OpenCloudOS-Kernel/include/uapi/linux/kfd_ioctl.h

833 lines
27 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef KFD_IOCTL_H_INCLUDED
#define KFD_IOCTL_H_INCLUDED
#include <drm/drm.h>
#include <linux/ioctl.h>
/*
* - 1.1 - initial version
* - 1.3 - Add SMI events support
* - 1.4 - Indicate new SRAM EDC bit in device properties
* - 1.5 - Add SVM API
* - 1.6 - Query clear flags in SVM get_attr API
* - 1.7 - Checkpoint Restore (CRIU) API
* - 1.8 - CRIU - Support for SDMA transfers with GTT BOs
*/
#define KFD_IOCTL_MAJOR_VERSION 1
#define KFD_IOCTL_MINOR_VERSION 8
struct kfd_ioctl_get_version_args {
__u32 major_version; /* from KFD */
__u32 minor_version; /* from KFD */
};
/* For kfd_ioctl_create_queue_args.queue_type. */
#define KFD_IOC_QUEUE_TYPE_COMPUTE 0x0
#define KFD_IOC_QUEUE_TYPE_SDMA 0x1
#define KFD_IOC_QUEUE_TYPE_COMPUTE_AQL 0x2
#define KFD_IOC_QUEUE_TYPE_SDMA_XGMI 0x3
#define KFD_MAX_QUEUE_PERCENTAGE 100
#define KFD_MAX_QUEUE_PRIORITY 15
struct kfd_ioctl_create_queue_args {
__u64 ring_base_address; /* to KFD */
__u64 write_pointer_address; /* from KFD */
__u64 read_pointer_address; /* from KFD */
__u64 doorbell_offset; /* from KFD */
__u32 ring_size; /* to KFD */
__u32 gpu_id; /* to KFD */
__u32 queue_type; /* to KFD */
__u32 queue_percentage; /* to KFD */
__u32 queue_priority; /* to KFD */
__u32 queue_id; /* from KFD */
__u64 eop_buffer_address; /* to KFD */
__u64 eop_buffer_size; /* to KFD */
__u64 ctx_save_restore_address; /* to KFD */
__u32 ctx_save_restore_size; /* to KFD */
__u32 ctl_stack_size; /* to KFD */
};
struct kfd_ioctl_destroy_queue_args {
__u32 queue_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_update_queue_args {
__u64 ring_base_address; /* to KFD */
__u32 queue_id; /* to KFD */
__u32 ring_size; /* to KFD */
__u32 queue_percentage; /* to KFD */
__u32 queue_priority; /* to KFD */
};
struct kfd_ioctl_set_cu_mask_args {
__u32 queue_id; /* to KFD */
__u32 num_cu_mask; /* to KFD */
__u64 cu_mask_ptr; /* to KFD */
};
struct kfd_ioctl_get_queue_wave_state_args {
__u64 ctl_stack_address; /* to KFD */
__u32 ctl_stack_used_size; /* from KFD */
__u32 save_area_used_size; /* from KFD */
__u32 queue_id; /* to KFD */
__u32 pad;
};
/* For kfd_ioctl_set_memory_policy_args.default_policy and alternate_policy */
#define KFD_IOC_CACHE_POLICY_COHERENT 0
#define KFD_IOC_CACHE_POLICY_NONCOHERENT 1
struct kfd_ioctl_set_memory_policy_args {
__u64 alternate_aperture_base; /* to KFD */
__u64 alternate_aperture_size; /* to KFD */
__u32 gpu_id; /* to KFD */
__u32 default_policy; /* to KFD */
__u32 alternate_policy; /* to KFD */
__u32 pad;
};
/*
* All counters are monotonic. They are used for profiling of compute jobs.
* The profiling is done by userspace.
*
* In case of GPU reset, the counter should not be affected.
