OpenCloudOS-Kernel/drivers/scsi/csiostor/csio_scsi.c

2530 lines
67 KiB
C

/*
* This file is part of the Chelsio FCoE driver for Linux.
*
* Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/module.h>
#include <asm/unaligned.h>
#include <asm/page.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_transport_fc.h>
#include "csio_hw.h"
#include "csio_lnode.h"
#include "csio_rnode.h"
#include "csio_scsi.h"
#include "csio_init.h"
int csio_scsi_eqsize = 65536;
int csio_scsi_iqlen = 128;
int csio_scsi_ioreqs = 2048;
uint32_t csio_max_scan_tmo;
uint32_t csio_delta_scan_tmo = 5;
int csio_lun_qdepth = 32;
static int csio_ddp_descs = 128;
static int csio_do_abrt_cls(struct csio_hw *,
struct csio_ioreq *, bool);
static void csio_scsis_uninit(struct csio_ioreq *, enum csio_scsi_ev);
static void csio_scsis_io_active(struct csio_ioreq *, enum csio_scsi_ev);
static void csio_scsis_tm_active(struct csio_ioreq *, enum csio_scsi_ev);
static void csio_scsis_aborting(struct csio_ioreq *, enum csio_scsi_ev);
static void csio_scsis_closing(struct csio_ioreq *, enum csio_scsi_ev);
static void csio_scsis_shost_cmpl_await(struct csio_ioreq *, enum csio_scsi_ev);
/*
* csio_scsi_match_io - Match an ioreq with the given SCSI level data.
* @ioreq: The I/O request
* @sld: Level information
*
* Should be called with lock held.
*
*/
static bool
csio_scsi_match_io(struct csio_ioreq *ioreq, struct csio_scsi_level_data *sld)
{
struct scsi_cmnd *scmnd = csio_scsi_cmnd(ioreq);
switch (sld->level) {
case CSIO_LEV_LUN:
if (scmnd == NULL)
return false;
return ((ioreq->lnode == sld->lnode) &&
(ioreq->rnode == sld->rnode) &&
((uint64_t)scmnd->device->lun == sld->oslun));
case CSIO_LEV_RNODE:
return ((ioreq->lnode == sld->lnode) &&
(ioreq->rnode == sld->rnode));
case CSIO_LEV_LNODE:
return (ioreq->lnode == sld->lnode);
case CSIO_LEV_ALL:
return true;
default:
return false;
}
}
/*
* csio_scsi_gather_active_ios - Gather active I/Os based on level
* @scm: SCSI module
* @sld: Level information
* @dest: The queue where these I/Os have to be gathered.
*
* Should be called with lock held.
*/
static void
csio_scsi_gather_active_ios(struct csio_scsim *scm,
struct csio_scsi_level_data *sld,
struct list_head *dest)
{
struct list_head *tmp, *next;
if (list_empty(&scm->active_q))
return;
/* Just splice the entire active_q into dest */
if (sld->level == CSIO_LEV_ALL) {
list_splice_tail_init(&scm->active_q, dest);
return;
}
list_for_each_safe(tmp, next, &scm->active_q) {
if (csio_scsi_match_io((struct csio_ioreq *)tmp, sld)) {
list_del_init(tmp);
list_add_tail(tmp, dest);
}
}
}
static inline bool
csio_scsi_itnexus_loss_error(uint16_t error)
{
switch (error) {
case FW_ERR_LINK_DOWN:
case FW_RDEV_NOT_READY:
case FW_ERR_RDEV_LOST:
case FW_ERR_RDEV_LOGO:
case FW_ERR_RDEV_IMPL_LOGO:
return 1;
}
return 0;
}
/*
* csio_scsi_fcp_cmnd - Frame the SCSI FCP command paylod.
* @req: IO req structure.
* @addr: DMA location to place the payload.
*
* This routine is shared between FCP_WRITE, FCP_READ and FCP_CMD requests.
*/
static inline void
csio_scsi_fcp_cmnd(struct csio_ioreq *req, void *addr)
{
struct fcp_cmnd *fcp_cmnd = (struct fcp_cmnd *)addr;
struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
/* Check for Task Management */
if (likely(scmnd->SCp.Message == 0)) {
int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun);
fcp_cmnd->fc_tm_flags = 0;
fcp_cmnd->fc_cmdref = 0;
memcpy(fcp_cmnd->fc_cdb, scmnd->cmnd, 16);
fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
fcp_cmnd->fc_dl = cpu_to_be32(scsi_bufflen(scmnd));
if (req->nsge)
if (req->datadir == DMA_TO_DEVICE)
fcp_cmnd->fc_flags = FCP_CFL_WRDATA;
else
fcp_cmnd->fc_flags = FCP_CFL_RDDATA;
else
fcp_cmnd->fc_flags = 0;
} else {
memset(fcp_cmnd, 0, sizeof(*fcp_cmnd));
int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun);
fcp_cmnd->fc_tm_flags = (uint8_t)scmnd->SCp.Message;
}
}
/*
* csio_scsi_init_cmd_wr - Initialize the SCSI CMD WR.
* @req: IO req structure.
* @addr: DMA location to place the payload.
* @size: Size of WR (including FW WR + immed data + rsp SG entry
*
* Wrapper for populating fw_scsi_cmd_wr.
*/
static inline void
csio_scsi_init_cmd_wr(struct csio_ioreq *req, void *addr, uint32_t size)
{
struct csio_hw *hw = req->lnode->hwp;
struct csio_rnode *rn = req->rnode;
struct fw_scsi_cmd_wr *wr = (struct fw_scsi_cmd_wr *)addr;
struct csio_dma_buf *dma_buf;
uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_CMD_WR) |
FW_SCSI_CMD_WR_IMMDLEN(imm));
wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) |
FW_WR_LEN16_V(
DIV_ROUND_UP(size, 16)));
wr->cookie = (uintptr_t) req;
wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
wr->tmo_val = (uint8_t) req->tmo;
wr->r3 = 0;
memset(&wr->r5, 0, 8);
/* Get RSP DMA buffer */
dma_buf = &req->dma_buf;
/* Prepare RSP SGL */
wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
wr->r6 = 0;
wr->u.fcoe.ctl_pri = 0;
wr->u.fcoe.cp_en_class = 0;
wr->u.fcoe.r4_lo[0] = 0;
wr->u.fcoe.r4_lo[1] = 0;
/* Frame a FCP command */
csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)addr +
sizeof(struct fw_scsi_cmd_wr)));
}
#define CSIO_SCSI_CMD_WR_SZ(_imm) \
(sizeof(struct fw_scsi_cmd_wr) + /* WR size */ \
ALIGN((_imm), 16)) /* Immed data */
#define CSIO_SCSI_CMD_WR_SZ_16(_imm) \
(ALIGN(CSIO_SCSI_CMD_WR_SZ((_imm)), 16))
/*
* csio_scsi_cmd - Create a SCSI CMD WR.
