE;
val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us >= 0 &&
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 50)
val |= EDP_PSR2_TP2_TIME_50us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
val |= EDP_PSR2_TP2_TIME_100us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
val |= EDP_PSR2_TP2_TIME_500us;
else
val |= EDP_PSR2_TP2_TIME_2500us;
I915_WRITE(EDP_PSR2_CTL, val);
}
static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
int psr_max_h = 0, psr_max_v = 0;
/*
* FIXME psr2_support is messed up. It's both computed
* dynamically during PSR enable, and extracted from sink
* caps during eDP detection.
*/
if (!dev_priv->psr.sink_psr2_support)
return false;
/*
* DSC and PSR2 cannot be enabled simultaneously. If a requested
* resolution requires DSC to be enabled, priority is given to DSC
* over PSR2.
*/
if (crtc_state->dsc_params.compression_enable) {
DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n");
return false;
}
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
psr_max_h = 4096;
psr_max_v = 2304;
} else if (IS_GEN9(dev_priv)) {
psr_max_h = 3640;
psr_max_v = 2304;
}
if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
crtc_hdisplay, crtc_vdisplay,
psr_max_h, psr_max_v);
return false;
}
return true;
}
void intel_psr_compute_config(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
const struct drm_display_mode *adjusted_mode =
&crtc_state->base.adjusted_mode;
int psr_setup_time;
if (!CAN_PSR(dev_priv))
return;
if (intel_dp != dev_priv->psr.dp)
return;
/*
* HSW spec explicitly says PSR is tied to port A.
* BDW+ platforms with DDI implementation of PSR have different
* PSR registers per transcoder and we only implement transcoder EDP
* ones. Since by Display design transcoder EDP is tied to port A
* we can safely escape based on the port A.
*/
if (dig_port->base.port != PORT_A) {
DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
return;
}
if (dev_priv->psr.sink_not_reliable) {
DRM_DEBUG_KMS("PSR sink implementation is not reliable\n");
return;
}
if (IS_HASWELL(dev_priv) &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
return;
}
psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
if (psr_setup_time < 0) {
DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
intel_dp->psr_dpcd[1]);
return;
}
if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
psr_setup_time);
return;
}
crtc_state->has_psr = true;
crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
}
static void intel_psr_activate(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
if (INTEL_GEN(dev_priv) >= 9)
WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
WARN_ON(dev_priv->psr.active);
lockdep_assert_held(&dev_priv->psr.lock);
/* psr1 and psr2 are mutually exclusive.*/
if (dev_priv->psr.psr2_enabled)
hsw_activate_psr2(intel_dp);
else
hsw_activate_psr1(intel_dp);
dev_priv->psr.active = true;
}
static i915_reg_t gen9_chicken_trans_reg(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
static const i915_reg_t regs[] = {
[TRANSCODER_A] = CHICKEN_TRANS_A,
[TRANSCODER_B] = CHICKEN_TRANS_B,
[TRANSCODER_C] = CHICKEN_TRANS_C,
[TRANSCODER_EDP] = CHICKEN_TRANS_EDP,
};
WARN_ON(INTEL_GEN(dev_priv) < 9);
if (WARN_ON(cpu_transcoder >= ARRAY_SIZE(regs) ||
!regs[cpu_transcoder].reg))
cpu_transcoder = TRANSCODER_A;
return regs[cpu_transcoder];
}
static void intel_psr_enable_source(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 mask;
/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
* use hardcoded values PSR AUX transactions
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
hsw_psr_setup_aux(intel_dp);
if (dev_priv->psr.psr2_enabled) {
i915_reg_t reg = gen9_chicken_trans_reg(dev_priv,
cpu_transcoder);
u32 chicken = I915_READ(reg);
if (IS_GEN9(dev_priv) && !IS_GEMINILAKE(dev_priv))
chicken |= (PSR2_VSC_ENABLE_PROG_HEADER
| PSR2_ADD_VERTICAL_LINE_COUNT);
else
chicken &= ~VSC_DATA_SEL_SOFTWARE_CONTROL;
I915_WRITE(reg, chicken);
}
/*
* Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
* mask LPSP to avoid dependency on other drivers that might block
* runtime_pm besides preventing other hw tracking issues now we
* can rely on frontbuffer tracking.