*/
struct kfd_ioctl_get_clock_counters_args {
__u64 gpu_clock_counter; /* from KFD */
__u64 cpu_clock_counter; /* from KFD */
__u64 system_clock_counter; /* from KFD */
__u64 system_clock_freq; /* from KFD */
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_process_device_apertures {
__u64 lds_base; /* from KFD */
__u64 lds_limit; /* from KFD */
__u64 scratch_base; /* from KFD */
__u64 scratch_limit; /* from KFD */
__u64 gpuvm_base; /* from KFD */
__u64 gpuvm_limit; /* from KFD */
__u32 gpu_id; /* from KFD */
__u32 pad;
};
/*
* AMDKFD_IOC_GET_PROCESS_APERTURES is deprecated. Use
* AMDKFD_IOC_GET_PROCESS_APERTURES_NEW instead, which supports an
* unlimited number of GPUs.
*/
#define NUM_OF_SUPPORTED_GPUS 7
struct kfd_ioctl_get_process_apertures_args {
struct kfd_process_device_apertures
process_apertures[NUM_OF_SUPPORTED_GPUS];/* from KFD */
/* from KFD, should be in the range [1 - NUM_OF_SUPPORTED_GPUS] */
__u32 num_of_nodes;
__u32 pad;
};
struct kfd_ioctl_get_process_apertures_new_args {
/* User allocated. Pointer to struct kfd_process_device_apertures
* filled in by Kernel
*/
__u64 kfd_process_device_apertures_ptr;
/* to KFD - indicates amount of memory present in
* kfd_process_device_apertures_ptr
* from KFD - Number of entries filled by KFD.
*/
__u32 num_of_nodes;
__u32 pad;
};
#define MAX_ALLOWED_NUM_POINTS 100
#define MAX_ALLOWED_AW_BUFF_SIZE 4096
#define MAX_ALLOWED_WAC_BUFF_SIZE 128
struct kfd_ioctl_dbg_register_args {
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_dbg_unregister_args {
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_dbg_address_watch_args {
__u64 content_ptr; /* a pointer to the actual content */
__u32 gpu_id; /* to KFD */
__u32 buf_size_in_bytes; /*including gpu_id and buf_size */
};
struct kfd_ioctl_dbg_wave_control_args {
__u64 content_ptr; /* a pointer to the actual content */
__u32 gpu_id; /* to KFD */
__u32 buf_size_in_bytes; /*including gpu_id and buf_size */
};
#define KFD_INVALID_FD 0xffffffff
/* Matching HSA_EVENTTYPE */
#define KFD_IOC_EVENT_SIGNAL 0
#define KFD_IOC_EVENT_NODECHANGE 1
#define KFD_IOC_EVENT_DEVICESTATECHANGE 2
#define KFD_IOC_EVENT_HW_EXCEPTION 3
#define KFD_IOC_EVENT_SYSTEM_EVENT 4
#define KFD_IOC_EVENT_DEBUG_EVENT 5
#define KFD_IOC_EVENT_PROFILE_EVENT 6
#define KFD_IOC_EVENT_QUEUE_EVENT 7
#define KFD_IOC_EVENT_MEMORY 8
#define KFD_IOC_WAIT_RESULT_COMPLETE 0
#define KFD_IOC_WAIT_RESULT_TIMEOUT 1
#define KFD_IOC_WAIT_RESULT_FAIL 2
#define KFD_SIGNAL_EVENT_LIMIT 4096
/* For kfd_event_data.hw_exception_data.reset_type. */
#define KFD_HW_EXCEPTION_WHOLE_GPU_RESET 0
#define KFD_HW_EXCEPTION_PER_ENGINE_RESET 1
/* For kfd_event_data.hw_exception_data.reset_cause. */
#define KFD_HW_EXCEPTION_GPU_HANG 0
#define KFD_HW_EXCEPTION_ECC 1
/* For kfd_hsa_memory_exception_data.ErrorType */
#define KFD_MEM_ERR_NO_RAS 0
#define KFD_MEM_ERR_SRAM_ECC 1
#define KFD_MEM_ERR_POISON_CONSUMED 2
#define KFD_MEM_ERR_GPU_HANG 3
struct kfd_ioctl_create_event_args {
__u64 event_page_offset; /* from KFD */
__u32 event_trigger_data; /* from KFD - signal events only */
__u32 event_type; /* to KFD */
__u32 auto_reset; /* to KFD */
__u32 node_id; /* to KFD - only valid for certain
event types */
__u32 event_id; /* from KFD */
__u32 event_slot_index; /* from KFD */
};
struct kfd_ioctl_destroy_event_args {