* @req: IO req structure.
*
* Gets a WR slot in the ingress queue and initializes it with SCSI CMD WR.
*
*/
static inline void
csio_scsi_cmd(struct csio_ioreq *req)
{
struct csio_wr_pair wrp;
struct csio_hw *hw = req->lnode->hwp;
struct csio_scsim *scsim = csio_hw_to_scsim(hw);
uint32_t size = CSIO_SCSI_CMD_WR_SZ_16(scsim->proto_cmd_len);
req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
if (unlikely(req->drv_status != 0))
return;
if (wrp.size1 >= size) {
/* Initialize WR in one shot */
csio_scsi_init_cmd_wr(req, wrp.addr1, size);
} else {
uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
/*
* Make a temporary copy of the WR and write back
* the copy into the WR pair.
*/
csio_scsi_init_cmd_wr(req, (void *)tmpwr, size);
memcpy(wrp.addr1, tmpwr, wrp.size1);
memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
}
}
/*
* csio_scsi_init_ulptx_dsgl - Fill in a ULP_TX_SC_DSGL
* @hw: HW module
* @req: IO request
* @sgl: ULP TX SGL pointer.
*
*/
static inline void
csio_scsi_init_ultptx_dsgl(struct csio_hw *hw, struct csio_ioreq *req,
struct ulptx_sgl *sgl)
{
struct ulptx_sge_pair *sge_pair = NULL;
struct scatterlist *sgel;
uint32_t i = 0;
uint32_t xfer_len;
struct list_head *tmp;
struct csio_dma_buf *dma_buf;
struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | ULPTX_MORE_F |
ULPTX_NSGE_V(req->nsge));
/* Now add the data SGLs */
if (likely(!req->dcopy)) {
scsi_for_each_sg(scmnd, sgel, req->nsge, i) {
if (i == 0) {
sgl->addr0 = cpu_to_be64(sg_dma_address(sgel));
sgl->len0 = cpu_to_be32(sg_dma_len(sgel));
sge_pair = (struct ulptx_sge_pair *)(sgl + 1);
continue;
}
if ((i - 1) & 0x1) {
sge_pair->addr[1] = cpu_to_be64(
sg_dma_address(sgel));
sge_pair->len[1] = cpu_to_be32(
sg_dma_len(sgel));
sge_pair++;
} else {
sge_pair->addr[0] = cpu_to_be64(
sg_dma_address(sgel));
sge_pair->len[0] = cpu_to_be32(
sg_dma_len(sgel));
}
}
} else {
/* Program sg elements with driver's DDP buffer */
xfer_len = scsi_bufflen(scmnd);
list_for_each(tmp, &req->gen_list) {
dma_buf = (struct csio_dma_buf *)tmp;
if (i == 0) {
sgl->addr0 = cpu_to_be64(dma_buf->paddr);
sgl->len0 = cpu_to_be32(
min(xfer_len, dma_buf->len));
sge_pair = (struct ulptx_sge_pair *)(sgl + 1);
} else if ((i - 1) & 0x1) {
sge_pair->addr[1] = cpu_to_be64(dma_buf->paddr);
sge_pair->len[1] = cpu_to_be32(
min(xfer_len, dma_buf->len));
sge_pair++;
} else {
sge_pair->addr[0] = cpu_to_be64(dma_buf->paddr);
sge_pair->len[0] = cpu_to_be32(
min(xfer_len, dma_buf->len));
}
xfer_len -= min(xfer_len, dma_buf->len);
i++;
}
}
}
/*
* csio_scsi_init_read_wr - Initialize the READ SCSI WR.
* @req: IO req structure.
* @wrp: DMA location to place the payload.
* @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL
*
* Wrapper for populating fw_scsi_read_wr.
*/
static inline void
csio_scsi_init_read_wr(struct csio_ioreq *req, void *wrp, uint32_t size)
{
struct csio_hw *hw = req->lnode->hwp;
struct csio_rnode *rn = req->rnode;
struct fw_scsi_read_wr *wr = (struct fw_scsi_read_wr *)wrp;
struct ulptx_sgl *sgl;
struct csio_dma_buf *dma_buf;
uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_READ_WR) |
FW_SCSI_READ_WR_IMMDLEN(imm));
wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) |
FW_WR_LEN16_V(DIV_ROUND_UP(size, 16)));
wr->cookie = (uintptr_t)req;
wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
wr->tmo_val = (uint8_t)(req->tmo);
wr->use_xfer_cnt = 1;
wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
/* Get RSP DMA buffer */
dma_buf = &req->dma_buf;
/* Prepare RSP SGL */
wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
wr->r4 = 0;
wr->u.fcoe.ctl_pri = 0;
wr->u.fcoe.cp_en_class = 0;
wr->u.fcoe.r3_lo[0] = 0;
wr->u.fcoe.r3_lo[1] = 0;
csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp +
sizeof(struct fw_scsi_read_wr)));
/* Move WR pointer past command and immediate data */
sgl = (struct ulptx_sgl *)((uintptr_t)wrp +
sizeof(struct fw_scsi_read_wr) + ALIGN(imm, 16));
/* Fill in the DSGL */
csio_scsi_init_ultptx_dsgl(hw, req, sgl);
}
/*
* csio_scsi_init_write_wr - Initialize the WRITE SCSI WR.
* @req: IO req structure.
* @wrp: DMA location to place the payload.
* @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL
*
* Wrapper for populating fw_scsi_write_wr.
*/
static inline void
csio_scsi_init_write_wr(struct csio_ioreq *req, void *wrp, uint32_t size)
{
struct csio_hw *hw = req->lnode->hwp;
struct csio_rnode *rn = req->rnode;
struct fw_scsi_write_wr *wr = (struct fw_scsi_write_wr *)wrp;
struct ulptx_sgl *sgl;
struct csio_dma_buf *dma_buf;
uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_WRITE_WR) |
FW_SCSI_WRITE_WR_IMMDLEN(imm));
wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) |
FW_WR_LEN16_V(DIV_ROUND_UP(size, 16)));
wr->cookie = (uintptr_t)req;
wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
wr->tmo_val = (uint8_t)(req->tmo);
wr->use_xfer_cnt = 1;
wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
/* Get RSP DMA buffer */
dma_buf = &req->dma_buf;
/* Prepare RSP SGL */
wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
wr->r4 = 0;
wr->u.fcoe.ctl_pri = 0;
wr->u.fcoe.cp_en_class = 0;
wr->u.fcoe.r3_lo[0] = 0;
wr->u.fcoe.r3_lo[1] = 0;
csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp +
sizeof(struct fw_scsi_write_wr)));
/* Move WR pointer past command and immediate data */
sgl = (struct ulptx_sgl *)((uintptr_t)wrp +
sizeof(struct fw_scsi_write_wr) + ALIGN(imm, 16));
/* Fill in the DSGL */
csio_scsi_init_ultptx_dsgl(hw, req, sgl);
}
/* Calculate WR size needed for fw_scsi_read_wr/fw_scsi_write_wr */
#define CSIO_SCSI_DATA_WRSZ(req, oper, sz, imm) \
do { \
(sz) = sizeof(struct fw_scsi_##oper##_wr) + /* WR size */ \
ALIGN((imm), 16) + /* Immed data */ \
sizeof(struct ulptx_sgl); /* ulptx_sgl */ \
\
if (unlikely((req)->nsge > 1)) \
(sz) += (sizeof(struct ulptx_sge_pair) * \
(ALIGN(((req)->nsge - 1), 2) / 2)); \
/* Data SGE */ \
} while (0)
/*
* csio_scsi_read - Create a SCSI READ WR.