*/
mask = EDP_PSR_DEBUG_MASK_MEMUP |
EDP_PSR_DEBUG_MASK_HPD |
EDP_PSR_DEBUG_MASK_LPSP |
EDP_PSR_DEBUG_MASK_MAX_SLEEP;
if (INTEL_GEN(dev_priv) < 11)
mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
I915_WRITE(EDP_PSR_DEBUG, mask);
}
static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
const struct intel_crtc_state *crtc_state)
{
struct intel_dp *intel_dp = dev_priv->psr.dp;
if (dev_priv->psr.enabled)
return;
DRM_DEBUG_KMS("Enabling PSR%s\n",
dev_priv->psr.psr2_enabled ? "2" : "1");
intel_psr_setup_vsc(intel_dp, crtc_state);
intel_psr_enable_sink(intel_dp);
intel_psr_enable_source(intel_dp, crtc_state);
dev_priv->psr.enabled = true;
intel_psr_activate(intel_dp);
}
/**
* intel_psr_enable - Enable PSR
* @intel_dp: Intel DP
* @crtc_state: new CRTC state
*
* This function can only be called after the pipe is fully trained and enabled.
*/
void intel_psr_enable(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
if (!crtc_state->has_psr)
return;
if (WARN_ON(!CAN_PSR(dev_priv)))
return;
WARN_ON(dev_priv->drrs.dp);
mutex_lock(&dev_priv->psr.lock);
if (dev_priv->psr.prepared) {
DRM_DEBUG_KMS("PSR already in use\n");
goto unlock;
}
dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
dev_priv->psr.busy_frontbuffer_bits = 0;
dev_priv->psr.prepared = true;
dev_priv->psr.pipe = to_intel_crtc(crtc_state->base.crtc)->pipe;
if (psr_global_enabled(dev_priv->psr.debug))
intel_psr_enable_locked(dev_priv, crtc_state);
else
DRM_DEBUG_KMS("PSR disabled by flag\n");
unlock:
mutex_unlock(&dev_priv->psr.lock);
}
static void intel_psr_exit(struct drm_i915_private *dev_priv)
{
u32 val;
if (!dev_priv->psr.active) {
if (INTEL_GEN(dev_priv) >= 9)
WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
return;
}
if (dev_priv->psr.psr2_enabled) {
val = I915_READ(EDP_PSR2_CTL);
WARN_ON(!(val & EDP_PSR2_ENABLE));
I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
} else {
val = I915_READ(EDP_PSR_CTL);
WARN_ON(!(val & EDP_PSR_ENABLE));
I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
}
dev_priv->psr.active = false;
}
static void intel_psr_disable_locked(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
i915_reg_t psr_status;
u32 psr_status_mask;
lockdep_assert_held(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled)
return;
DRM_DEBUG_KMS("Disabling PSR%s\n",
dev_priv->psr.psr2_enabled ? "2" : "1");
intel_psr_exit(dev_priv);
if (dev_priv->psr.psr2_enabled) {
psr_status = EDP_PSR2_STATUS;
psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
} else {
psr_status = EDP_PSR_STATUS;
psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
}
/* Wait till PSR is idle */
if (intel_wait_for_register(dev_priv, psr_status, psr_status_mask, 0,
2000))
DRM_ERROR("Timed out waiting PSR idle state\n");
/* Disable PSR on Sink */
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
dev_priv->psr.enabled = false;
}
/**
* intel_psr_disable - Disable PSR
* @intel_dp: Intel DP
* @old_crtc_state: old CRTC state
*
* This function needs to be called before disabling pipe.
*/
void intel_psr_disable(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
if (!old_crtc_state->has_psr)
return;
if (WARN_ON(!CAN_PSR(dev_priv)))
return;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.prepared) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
intel_psr_disable_locked(intel_dp);
dev_priv->psr.prepared = false;
mutex_unlock(&dev_priv->psr.lock);
cancel_work_sync(&dev_priv->psr.work);
}
/**
* intel_psr_wait_for_idle - wait for PSR1 to idle
* @new_crtc_state: new CRTC state
* @out_value: PSR status in case of failure
*
* This function is expected to be called from pipe_update_start() where it is
* not expected to race with PSR enable or disable.