__u32 event_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_set_event_args {
__u32 event_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_reset_event_args {
__u32 event_id; /* to KFD */
__u32 pad;
};
struct kfd_memory_exception_failure {
__u32 NotPresent; /* Page not present or supervisor privilege */
__u32 ReadOnly; /* Write access to a read-only page */
__u32 NoExecute; /* Execute access to a page marked NX */
__u32 imprecise; /* Can't determine the exact fault address */
};
/* memory exception data */
struct kfd_hsa_memory_exception_data {
struct kfd_memory_exception_failure failure;
__u64 va;
__u32 gpu_id;
__u32 ErrorType; /* 0 = no RAS error,
* 1 = ECC_SRAM,
* 2 = Link_SYNFLOOD (poison),
* 3 = GPU hang (not attributable to a specific cause),
* other values reserved
*/
};
/* hw exception data */
struct kfd_hsa_hw_exception_data {
__u32 reset_type;
__u32 reset_cause;
__u32 memory_lost;
__u32 gpu_id;
};
/* Event data */
struct kfd_event_data {
union {
struct kfd_hsa_memory_exception_data memory_exception_data;
struct kfd_hsa_hw_exception_data hw_exception_data;
}; /* From KFD */
__u64 kfd_event_data_ext; /* pointer to an extension structure
for future exception types */
__u32 event_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_wait_events_args {
__u64 events_ptr; /* pointed to struct
kfd_event_data array, to KFD */
__u32 num_events; /* to KFD */
__u32 wait_for_all; /* to KFD */
__u32 timeout; /* to KFD */
__u32 wait_result; /* from KFD */
};
struct kfd_ioctl_set_scratch_backing_va_args {
__u64 va_addr; /* to KFD */
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_get_tile_config_args {
/* to KFD: pointer to tile array */
__u64 tile_config_ptr;
/* to KFD: pointer to macro tile array */
__u64 macro_tile_config_ptr;
/* to KFD: array size allocated by user mode
* from KFD: array size filled by kernel
*/
__u32 num_tile_configs;
/* to KFD: array size allocated by user mode
* from KFD: array size filled by kernel
*/
__u32 num_macro_tile_configs;
__u32 gpu_id; /* to KFD */
__u32 gb_addr_config; /* from KFD */
__u32 num_banks; /* from KFD */
__u32 num_ranks; /* from KFD */
/* struct size can be extended later if needed
* without breaking ABI compatibility
*/
};
struct kfd_ioctl_set_trap_handler_args {
__u64 tba_addr; /* to KFD */
__u64 tma_addr; /* to KFD */
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_acquire_vm_args {
__u32 drm_fd; /* to KFD */
__u32 gpu_id; /* to KFD */
};
/* Allocation flags: memory types */
#define KFD_IOC_ALLOC_MEM_FLAGS_VRAM (1 << 0)
#define KFD_IOC_ALLOC_MEM_FLAGS_GTT (1 << 1)
#define KFD_IOC_ALLOC_MEM_FLAGS_USERPTR (1 << 2)
#define KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL (1 << 3)
#define KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP (1 << 4)
/* Allocation flags: attributes/access options */
#define KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE (1 << 31)
#define KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE (1 << 30)
#define KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC (1 << 29)
#define KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE (1 << 28)
#define KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM (1 << 27)
#define KFD_IOC_ALLOC_MEM_FLAGS_COHERENT (1 << 26)
#define KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED (1 << 25)
/* Allocate memory for later SVM (shared virtual memory) mapping.