* @req: IO req structure.
*
* Gets a WR slot in the ingress queue and initializes it with
* SCSI READ WR.
*
*/
static inline void
csio_scsi_read(struct csio_ioreq *req)
{
struct csio_wr_pair wrp;
uint32_t size;
struct csio_hw *hw = req->lnode->hwp;
struct csio_scsim *scsim = csio_hw_to_scsim(hw);
CSIO_SCSI_DATA_WRSZ(req, read, size, scsim->proto_cmd_len);
size = ALIGN(size, 16);
req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
if (likely(req->drv_status == 0)) {
if (likely(wrp.size1 >= size)) {
/* Initialize WR in one shot */
csio_scsi_init_read_wr(req, wrp.addr1, size);
} else {
uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
/*
* Make a temporary copy of the WR and write back
* the copy into the WR pair.
*/
csio_scsi_init_read_wr(req, (void *)tmpwr, size);
memcpy(wrp.addr1, tmpwr, wrp.size1);
memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
}
}
}
/*
* csio_scsi_write - Create a SCSI WRITE WR.
* @req: IO req structure.
*
* Gets a WR slot in the ingress queue and initializes it with
* SCSI WRITE WR.
*
*/
static inline void
csio_scsi_write(struct csio_ioreq *req)
{
struct csio_wr_pair wrp;
uint32_t size;
struct csio_hw *hw = req->lnode->hwp;
struct csio_scsim *scsim = csio_hw_to_scsim(hw);
CSIO_SCSI_DATA_WRSZ(req, write, size, scsim->proto_cmd_len);
size = ALIGN(size, 16);
req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
if (likely(req->drv_status == 0)) {
if (likely(wrp.size1 >= size)) {
/* Initialize WR in one shot */
csio_scsi_init_write_wr(req, wrp.addr1, size);
} else {
uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
/*
* Make a temporary copy of the WR and write back
* the copy into the WR pair.
*/
csio_scsi_init_write_wr(req, (void *)tmpwr, size);
memcpy(wrp.addr1, tmpwr, wrp.size1);
memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
}
}
}
/*
* csio_setup_ddp - Setup DDP buffers for Read request.
* @req: IO req structure.
*
* Checks SGLs/Data buffers are virtually contiguous required for DDP.
* If contiguous,driver posts SGLs in the WR otherwise post internal
* buffers for such request for DDP.
*/
static inline void
csio_setup_ddp(struct csio_scsim *scsim, struct csio_ioreq *req)
{
#ifdef __CSIO_DEBUG__
struct csio_hw *hw = req->lnode->hwp;
#endif
struct scatterlist *sgel = NULL;
struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
uint64_t sg_addr = 0;
uint32_t ddp_pagesz = 4096;
uint32_t buf_off;
struct csio_dma_buf *dma_buf = NULL;
uint32_t alloc_len = 0;
uint32_t xfer_len = 0;
uint32_t sg_len = 0;
uint32_t i;
scsi_for_each_sg(scmnd, sgel, req->nsge, i) {
sg_addr = sg_dma_address(sgel);
sg_len = sg_dma_len(sgel);
buf_off = sg_addr & (ddp_pagesz - 1);
/* Except 1st buffer,all buffer addr have to be Page aligned */
if (i != 0 && buf_off) {
csio_dbg(hw, "SGL addr not DDP aligned (%llx:%d)\n",
sg_addr, sg_len);
goto unaligned;
}
/* Except last buffer,all buffer must end on page boundary */
if ((i != (req->nsge - 1)) &&
((buf_off + sg_len) & (ddp_pagesz - 1))) {
csio_dbg(hw,
"SGL addr not ending on page boundary"
"(%llx:%d)\n", sg_addr, sg_len);
goto unaligned;
}
}
/* SGL's are virtually contiguous. HW will DDP to SGLs */
req->dcopy = 0;
csio_scsi_read(req);
return;
unaligned:
CSIO_INC_STATS(scsim, n_unaligned);
/*
* For unaligned SGLs, driver will allocate internal DDP buffer.
* Once command is completed data from DDP buffer copied to SGLs
*/
req->dcopy = 1;
/* Use gen_list to store the DDP buffers */
INIT_LIST_HEAD(&req->gen_list);
xfer_len = scsi_bufflen(scmnd);
i = 0;
/* Allocate ddp buffers for this request */
while (alloc_len < xfer_len) {
dma_buf = csio_get_scsi_ddp(scsim);
if (dma_buf == NULL || i > scsim->max_sge) {
req->drv_status = -EBUSY;
break;
}
alloc_len += dma_buf->len;
/* Added to IO req */
list_add_tail(&dma_buf->list, &req->gen_list);
i++;
}
if (!req->drv_status) {
/* set number of ddp bufs used */
req->nsge = i;
csio_scsi_read(req);
return;
}
/* release dma descs */
if (i > 0)
csio_put_scsi_ddp_list(scsim, &req->gen_list, i);
}
/*
* csio_scsi_init_abrt_cls_wr - Initialize an ABORT/CLOSE WR.
* @req: IO req structure.
* @addr: DMA location to place the payload.
* @size: Size of WR
* @abort: abort OR close
*
* Wrapper for populating fw_scsi_cmd_wr.