*
* Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
*/
int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
u32 *out_value)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
return 0;
/* FIXME: Update this for PSR2 if we need to wait for idle */
if (READ_ONCE(dev_priv->psr.psr2_enabled))
return 0;
/*
* From bspec: Panel Self Refresh (BDW+)
* Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
* exit training time + 1.5 ms of aux channel handshake. 50 ms is
* defensive enough to cover everything.
*/
return __intel_wait_for_register(dev_priv, EDP_PSR_STATUS,
EDP_PSR_STATUS_STATE_MASK,
EDP_PSR_STATUS_STATE_IDLE, 2, 50,
out_value);
}
static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
{
i915_reg_t reg;
u32 mask;
int err;
if (!dev_priv->psr.enabled)
return false;
if (dev_priv->psr.psr2_enabled) {
reg = EDP_PSR2_STATUS;
mask = EDP_PSR2_STATUS_STATE_MASK;
} else {
reg = EDP_PSR_STATUS;
mask = EDP_PSR_STATUS_STATE_MASK;
}
mutex_unlock(&dev_priv->psr.lock);
err = intel_wait_for_register(dev_priv, reg, mask, 0, 50);
if (err)
DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
/* After the unlocked wait, verify that PSR is still wanted! */
mutex_lock(&dev_priv->psr.lock);
return err == 0 && dev_priv->psr.enabled;
}
static bool switching_psr(struct drm_i915_private *dev_priv,
struct intel_crtc_state *crtc_state,
u32 mode)
{
/* Can't switch psr state anyway if PSR2 is not supported. */
if (!crtc_state || !crtc_state->has_psr2)
return false;
if (dev_priv->psr.psr2_enabled && mode == I915_PSR_DEBUG_FORCE_PSR1)
return true;
if (!dev_priv->psr.psr2_enabled && mode != I915_PSR_DEBUG_FORCE_PSR1)
return true;
return false;
}
int intel_psr_set_debugfs_mode(struct drm_i915_private *dev_priv,
struct drm_modeset_acquire_ctx *ctx,
u64 val)
{
struct drm_device *dev = &dev_priv->drm;
struct drm_connector_state *conn_state;
struct intel_crtc_state *crtc_state = NULL;
struct drm_crtc_commit *commit;
struct drm_crtc *crtc;
struct intel_dp *dp;
int ret;
bool enable;
u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
mode > I915_PSR_DEBUG_FORCE_PSR1) {
DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
return -EINVAL;
}
ret = drm_modeset_lock(&dev->mode_config.connection_mutex, ctx);
if (ret)
return ret;
/* dev_priv->psr.dp should be set once and then never touched again. */
dp = READ_ONCE(dev_priv->psr.dp);
conn_state = dp->attached_connector->base.state;
crtc = conn_state->crtc;
if (crtc) {
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
return ret;
crtc_state = to_intel_crtc_state(crtc->state);
commit = crtc_state->base.commit;
} else {
commit = conn_state->commit;
}
if (commit) {
ret = wait_for_completion_interruptible(&commit->hw_done);
if (ret)
return ret;
}
ret = mutex_lock_interruptible(&dev_priv->psr.lock);
if (ret)
return ret;
enable = psr_global_enabled(val);
if (!enable || switching_psr(dev_priv, crtc_state, mode))
intel_psr_disable_locked(dev_priv->psr.dp);
dev_priv->psr.debug = val;
if (crtc)
dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
if (dev_priv->psr.prepared && enable)
intel_psr_enable_locked(dev_priv, crtc_state);
mutex_unlock(&dev_priv->psr.lock);
return ret;
}
static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
{
struct i915_psr *psr = &dev_priv->psr;
intel_psr_disable_locked(psr->dp);
psr->sink_not_reliable = true;
/* let's make sure that sink is awaken */
drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
}
static void intel_psr_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), psr.work);
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled)
goto unlock;
if (READ_ONCE(dev_priv->psr.irq_aux_error))
intel_psr_handle_irq(dev_priv);
/*
* We have to make sure PSR is ready for re-enable
* otherwise it keeps disabled until next full enable/disable cycle.
* PSR might take some time to get fully disabled
* and be ready for re-enable.
*/
if (!__psr_wait_for_idle_locked(dev_priv))
goto unlock;
/*
* The delayed work can race with an invalidate hence we need to
* recheck. Since psr_flush first clears this and then reschedules we
* won't ever miss a flush when bailing out here.