*
* @va_addr: virtual address of the memory to be allocated
* all later mappings on all GPUs will use this address
* @size: size in bytes
* @handle: buffer handle returned to user mode, used to refer to
* this allocation for mapping, unmapping and freeing
* @mmap_offset: for CPU-mapping the allocation by mmapping a render node
* for userptrs this is overloaded to specify the CPU address
* @gpu_id: device identifier
* @flags: memory type and attributes. See KFD_IOC_ALLOC_MEM_FLAGS above
*/
struct kfd_ioctl_alloc_memory_of_gpu_args {
__u64 va_addr; /* to KFD */
__u64 size; /* to KFD */
__u64 handle; /* from KFD */
__u64 mmap_offset; /* to KFD (userptr), from KFD (mmap offset) */
__u32 gpu_id; /* to KFD */
__u32 flags;
};
/* Free memory allocated with kfd_ioctl_alloc_memory_of_gpu
*
* @handle: memory handle returned by alloc
*/
struct kfd_ioctl_free_memory_of_gpu_args {
__u64 handle; /* to KFD */
};
/* Map memory to one or more GPUs
*
* @handle: memory handle returned by alloc
* @device_ids_array_ptr: array of gpu_ids (__u32 per device)
* @n_devices: number of devices in the array
* @n_success: number of devices mapped successfully
*
* @n_success returns information to the caller how many devices from
* the start of the array have mapped the buffer successfully. It can
* be passed into a subsequent retry call to skip those devices. For
* the first call the caller should initialize it to 0.
*
* If the ioctl completes with return code 0 (success), n_success ==
* n_devices.
*/
struct kfd_ioctl_map_memory_to_gpu_args {
__u64 handle; /* to KFD */
__u64 device_ids_array_ptr; /* to KFD */
__u32 n_devices; /* to KFD */
__u32 n_success; /* to/from KFD */
};
/* Unmap memory from one or more GPUs
*
* same arguments as for mapping
*/
struct kfd_ioctl_unmap_memory_from_gpu_args {
__u64 handle; /* to KFD */
__u64 device_ids_array_ptr; /* to KFD */
__u32 n_devices; /* to KFD */
__u32 n_success; /* to/from KFD */
};
/* Allocate GWS for specific queue
*
* @queue_id: queue's id that GWS is allocated for
* @num_gws: how many GWS to allocate
* @first_gws: index of the first GWS allocated.
* only support contiguous GWS allocation
*/
struct kfd_ioctl_alloc_queue_gws_args {
__u32 queue_id; /* to KFD */
__u32 num_gws; /* to KFD */
__u32 first_gws; /* from KFD */
__u32 pad;
};
struct kfd_ioctl_get_dmabuf_info_args {
__u64 size; /* from KFD */
__u64 metadata_ptr; /* to KFD */
__u32 metadata_size; /* to KFD (space allocated by user)
* from KFD (actual metadata size)
*/
__u32 gpu_id; /* from KFD */
__u32 flags; /* from KFD (KFD_IOC_ALLOC_MEM_FLAGS) */
__u32 dmabuf_fd; /* to KFD */
};
struct kfd_ioctl_import_dmabuf_args {
__u64 va_addr; /* to KFD */
__u64 handle; /* from KFD */
__u32 gpu_id; /* to KFD */
__u32 dmabuf_fd; /* to KFD */
};
/*
* KFD SMI(System Management Interface) events
*/
enum kfd_smi_event {
KFD_SMI_EVENT_NONE = 0, /* not used */
KFD_SMI_EVENT_VMFAULT = 1, /* event start counting at 1 */
KFD_SMI_EVENT_THERMAL_THROTTLE = 2,
KFD_SMI_EVENT_GPU_PRE_RESET = 3,
KFD_SMI_EVENT_GPU_POST_RESET = 4,
};
#define KFD_SMI_EVENT_MASK_FROM_INDEX(i) (1ULL << ((i) - 1))
#define KFD_SMI_EVENT_MSG_SIZE 96
struct kfd_ioctl_smi_events_args {
__u32 gpuid; /* to KFD */
__u32 anon_fd; /* from KFD */
};
/**************************************************************************************************
* CRIU IOCTLs (Checkpoint Restore In Userspace)
*
* When checkpointing a process, the userspace application will perform:
* 1. PROCESS_INFO op to determine current process information. This pauses execution and evicts
* all the queues.