*/
static inline void
csio_scsi_init_abrt_cls_wr(struct csio_ioreq *req, void *addr, uint32_t size,
bool abort)
{
struct csio_hw *hw = req->lnode->hwp;
struct csio_rnode *rn = req->rnode;
struct fw_scsi_abrt_cls_wr *wr = (struct fw_scsi_abrt_cls_wr *)addr;
wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_ABRT_CLS_WR));
wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) |
FW_WR_LEN16_V(
DIV_ROUND_UP(size, 16)));
wr->cookie = (uintptr_t) req;
wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
wr->tmo_val = (uint8_t) req->tmo;
/* 0 for CHK_ALL_IO tells FW to look up t_cookie */
wr->sub_opcode_to_chk_all_io =
(FW_SCSI_ABRT_CLS_WR_SUB_OPCODE(abort) |
FW_SCSI_ABRT_CLS_WR_CHK_ALL_IO(0));
wr->r3[0] = 0;
wr->r3[1] = 0;
wr->r3[2] = 0;
wr->r3[3] = 0;
/* Since we re-use the same ioreq for abort as well */
wr->t_cookie = (uintptr_t) req;
}
static inline void
csio_scsi_abrt_cls(struct csio_ioreq *req, bool abort)
{
struct csio_wr_pair wrp;
struct csio_hw *hw = req->lnode->hwp;
uint32_t size = ALIGN(sizeof(struct fw_scsi_abrt_cls_wr), 16);
req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
if (req->drv_status != 0)
return;
if (wrp.size1 >= size) {
/* Initialize WR in one shot */
csio_scsi_init_abrt_cls_wr(req, wrp.addr1, size, abort);
} else {
uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
/*
* Make a temporary copy of the WR and write back
* the copy into the WR pair.
*/
csio_scsi_init_abrt_cls_wr(req, (void *)tmpwr, size, abort);
memcpy(wrp.addr1, tmpwr, wrp.size1);
memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
}
}
/*****************************************************************************/
/* START: SCSI SM */
/*****************************************************************************/
static void
csio_scsis_uninit(struct csio_ioreq *req, enum csio_scsi_ev evt)
{
struct csio_hw *hw = req->lnode->hwp;
struct csio_scsim *scsim = csio_hw_to_scsim(hw);
switch (evt) {
case CSIO_SCSIE_START_IO:
if (req->nsge) {
if (req->datadir == DMA_TO_DEVICE) {
req->dcopy = 0;
csio_scsi_write(req);
} else
csio_setup_ddp(scsim, req);
} else {
csio_scsi_cmd(req);
}
if (likely(req->drv_status == 0)) {
/* change state and enqueue on active_q */
csio_set_state(&req->sm, csio_scsis_io_active);
list_add_tail(&req->sm.sm_list, &scsim->active_q);
csio_wr_issue(hw, req->eq_idx, false);
CSIO_INC_STATS(scsim, n_active);
return;
}
break;
case CSIO_SCSIE_START_TM:
csio_scsi_cmd(req);
if (req->drv_status == 0) {
/*
* NOTE: We collect the affected I/Os prior to issuing
* LUN reset, and not after it. This is to prevent
* aborting I/Os that get issued after the LUN reset,
* but prior to LUN reset completion (in the event that
* the host stack has not blocked I/Os to a LUN that is
* being reset.
*/
csio_set_state(&req->sm, csio_scsis_tm_active);
list_add_tail(&req->sm.sm_list, &scsim->active_q);
csio_wr_issue(hw, req->eq_idx, false);
CSIO_INC_STATS(scsim, n_tm_active);
}
return;
case CSIO_SCSIE_ABORT:
case CSIO_SCSIE_CLOSE:
/*
* NOTE:
* We could get here due to :
* - a window in the cleanup path of the SCSI module
* (csio_scsi_abort_io()). Please see NOTE in this function.
* - a window in the time we tried to issue an abort/close
* of a request to FW, and the FW completed the request
* itself.
* Print a message for now, and return INVAL either way.
*/
req->drv_status = -EINVAL;
csio_warn(hw, "Trying to abort/close completed IO:%p!\n", req);
break;
default:
csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
CSIO_DB_ASSERT(0);
}
}
static void
csio_scsis_io_active(struct csio_ioreq *req, enum csio_scsi_ev evt)
{
struct csio_hw *hw = req->lnode->hwp;
struct csio_scsim *scm = csio_hw_to_scsim(hw);
struct csio_rnode *rn;
switch (evt) {
case CSIO_SCSIE_COMPLETED:
CSIO_DEC_STATS(scm, n_active);
list_del_init(&req->sm.sm_list);
csio_set_state(&req->sm, csio_scsis_uninit);
/*
* In MSIX mode, with multiple queues, the SCSI compeltions
* could reach us sooner than the FW events sent to indicate
* I-T nexus loss (link down, remote device logo etc). We
* dont want to be returning such I/Os to the upper layer
* immediately, since we wouldnt have reported the I-T nexus
* loss itself. This forces us to serialize such completions
* with the reporting of the I-T nexus loss. Therefore, we
* internally queue up such up such completions in the rnode.
* The reporting of I-T nexus loss to the upper layer is then
* followed by the returning of I/Os in this internal queue.
* Having another state alongwith another queue helps us take
* actions for events such as ABORT received while we are
* in this rnode queue.
*/
if (unlikely(req->wr_status != FW_SUCCESS)) {
rn = req->rnode;
/*
* FW says remote device is lost, but rnode
* doesnt reflect it.
*/
if (csio_scsi_itnexus_loss_error(req->wr_status) &&
csio_is_rnode_ready(rn)) {
csio_set_state(&req->sm,
csio_scsis_shost_cmpl_await);
list_add_tail(&req->sm.sm_list,
&rn->host_cmpl_q);
}
}
break;
case CSIO_SCSIE_ABORT:
csio_scsi_abrt_cls(req, SCSI_ABORT);
if (req->drv_status == 0) {
csio_wr_issue(hw, req->eq_idx, false);
csio_set_state(&req->sm, csio_scsis_aborting);
}
break;
case CSIO_SCSIE_CLOSE:
csio_scsi_abrt_cls(req, SCSI_CLOSE);
if (req->drv_status == 0) {
csio_wr_issue(hw, req->eq_idx, false);
csio_set_state(&req->sm, csio_scsis_closing);
}
break;
case CSIO_SCSIE_DRVCLEANUP:
req->wr_status = FW_HOSTERROR;
CSIO_DEC_STATS(scm, n_active);
csio_set_state(&req->sm, csio_scsis_uninit);
break;
default:
csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
CSIO_DB_ASSERT(0);
}
}
static void
csio_scsis_tm_active(struct csio_ioreq *req, enum csio_scsi_ev evt)
{
struct csio_hw *hw = req->lnode->hwp;
struct csio_scsim *scm = csio_hw_to_scsim(hw);
switch (evt) {
case CSIO_SCSIE_COMPLETED:
CSIO_DEC_STATS(scm, n_tm_active);
list_del_init(&req->sm.sm_list);
csio_set_state(&req->sm, csio_scsis_uninit);
break;
case CSIO_SCSIE_ABORT:
csio_scsi_abrt_cls(req, SCSI_ABORT);
if (req->drv_status == 0) {
csio_wr_issue(hw, req->eq_idx, false);
csio_set_state(&req->sm, csio_scsis_aborting);
}
break;
case CSIO_SCSIE_CLOSE:
csio_scsi_abrt_cls(req, SCSI_CLOSE);
if (req->drv_status == 0) {
csio_wr_issue(hw, req->eq_idx, false);
csio_set_state(&req->sm, csio_scsis_closing);
}
break;
case CSIO_SCSIE_DRVCLEANUP:
req->wr_status = FW_HOSTERROR;
CSIO_DEC_STATS(scm, n_tm_active);
csio_set_state(&req->sm, csio_scsis_uninit);
break;
default:
csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
CSIO_DB_ASSERT(0);
}
}
static void
csio_scsis_aborting(struct csio_ioreq *req, enum csio_scsi_ev evt)
{
struct csio_hw *hw = req->lnode->hwp;
struct csio_scsim *scm = csio_hw_to_scsim(hw);
switch (evt) {
case CSIO_SCSIE_COMPLETED:
csio_dbg(hw,
"ioreq %p recvd cmpltd (wr_status:%d) "
"in aborting st\n", req, req->wr_status);
/*
* Use -ECANCELED to explicitly tell the ABORTED event that
* the original I/O was returned to driver by FW.