*/
if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
goto unlock;
intel_psr_activate(dev_priv->psr.dp);
unlock:
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_invalidate - Invalidade PSR
* @dev_priv: i915 device
* @frontbuffer_bits: frontbuffer plane tracking bits
* @origin: which operation caused the invalidate
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
* disabled if the frontbuffer mask contains a buffer relevant to PSR.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
*/
void intel_psr_invalidate(struct drm_i915_private *dev_priv,
unsigned frontbuffer_bits, enum fb_op_origin origin)
{
if (!CAN_PSR(dev_priv))
return;
if (origin == ORIGIN_FLIP)
return;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
if (frontbuffer_bits)
intel_psr_exit(dev_priv);
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_flush - Flush PSR
* @dev_priv: i915 device
* @frontbuffer_bits: frontbuffer plane tracking bits
* @origin: which operation caused the flush
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering has completed and flushed out to memory. PSR
* can be enabled again if no other frontbuffer relevant to PSR is dirty.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
*/
void intel_psr_flush(struct drm_i915_private *dev_priv,
unsigned frontbuffer_bits, enum fb_op_origin origin)
{
if (!CAN_PSR(dev_priv))
return;
if (origin == ORIGIN_FLIP)
return;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
/* By definition flush = invalidate + flush */
if (frontbuffer_bits) {
/*
* Display WA #0884: all
* This documented WA for bxt can be safely applied
* broadly so we can force HW tracking to exit PSR
* instead of disabling and re-enabling.
* Workaround tells us to write 0 to CUR_SURFLIVE_A,
* but it makes more sense write to the current active
* pipe.
*/
I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0);
}
if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
schedule_work(&dev_priv->psr.work);
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_init - Init basic PSR work and mutex.
* @dev_priv: i915 device private
*
* This function is called only once at driver load to initialize basic
* PSR stuff.
*/
void intel_psr_init(struct drm_i915_private *dev_priv)
{
u32 val;
if (!HAS_PSR(dev_priv))
return;
dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
if (!dev_priv->psr.sink_support)
return;
if (i915_modparams.enable_psr == -1)
if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
i915_modparams.enable_psr = 0;
/*
* If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
* will still keep the error set even after the reset done in the
* irq_preinstall and irq_uninstall hooks.
* And enabling in this situation cause the screen to freeze in the
* first time that PSR HW tries to activate so lets keep PSR disabled
* to avoid any rendering problems.
*/
val = I915_READ(EDP_PSR_IIR);
val &= EDP_PSR_ERROR(edp_psr_shift(TRANSCODER_EDP));
if (val) {
DRM_DEBUG_KMS("PSR interruption error set\n");
dev_priv->psr.sink_not_reliable = true;
return;
}
/* Set link_standby x link_off defaults */
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
/* HSW and BDW require workarounds that we don't implement. */
dev_priv->psr.link_standby = false;
else
/* For new platforms let's respect VBT back again */
dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
INIT_WORK(&dev_priv->psr.work, intel_psr_work);
mutex_init(&dev_priv->psr.lock);
}
void intel_psr_short_pulse(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct i915_psr *psr = &dev_priv->psr;
u8 val;
const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
DP_PSR_LINK_CRC_ERROR;
if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
return;
mutex_lock(&psr->lock);
if (!psr->enabled || psr->dp != intel_dp)
goto exit;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
DRM_ERROR("PSR_STATUS dpcd read failed\n");
goto exit;
}
if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
intel_psr_disable_locked(intel_dp);
psr->sink_not_reliable = true;
}
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
goto exit;
}
if (val & DP_PSR_RFB_STORAGE_ERROR)
DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
if (val & DP_PSR_LINK_CRC_ERROR)
DRM_ERROR("PSR Link CRC error, disabling PSR\n");
if (val & ~errors)
DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
val & ~errors);
if (val & errors) {
intel_psr_disable_locked(intel_dp);
psr->sink_not_reliable = true;
}
/* clear status register */
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
exit:
mutex_unlock(&psr->lock);
}
bool intel_psr_enabled(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
bool ret;
if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
return false;
mutex_lock(&dev_priv->psr.lock);
ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
mutex_unlock(&dev_priv->psr.lock);
return ret;
}