* 2. CHECKPOINT op to checkpoint process contents (BOs, queues, events, svm-ranges)
* 3. UNPAUSE op to un-evict all the queues
*
* When restoring a process, the CRIU userspace application will perform:
*
* 1. RESTORE op to restore process contents
* 2. RESUME op to start the process
*
* Note: Queues are forced into an evicted state after a successful PROCESS_INFO. User
* application needs to perform an UNPAUSE operation after calling PROCESS_INFO.
*/
enum kfd_criu_op {
KFD_CRIU_OP_PROCESS_INFO,
KFD_CRIU_OP_CHECKPOINT,
KFD_CRIU_OP_UNPAUSE,
KFD_CRIU_OP_RESTORE,
KFD_CRIU_OP_RESUME,
};
/**
* kfd_ioctl_criu_args - Arguments perform CRIU operation
* @devices: [in/out] User pointer to memory location for devices information.
* This is an array of type kfd_criu_device_bucket.
* @bos: [in/out] User pointer to memory location for BOs information
* This is an array of type kfd_criu_bo_bucket.
* @priv_data: [in/out] User pointer to memory location for private data
* @priv_data_size: [in/out] Size of priv_data in bytes
* @num_devices: [in/out] Number of GPUs used by process. Size of @devices array.
* @num_bos [in/out] Number of BOs used by process. Size of @bos array.
* @num_objects: [in/out] Number of objects used by process. Objects are opaque to
* user application.
* @pid: [in/out] PID of the process being checkpointed
* @op [in] Type of operation (kfd_criu_op)
*
* Return: 0 on success, -errno on failure
*/
struct kfd_ioctl_criu_args {
__u64 devices; /* Used during ops: CHECKPOINT, RESTORE */
__u64 bos; /* Used during ops: CHECKPOINT, RESTORE */
__u64 priv_data; /* Used during ops: CHECKPOINT, RESTORE */
__u64 priv_data_size; /* Used during ops: PROCESS_INFO, RESTORE */
__u32 num_devices; /* Used during ops: PROCESS_INFO, RESTORE */
__u32 num_bos; /* Used during ops: PROCESS_INFO, RESTORE */
__u32 num_objects; /* Used during ops: PROCESS_INFO, RESTORE */
__u32 pid; /* Used during ops: PROCESS_INFO, RESUME */
__u32 op;
};
struct kfd_criu_device_bucket {
__u32 user_gpu_id;
__u32 actual_gpu_id;
__u32 drm_fd;
__u32 pad;
};
struct kfd_criu_bo_bucket {
__u64 addr;
__u64 size;
__u64 offset;
__u64 restored_offset; /* During restore, updated offset for BO */
__u32 gpu_id; /* This is the user_gpu_id */
__u32 alloc_flags;
__u32 dmabuf_fd;
__u32 pad;
};
/* CRIU IOCTLs - END */
/**************************************************************************************************/
/* Register offset inside the remapped mmio page
*/
enum kfd_mmio_remap {
KFD_MMIO_REMAP_HDP_MEM_FLUSH_CNTL = 0,
KFD_MMIO_REMAP_HDP_REG_FLUSH_CNTL = 4,
};
/* Guarantee host access to memory */
#define KFD_IOCTL_SVM_FLAG_HOST_ACCESS 0x00000001
/* Fine grained coherency between all devices with access */
#define KFD_IOCTL_SVM_FLAG_COHERENT 0x00000002
/* Use any GPU in same hive as preferred device */
#define KFD_IOCTL_SVM_FLAG_HIVE_LOCAL 0x00000004
/* GPUs only read, allows replication */
#define KFD_IOCTL_SVM_FLAG_GPU_RO 0x00000008
/* Allow execution on GPU */
#define KFD_IOCTL_SVM_FLAG_GPU_EXEC 0x00000010
/* GPUs mostly read, may allow similar optimizations as RO, but writes fault */
#define KFD_IOCTL_SVM_FLAG_GPU_READ_MOSTLY 0x00000020
/**
* kfd_ioctl_svm_op - SVM ioctl operations
*
* @KFD_IOCTL_SVM_OP_SET_ATTR: Modify one or more attributes
* @KFD_IOCTL_SVM_OP_GET_ATTR: Query one or more attributes
*/
enum kfd_ioctl_svm_op {
KFD_IOCTL_SVM_OP_SET_ATTR,
KFD_IOCTL_SVM_OP_GET_ATTR
};
/** kfd_ioctl_svm_location - Enum for preferred and prefetch locations
*
* GPU IDs are used to specify GPUs as preferred and prefetch locations.