* We dont really care if the I/O was returned with success by
* FW (because the ABORT and completion of the I/O crossed each
* other), or any other return value. Once we are in aborting
* state, the success or failure of the I/O is unimportant to
* us.
*/
req->drv_status = -ECANCELED;
break;
case CSIO_SCSIE_ABORT:
CSIO_INC_STATS(scm, n_abrt_dups);
break;
case CSIO_SCSIE_ABORTED:
csio_dbg(hw, "abort of %p return status:0x%x drv_status:%x\n",
req, req->wr_status, req->drv_status);
/*
* Check if original I/O WR completed before the Abort
* completion.
*/
if (req->drv_status != -ECANCELED) {
csio_warn(hw,
"Abort completed before original I/O,"
" req:%p\n", req);
CSIO_DB_ASSERT(0);
}
/*
* There are the following possible scenarios:
* 1. The abort completed successfully, FW returned FW_SUCCESS.
* 2. The completion of an I/O and the receipt of
* abort for that I/O by the FW crossed each other.
* The FW returned FW_EINVAL. The original I/O would have
* returned with FW_SUCCESS or any other SCSI error.
* 3. The FW couldnt sent the abort out on the wire, as there
* was an I-T nexus loss (link down, remote device logged
* out etc). FW sent back an appropriate IT nexus loss status
* for the abort.
* 4. FW sent an abort, but abort timed out (remote device
* didnt respond). FW replied back with
* FW_SCSI_ABORT_TIMEDOUT.
* 5. FW couldnt genuinely abort the request for some reason,
* and sent us an error.
*
* The first 3 scenarios are treated as succesful abort
* operations by the host, while the last 2 are failed attempts
* to abort. Manipulate the return value of the request
* appropriately, so that host can convey these results
* back to the upper layer.
*/
if ((req->wr_status == FW_SUCCESS) ||
(req->wr_status == FW_EINVAL) ||
csio_scsi_itnexus_loss_error(req->wr_status))
req->wr_status = FW_SCSI_ABORT_REQUESTED;
CSIO_DEC_STATS(scm, n_active);
list_del_init(&req->sm.sm_list);
csio_set_state(&req->sm, csio_scsis_uninit);
break;
case CSIO_SCSIE_DRVCLEANUP:
req->wr_status = FW_HOSTERROR;
CSIO_DEC_STATS(scm, n_active);
csio_set_state(&req->sm, csio_scsis_uninit);
break;
case CSIO_SCSIE_CLOSE:
/*
* We can receive this event from the module
* cleanup paths, if the FW forgot to reply to the ABORT WR
* and left this ioreq in this state. For now, just ignore
* the event. The CLOSE event is sent to this state, as
* the LINK may have already gone down.
*/
break;
default:
csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
CSIO_DB_ASSERT(0);
}
}
static void
csio_scsis_closing(struct csio_ioreq *req, enum csio_scsi_ev evt)
{
struct csio_hw *hw = req->lnode->hwp;
struct csio_scsim *scm = csio_hw_to_scsim(hw);
switch (evt) {
case CSIO_SCSIE_COMPLETED:
csio_dbg(hw,
"ioreq %p recvd cmpltd (wr_status:%d) "
"in closing st\n", req, req->wr_status);
/*
* Use -ECANCELED to explicitly tell the CLOSED event that
* the original I/O was returned to driver by FW.
* We dont really care if the I/O was returned with success by
* FW (because the CLOSE and completion of the I/O crossed each
* other), or any other return value. Once we are in aborting
* state, the success or failure of the I/O is unimportant to
* us.
*/
req->drv_status = -ECANCELED;
break;
case CSIO_SCSIE_CLOSED:
/*
* Check if original I/O WR completed before the Close
* completion.
*/
if (req->drv_status != -ECANCELED) {
csio_fatal(hw,
"Close completed before original I/O,"
" req:%p\n", req);
CSIO_DB_ASSERT(0);
}
/*
* Either close succeeded, or we issued close to FW at the
* same time FW compelted it to us. Either way, the I/O
* is closed.
*/
CSIO_DB_ASSERT((req->wr_status == FW_SUCCESS) ||
(req->wr_status == FW_EINVAL));
req->wr_status = FW_SCSI_CLOSE_REQUESTED;
CSIO_DEC_STATS(scm, n_active);
list_del_init(&req->sm.sm_list);
csio_set_state(&req->sm, csio_scsis_uninit);
break;
case CSIO_SCSIE_CLOSE:
break;
case CSIO_SCSIE_DRVCLEANUP:
req->wr_status = FW_HOSTERROR;
CSIO_DEC_STATS(scm, n_active);
csio_set_state(&req->sm, csio_scsis_uninit);
break;
default:
csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
CSIO_DB_ASSERT(0);
}
}
static void
csio_scsis_shost_cmpl_await(struct csio_ioreq *req, enum csio_scsi_ev evt)
{
switch (evt) {
case CSIO_SCSIE_ABORT:
case CSIO_SCSIE_CLOSE:
/*
* Just succeed the abort request, and hope that
* the remote device unregister path will cleanup
* this I/O to the upper layer within a sane
* amount of time.
*/
/*
* A close can come in during a LINK DOWN. The FW would have
* returned us the I/O back, but not the remote device lost
* FW event. In this interval, if the I/O times out at the upper
* layer, a close can come in. Take the same action as abort:
* return success, and hope that the remote device unregister
* path will cleanup this I/O. If the FW still doesnt send
* the msg, the close times out, and the upper layer resorts
* to the next level of error recovery.
*/
req->drv_status = 0;
break;
case CSIO_SCSIE_DRVCLEANUP:
csio_set_state(&req->sm, csio_scsis_uninit);
break;
default:
csio_dbg(req->lnode->hwp, "Unhandled event:%d sent to req:%p\n",
evt, req);
CSIO_DB_ASSERT(0);
}
}
/*
* csio_scsi_cmpl_handler - WR completion handler for SCSI.
* @hw: HW module.
* @wr: The completed WR from the ingress queue.
* @len: Length of the WR.