* Below definitions are used for system memory or for leaving the preferred
* location unspecified.
*/
enum kfd_ioctl_svm_location {
KFD_IOCTL_SVM_LOCATION_SYSMEM = 0,
KFD_IOCTL_SVM_LOCATION_UNDEFINED = 0xffffffff
};
/**
* kfd_ioctl_svm_attr_type - SVM attribute types
*
* @KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: gpuid of the preferred location, 0 for
* system memory
* @KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: gpuid of the prefetch location, 0 for
* system memory. Setting this triggers an
* immediate prefetch (migration).
* @KFD_IOCTL_SVM_ATTR_ACCESS:
* @KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
* @KFD_IOCTL_SVM_ATTR_NO_ACCESS: specify memory access for the gpuid given
* by the attribute value
* @KFD_IOCTL_SVM_ATTR_SET_FLAGS: bitmask of flags to set (see
* KFD_IOCTL_SVM_FLAG_...)
* @KFD_IOCTL_SVM_ATTR_CLR_FLAGS: bitmask of flags to clear
* @KFD_IOCTL_SVM_ATTR_GRANULARITY: migration granularity
* (log2 num pages)
*/
enum kfd_ioctl_svm_attr_type {
KFD_IOCTL_SVM_ATTR_PREFERRED_LOC,
KFD_IOCTL_SVM_ATTR_PREFETCH_LOC,
KFD_IOCTL_SVM_ATTR_ACCESS,
KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE,
KFD_IOCTL_SVM_ATTR_NO_ACCESS,
KFD_IOCTL_SVM_ATTR_SET_FLAGS,
KFD_IOCTL_SVM_ATTR_CLR_FLAGS,
KFD_IOCTL_SVM_ATTR_GRANULARITY
};
/**
* kfd_ioctl_svm_attribute - Attributes as pairs of type and value
*
* The meaning of the @value depends on the attribute type.
*
* @type: attribute type (see enum @kfd_ioctl_svm_attr_type)
* @value: attribute value
*/
struct kfd_ioctl_svm_attribute {
__u32 type;
__u32 value;
};
/**
* kfd_ioctl_svm_args - Arguments for SVM ioctl
*
* @op specifies the operation to perform (see enum
* @kfd_ioctl_svm_op). @start_addr and @size are common for all
* operations.
*
* A variable number of attributes can be given in @attrs.
* @nattr specifies the number of attributes. New attributes can be
* added in the future without breaking the ABI. If unknown attributes
* are given, the function returns -EINVAL.
*
* @KFD_IOCTL_SVM_OP_SET_ATTR sets attributes for a virtual address
* range. It may overlap existing virtual address ranges. If it does,
* the existing ranges will be split such that the attribute changes
* only apply to the specified address range.
*
* @KFD_IOCTL_SVM_OP_GET_ATTR returns the intersection of attributes
* over all memory in the given range and returns the result as the
* attribute value. If different pages have different preferred or
* prefetch locations, 0xffffffff will be returned for
* @KFD_IOCTL_SVM_ATTR_PREFERRED_LOC or
* @KFD_IOCTL_SVM_ATTR_PREFETCH_LOC resepctively. For
* @KFD_IOCTL_SVM_ATTR_SET_FLAGS, flags of all pages will be
* aggregated by bitwise AND. That means, a flag will be set in the
* output, if that flag is set for all pages in the range. For
* @KFD_IOCTL_SVM_ATTR_CLR_FLAGS, flags of all pages will be
* aggregated by bitwise NOR. That means, a flag will be set in the
* output, if that flag is clear for all pages in the range.
* The minimum migration granularity throughout the range will be
* returned for @KFD_IOCTL_SVM_ATTR_GRANULARITY.
*
* Querying of accessibility attributes works by initializing the
* attribute type to @KFD_IOCTL_SVM_ATTR_ACCESS and the value to the
* GPUID being queried. Multiple attributes can be given to allow
* querying multiple GPUIDs. The ioctl function overwrites the
* attribute type to indicate the access for the specified GPU.
*/
struct kfd_ioctl_svm_args {
__u64 start_addr;
__u64 size;
__u32 op;
__u32 nattr;
/* Variable length array of attributes */
struct kfd_ioctl_svm_attribute attrs[];
};
/**
* kfd_ioctl_set_xnack_mode_args - Arguments for set_xnack_mode
*
* @xnack_enabled: [in/out] Whether to enable XNACK mode for this process
*
* @xnack_enabled indicates whether recoverable page faults should be
* enabled for the current process. 0 means disabled, positive means
* enabled, negative means leave unchanged. If enabled, virtual address
* translations on GFXv9 and later AMD GPUs can return XNACK and retry
* the access until a valid PTE is available. This is used to implement
* device page faults.
*
* On output, @xnack_enabled returns the (new) current mode (0 or
* positive). Therefore, a negative input value can be used to query
* the current mode without changing it.
*
* The XNACK mode fundamentally changes the way SVM managed memory works
* in the driver, with subtle effects on application performance and
* functionality.
*
* Enabling XNACK mode requires shader programs to be compiled
* differently. Furthermore, not all GPUs support changing the mode
* per-process. Therefore changing the mode is only allowed while no
* user mode queues exist in the process. This ensure that no shader
* code is running that may be compiled for the wrong mode. And GPUs
* that cannot change to the requested mode will prevent the XNACK
* mode from occurring. All GPUs used by the process must be in the
* same XNACK mode.
*
* GFXv8 or older GPUs do not support 48 bit virtual addresses or SVM.
* Therefore those GPUs are not considered for the XNACK mode switch.
*
* Return: 0 on success, -errno on failure
*/
struct kfd_ioctl_set_xnack_mode_args {
__s32 xnack_enabled;
};
#define AMDKFD_IOCTL_BASE 'K'
#define AMDKFD_IO(nr) _IO(AMDKFD_IOCTL_BASE, nr)
#define AMDKFD_IOR(nr, type) _IOR(AMDKFD_IOCTL_BASE, nr, type)
#define AMDKFD_IOW(nr, type) _IOW(AMDKFD_IOCTL_BASE, nr, type)
#define AMDKFD_IOWR(nr, type) _IOWR(AMDKFD_IOCTL_BASE, nr, type)
#define AMDKFD_IOC_GET_VERSION \
AMDKFD_IOR(0x01, struct kfd_ioctl_get_version_args)
#define AMDKFD_IOC_CREATE_QUEUE \
AMDKFD_IOWR(0x02, struct kfd_ioctl_create_queue_args)
#define AMDKFD_IOC_DESTROY_QUEUE \
AMDKFD_IOWR(0x03, struct kfd_ioctl_destroy_queue_args)
#define AMDKFD_IOC_SET_MEMORY_POLICY \
AMDKFD_IOW(0x04, struct kfd_ioctl_set_memory_policy_args)
#define AMDKFD_IOC_GET_CLOCK_COUNTERS \
AMDKFD_IOWR(0x05, struct kfd_ioctl_get_clock_counters_args)