* @flb: Freelist buffer array.
* @priv: Private object
* @scsiwr: Pointer to SCSI WR.
*
* This is the WR completion handler called per completion from the
* ISR. It is called with lock held. It walks past the RSS and CPL message
* header where the actual WR is present.
* It then gets the status, WR handle (ioreq pointer) and the len of
* the WR, based on WR opcode. Only on a non-good status is the entire
* WR copied into the WR cache (ioreq->fw_wr).
* The ioreq corresponding to the WR is returned to the caller.
* NOTE: The SCSI queue doesnt allocate a freelist today, hence
* no freelist buffer is expected.
*/
struct csio_ioreq *
csio_scsi_cmpl_handler(struct csio_hw *hw, void *wr, uint32_t len,
struct csio_fl_dma_buf *flb, void *priv, uint8_t **scsiwr)
{
struct csio_ioreq *ioreq = NULL;
struct cpl_fw6_msg *cpl;
uint8_t *tempwr;
uint8_t status;
struct csio_scsim *scm = csio_hw_to_scsim(hw);
/* skip RSS header */
cpl = (struct cpl_fw6_msg *)((uintptr_t)wr + sizeof(__be64));
if (unlikely(cpl->opcode != CPL_FW6_MSG)) {
csio_warn(hw, "Error: Invalid CPL msg %x recvd on SCSI q\n",
cpl->opcode);
CSIO_INC_STATS(scm, n_inval_cplop);
return NULL;
}
tempwr = (uint8_t *)(cpl->data);
status = csio_wr_status(tempwr);
*scsiwr = tempwr;
if (likely((*tempwr == FW_SCSI_READ_WR) ||
(*tempwr == FW_SCSI_WRITE_WR) ||
(*tempwr == FW_SCSI_CMD_WR))) {
ioreq = (struct csio_ioreq *)((uintptr_t)
(((struct fw_scsi_read_wr *)tempwr)->cookie));
CSIO_DB_ASSERT(virt_addr_valid(ioreq));
ioreq->wr_status = status;
return ioreq;
}
if (*tempwr == FW_SCSI_ABRT_CLS_WR) {
ioreq = (struct csio_ioreq *)((uintptr_t)
(((struct fw_scsi_abrt_cls_wr *)tempwr)->cookie));
CSIO_DB_ASSERT(virt_addr_valid(ioreq));
ioreq->wr_status = status;
return ioreq;
}
csio_warn(hw, "WR with invalid opcode in SCSI IQ: %x\n", *tempwr);
CSIO_INC_STATS(scm, n_inval_scsiop);
return NULL;
}
/*
* csio_scsi_cleanup_io_q - Cleanup the given queue.
* @scm: SCSI module.
* @q: Queue to be cleaned up.
*
* Called with lock held. Has to exit with lock held.
*/
void
csio_scsi_cleanup_io_q(struct csio_scsim *scm, struct list_head *q)
{
struct csio_hw *hw = scm->hw;
struct csio_ioreq *ioreq;
struct list_head *tmp, *next;
struct scsi_cmnd *scmnd;
/* Call back the completion routines of the active_q */
list_for_each_safe(tmp, next, q) {
ioreq = (struct csio_ioreq *)tmp;
csio_scsi_drvcleanup(ioreq);
list_del_init(&ioreq->sm.sm_list);
scmnd = csio_scsi_cmnd(ioreq);
spin_unlock_irq(&hw->lock);
/*
* Upper layers may have cleared this command, hence this
* check to avoid accessing stale references.
*/
if (scmnd != NULL)
ioreq->io_cbfn(hw, ioreq);
spin_lock_irq(&scm->freelist_lock);
csio_put_scsi_ioreq(scm, ioreq);
spin_unlock_irq(&scm->freelist_lock);
spin_lock_irq(&hw->lock);
}
}
#define CSIO_SCSI_ABORT_Q_POLL_MS 2000
static void
csio_abrt_cls(struct csio_ioreq *ioreq, struct scsi_cmnd *scmnd)
{
struct csio_lnode *ln = ioreq->lnode;
struct csio_hw *hw = ln->hwp;
int ready = 0;
struct csio_scsim *scsim = csio_hw_to_scsim(hw);
int rv;
if (csio_scsi_cmnd(ioreq) != scmnd) {
CSIO_INC_STATS(scsim, n_abrt_race_comp);
return;
}
ready = csio_is_lnode_ready(ln);
rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE));
if (rv != 0) {
if (ready)
CSIO_INC_STATS(scsim, n_abrt_busy_error);
else
CSIO_INC_STATS(scsim, n_cls_busy_error);
}
}
/*
* csio_scsi_abort_io_q - Abort all I/Os on given queue
* @scm: SCSI module.
* @q: Queue to abort.
* @tmo: Timeout in ms
*
* Attempt to abort all I/Os on given queue, and wait for a max
* of tmo milliseconds for them to complete. Returns success
* if all I/Os are aborted. Else returns -ETIMEDOUT.
* Should be entered with lock held. Exits with lock held.
* NOTE:
* Lock has to be held across the loop that aborts I/Os, since dropping the lock
* in between can cause the list to be corrupted. As a result, the caller
* of this function has to ensure that the number of I/os to be aborted
* is finite enough to not cause lock-held-for-too-long issues.
*/
static int
csio_scsi_abort_io_q(struct csio_scsim *scm, struct list_head *q, uint32_t tmo)
{
struct csio_hw *hw = scm->hw;
struct list_head *tmp, *next;
int count = DIV_ROUND_UP(tmo, CSIO_SCSI_ABORT_Q_POLL_MS);
struct scsi_cmnd *scmnd;
if (list_empty(q))
return 0;
csio_dbg(hw, "Aborting SCSI I/Os\n");
/* Now abort/close I/Os in the queue passed */
list_for_each_safe(tmp, next, q) {
scmnd = csio_scsi_cmnd((struct csio_ioreq *)tmp);
csio_abrt_cls((struct csio_ioreq *)tmp, scmnd);
}
/* Wait till all active I/Os are completed/aborted/closed */
while (!list_empty(q) && count--) {
spin_unlock_irq(&hw->lock);
msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
spin_lock_irq(&hw->lock);
}
/* all aborts completed */
if (list_empty(q))
return 0;
return -ETIMEDOUT;
}
/*
* csio_scsim_cleanup_io - Cleanup all I/Os in SCSI module.
* @scm: SCSI module.
* @abort: abort required.
* Called with lock held, should exit with lock held.
* Can sleep when waiting for I/Os to complete.
*/
int
csio_scsim_cleanup_io(struct csio_scsim *scm, bool abort)
{
struct csio_hw *hw = scm->hw;
int rv = 0;
int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS);
/* No I/Os pending */
if (list_empty(&scm->active_q))
return 0;
/* Wait until all active I/Os are completed */
while (!list_empty(&scm->active_q) && count--) {
spin_unlock_irq(&hw->lock);
msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
spin_lock_irq(&hw->lock);
}
/* all I/Os completed */
if (list_empty(&scm->active_q))
return 0;
/* Else abort */
if (abort) {
rv = csio_scsi_abort_io_q(scm, &scm->active_q, 30000);
if (rv == 0)
return rv;
csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n");
}
csio_scsi_cleanup_io_q(scm, &scm->active_q);
CSIO_DB_ASSERT(list_empty(&scm->active_q));
return rv;
}
/*
* csio_scsim_cleanup_io_lnode - Cleanup all I/Os of given lnode.
* @scm: SCSI module.
* @lnode: lnode
*
* Called with lock held, should exit with lock held.
* Can sleep (with dropped lock) when waiting for I/Os to complete.
*/
int
csio_scsim_cleanup_io_lnode(struct csio_scsim *scm, struct csio_lnode *ln)
{
struct csio_hw *hw = scm->hw;
struct csio_scsi_level_data sld;
int rv;
int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS);
csio_dbg(hw, "Gathering all SCSI I/Os on lnode %p\n", ln);
sld.level = CSIO_LEV_LNODE;
sld.lnode = ln;
INIT_LIST_HEAD(&ln->cmpl_q);
csio_scsi_gather_active_ios(scm, &sld, &ln->cmpl_q);
/* No I/Os pending on this lnode */
if (list_empty(&ln->cmpl_q))
return 0;
/* Wait until all active I/Os on this lnode are completed */
while (!list_empty(&ln->cmpl_q) && count--) {
spin_unlock_irq(&hw->lock);
msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
spin_lock_irq(&hw->lock);
}
/* all I/Os completed */
if (list_empty(&ln->cmpl_q))
return 0;
csio_dbg(hw, "Some I/Os pending on ln:%p, aborting them..\n", ln);
/* I/Os are pending, abort them */
rv = csio_scsi_abort_io_q(scm, &ln->cmpl_q, 30000);
if (rv != 0) {
csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n");
csio_scsi_cleanup_io_q(scm, &ln->cmpl_q);
}
CSIO_DB_ASSERT(list_empty(&ln->cmpl_q));
return rv;
}
static ssize_t
csio_show_hw_state(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct csio_lnode *ln = shost_priv(class_to_shost(dev));
struct csio_hw *hw = csio_lnode_to_hw(ln);
if (csio_is_hw_ready(hw))
return snprintf(buf, PAGE_SIZE, "ready\n");
else
return snprintf(buf, PAGE_SIZE, "not ready\n");
}
/* Device reset */
static ssize_t
csio_device_reset(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct csio_lnode *ln = shost_priv(class_to_shost(dev));
struct csio_hw *hw = csio_lnode_to_hw(ln);
if (*buf != '1')
return -EINVAL;
/* Delete NPIV lnodes */
csio_lnodes_exit(hw, 1);
/* Block upper IOs */
csio_lnodes_block_request(hw);
spin_lock_irq(&hw->lock);
csio_hw_reset(hw);
spin_unlock_irq(&hw->lock);
/* Unblock upper IOs */
csio_lnodes_unblock_request(hw);
return count;
}
/* disable port */
static ssize_t
csio_disable_port(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct csio_lnode *ln = shost_priv(class_to_shost(dev));
struct csio_hw *hw = csio_lnode_to_hw(ln);
bool disable;
if (*buf == '1' || *buf == '0')
disable = (*buf == '1') ? true : false;
else
return -EINVAL;
/* Block upper IOs */
csio_lnodes_block_by_port(hw, ln->portid);
spin_lock_irq(&hw->lock);
csio_disable_lnodes(hw, ln->portid, disable);
spin_unlock_irq(&hw->lock);
/* Unblock upper IOs */
csio_lnodes_unblock_by_port(hw, ln->portid);
return count;
}
/* Show debug level */
static ssize_t
csio_show_dbg_level(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct csio_lnode *ln = shost_priv(class_to_shost(dev));
return snprintf(buf, PAGE_SIZE, "%x\n", ln->params.log_level);
}
/* Store debug level */
static ssize_t
csio_store_dbg_level(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct csio_lnode *ln = shost_priv(class_to_shost(dev));
struct csio_hw *hw = csio_lnode_to_hw(ln);
uint32_t dbg_level = 0;
if (!isdigit(buf[0]))
return -EINVAL;
if (sscanf(buf, "%i", &dbg_level))
return -EINVAL;
ln->params.log_level = dbg_level;
hw->params.log_level = dbg_level;
return 0;
}
static DEVICE_ATTR(hw_state, S_IRUGO, csio_show_hw_state, NULL);
static DEVICE_ATTR(device_reset, S_IWUSR, NULL, csio_device_reset);
static DEVICE_ATTR(disable_port, S_IWUSR, NULL, csio_disable_port);
static DEVICE_ATTR(dbg_level, S_IRUGO | S_IWUSR, csio_show_dbg_level,
csio_store_dbg_level);
static struct device_attribute *csio_fcoe_lport_attrs[] = {
&dev_attr_hw_state,
&dev_attr_device_reset,
&dev_attr_disable_port,
&dev_attr_dbg_level,
NULL,
};
static ssize_t
csio_show_num_reg_rnodes(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct csio_lnode *ln = shost_priv(class_to_shost(dev));
return snprintf(buf, PAGE_SIZE, "%d\n", ln->num_reg_rnodes);
}
static DEVICE_ATTR(num_reg_rnodes, S_IRUGO, csio_show_num_reg_rnodes, NULL);
static struct device_attribute *csio_fcoe_vport_attrs[] = {
&dev_attr_num_reg_rnodes,
&dev_attr_dbg_level,
NULL,
};
static inline uint32_t
csio_scsi_copy_to_sgl(struct csio_hw *hw, struct csio_ioreq *req)
{
struct scsi_cmnd *scmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req);
struct scatterlist *sg;
uint32_t bytes_left;
uint32_t bytes_copy;
uint32_t buf_off = 0;
uint32_t start_off = 0;
uint32_t sg_off = 0;
void *sg_addr;
void *buf_addr;
struct csio_dma_buf *dma_buf;
bytes_left = scsi_bufflen(scmnd);
sg = scsi_sglist(scmnd);
dma_buf = (struct csio_dma_buf *)csio_list_next(&req->gen_list);
/* Copy data from driver buffer to SGs of SCSI CMD */
while (bytes_left > 0 && sg && dma_buf) {
if (buf_off >= dma_buf->len) {
buf_off = 0;
dma_buf = (struct csio_dma_buf *)
csio_list_next(dma_buf);
continue;
}
if (start_off >= sg->length) {
start_off -= sg->length;
sg = sg_next(sg);
continue;
}
buf_addr = dma_buf->vaddr + buf_off;
sg_off = sg->offset + start_off;
bytes_copy = min((dma_buf->len - buf_off),
sg->length - start_off);
bytes_copy = min((uint32_t)(PAGE_SIZE - (sg_off & ~PAGE_MASK)),
bytes_copy);
sg_addr = kmap_atomic(sg_page(sg) + (sg_off >> PAGE_SHIFT));
if (!sg_addr) {
csio_err(hw, "failed to kmap sg:%p of ioreq:%p\n",
sg, req);
break;
}
csio_dbg(hw, "copy_to_sgl:sg_addr %p sg_off %d buf %p len %d\n",
sg_addr, sg_off, buf_addr, bytes_copy);
memcpy(sg_addr + (sg_off & ~PAGE_MASK), buf_addr, bytes_copy);
kunmap_atomic(sg_addr);
start_off += bytes_copy;
buf_off += bytes_copy;
bytes_left -= bytes_copy;
}
if (bytes_left > 0)
return DID_ERROR;
else
return DID_OK;
}
/*
* csio_scsi_err_handler - SCSI error handler.