#define AMDKFD_IOC_GET_PROCESS_APERTURES \
AMDKFD_IOR(0x06, struct kfd_ioctl_get_process_apertures_args)
#define AMDKFD_IOC_UPDATE_QUEUE \
AMDKFD_IOW(0x07, struct kfd_ioctl_update_queue_args)
#define AMDKFD_IOC_CREATE_EVENT \
AMDKFD_IOWR(0x08, struct kfd_ioctl_create_event_args)
#define AMDKFD_IOC_DESTROY_EVENT \
AMDKFD_IOW(0x09, struct kfd_ioctl_destroy_event_args)
#define AMDKFD_IOC_SET_EVENT \
AMDKFD_IOW(0x0A, struct kfd_ioctl_set_event_args)
#define AMDKFD_IOC_RESET_EVENT \
AMDKFD_IOW(0x0B, struct kfd_ioctl_reset_event_args)
#define AMDKFD_IOC_WAIT_EVENTS \
AMDKFD_IOWR(0x0C, struct kfd_ioctl_wait_events_args)
#define AMDKFD_IOC_DBG_REGISTER_DEPRECATED \
AMDKFD_IOW(0x0D, struct kfd_ioctl_dbg_register_args)
#define AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED \
AMDKFD_IOW(0x0E, struct kfd_ioctl_dbg_unregister_args)
#define AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED \
AMDKFD_IOW(0x0F, struct kfd_ioctl_dbg_address_watch_args)
#define AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED \
AMDKFD_IOW(0x10, struct kfd_ioctl_dbg_wave_control_args)
#define AMDKFD_IOC_SET_SCRATCH_BACKING_VA \
AMDKFD_IOWR(0x11, struct kfd_ioctl_set_scratch_backing_va_args)
#define AMDKFD_IOC_GET_TILE_CONFIG \
AMDKFD_IOWR(0x12, struct kfd_ioctl_get_tile_config_args)
#define AMDKFD_IOC_SET_TRAP_HANDLER \
AMDKFD_IOW(0x13, struct kfd_ioctl_set_trap_handler_args)
#define AMDKFD_IOC_GET_PROCESS_APERTURES_NEW \
AMDKFD_IOWR(0x14, \
struct kfd_ioctl_get_process_apertures_new_args)
#define AMDKFD_IOC_ACQUIRE_VM \
AMDKFD_IOW(0x15, struct kfd_ioctl_acquire_vm_args)
#define AMDKFD_IOC_ALLOC_MEMORY_OF_GPU \
AMDKFD_IOWR(0x16, struct kfd_ioctl_alloc_memory_of_gpu_args)
#define AMDKFD_IOC_FREE_MEMORY_OF_GPU \
AMDKFD_IOW(0x17, struct kfd_ioctl_free_memory_of_gpu_args)
#define AMDKFD_IOC_MAP_MEMORY_TO_GPU \
AMDKFD_IOWR(0x18, struct kfd_ioctl_map_memory_to_gpu_args)
#define AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU \
AMDKFD_IOWR(0x19, struct kfd_ioctl_unmap_memory_from_gpu_args)
#define AMDKFD_IOC_SET_CU_MASK \
AMDKFD_IOW(0x1A, struct kfd_ioctl_set_cu_mask_args)
#define AMDKFD_IOC_GET_QUEUE_WAVE_STATE \
AMDKFD_IOWR(0x1B, struct kfd_ioctl_get_queue_wave_state_args)
#define AMDKFD_IOC_GET_DMABUF_INFO \
AMDKFD_IOWR(0x1C, struct kfd_ioctl_get_dmabuf_info_args)
#define AMDKFD_IOC_IMPORT_DMABUF \
AMDKFD_IOWR(0x1D, struct kfd_ioctl_import_dmabuf_args)
#define AMDKFD_IOC_ALLOC_QUEUE_GWS \
AMDKFD_IOWR(0x1E, struct kfd_ioctl_alloc_queue_gws_args)
#define AMDKFD_IOC_SMI_EVENTS \
AMDKFD_IOWR(0x1F, struct kfd_ioctl_smi_events_args)
#define AMDKFD_IOC_SVM AMDKFD_IOWR(0x20, struct kfd_ioctl_svm_args)
#define AMDKFD_IOC_SET_XNACK_MODE \
AMDKFD_IOWR(0x21, struct kfd_ioctl_set_xnack_mode_args)
#define AMDKFD_IOC_CRIU_OP \
AMDKFD_IOWR(0x22, struct kfd_ioctl_criu_args)
#define AMDKFD_COMMAND_START 0x01
#define AMDKFD_COMMAND_END 0x23
#endif