* @hw: HW module.
* @req: IO request.
*
*/
static inline void
csio_scsi_err_handler(struct csio_hw *hw, struct csio_ioreq *req)
{
struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req);
struct csio_scsim *scm = csio_hw_to_scsim(hw);
struct fcp_resp_with_ext *fcp_resp;
struct fcp_resp_rsp_info *rsp_info;
struct csio_dma_buf *dma_buf;
uint8_t flags, scsi_status = 0;
uint32_t host_status = DID_OK;
uint32_t rsp_len = 0, sns_len = 0;
struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
switch (req->wr_status) {
case FW_HOSTERROR:
if (unlikely(!csio_is_hw_ready(hw)))
return;
host_status = DID_ERROR;
CSIO_INC_STATS(scm, n_hosterror);
break;
case FW_SCSI_RSP_ERR:
dma_buf = &req->dma_buf;
fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr;
rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1);
flags = fcp_resp->resp.fr_flags;
scsi_status = fcp_resp->resp.fr_status;
if (flags & FCP_RSP_LEN_VAL) {
rsp_len = be32_to_cpu(fcp_resp->ext.fr_rsp_len);
if ((rsp_len != 0 && rsp_len != 4 && rsp_len != 8) ||
(rsp_info->rsp_code != FCP_TMF_CMPL)) {
host_status = DID_ERROR;
goto out;
}
}
if ((flags & FCP_SNS_LEN_VAL) && fcp_resp->ext.fr_sns_len) {
sns_len = be32_to_cpu(fcp_resp->ext.fr_sns_len);
if (sns_len > SCSI_SENSE_BUFFERSIZE)
sns_len = SCSI_SENSE_BUFFERSIZE;
memcpy(cmnd->sense_buffer,
&rsp_info->_fr_resvd[0] + rsp_len, sns_len);
CSIO_INC_STATS(scm, n_autosense);
}
scsi_set_resid(cmnd, 0);
/* Under run */
if (flags & FCP_RESID_UNDER) {
scsi_set_resid(cmnd,
be32_to_cpu(fcp_resp->ext.fr_resid));
if (!(flags & FCP_SNS_LEN_VAL) &&
(scsi_status == SAM_STAT_GOOD) &&
((scsi_bufflen(cmnd) - scsi_get_resid(cmnd))
< cmnd->underflow))
host_status = DID_ERROR;
} else if (flags & FCP_RESID_OVER)
host_status = DID_ERROR;
CSIO_INC_STATS(scm, n_rsperror);
break;
case FW_SCSI_OVER_FLOW_ERR:
csio_warn(hw,
"Over-flow error,cmnd:0x%x expected len:0x%x"
" resid:0x%x\n", cmnd->cmnd[0],
scsi_bufflen(cmnd), scsi_get_resid(cmnd));
host_status = DID_ERROR;
CSIO_INC_STATS(scm, n_ovflerror);
break;
case FW_SCSI_UNDER_FLOW_ERR:
csio_warn(hw,
"Under-flow error,cmnd:0x%x expected"
" len:0x%x resid:0x%x lun:0x%llx ssn:0x%x\n",
cmnd->cmnd[0], scsi_bufflen(cmnd),
scsi_get_resid(cmnd), cmnd->device->lun,
rn->flowid);
host_status = DID_ERROR;
CSIO_INC_STATS(scm, n_unflerror);
break;
case FW_SCSI_ABORT_REQUESTED:
case FW_SCSI_ABORTED:
case FW_SCSI_CLOSE_REQUESTED:
csio_dbg(hw, "Req %p cmd:%p op:%x %s\n", req, cmnd,
cmnd->cmnd[0],
(req->wr_status == FW_SCSI_CLOSE_REQUESTED) ?
"closed" : "aborted");
/*
* csio_eh_abort_handler checks this value to
* succeed or fail the abort request.
*/
host_status = DID_REQUEUE;
if (req->wr_status == FW_SCSI_CLOSE_REQUESTED)
CSIO_INC_STATS(scm, n_closed);
else
CSIO_INC_STATS(scm, n_aborted);
break;
case FW_SCSI_ABORT_TIMEDOUT:
/* FW timed out the abort itself */
csio_dbg(hw, "FW timed out abort req:%p cmnd:%p status:%x\n",
req, cmnd, req->wr_status);
host_status = DID_ERROR;
CSIO_INC_STATS(scm, n_abrt_timedout);
break;
case FW_RDEV_NOT_READY:
/*
* In firmware, a RDEV can get into this state
* temporarily, before moving into dissapeared/lost
* state. So, the driver should complete the request equivalent
* to device-disappeared!
*/
CSIO_INC_STATS(scm, n_rdev_nr_error);
host_status = DID_ERROR;
break;
case FW_ERR_RDEV_LOST:
CSIO_INC_STATS(scm, n_rdev_lost_error);
host_status = DID_ERROR;
break;
case FW_ERR_RDEV_LOGO:
CSIO_INC_STATS(scm, n_rdev_logo_error);
host_status = DID_ERROR;
break;
case FW_ERR_RDEV_IMPL_LOGO:
host_status = DID_ERROR;
break;
case FW_ERR_LINK_DOWN:
CSIO_INC_STATS(scm, n_link_down_error);
host_status = DID_ERROR;
break;
case FW_FCOE_NO_XCHG:
CSIO_INC_STATS(scm, n_no_xchg_error);
host_status = DID_ERROR;
break;
default:
csio_err(hw, "Unknown SCSI FW WR status:%d req:%p cmnd:%p\n",
req->wr_status, req, cmnd);
CSIO_DB_ASSERT(0);
CSIO_INC_STATS(scm, n_unknown_error);
host_status = DID_ERROR;
break;
}
out:
if (req->nsge > 0)
scsi_dma_unmap(cmnd);
cmnd->result = (((host_status) << 16) | scsi_status);
cmnd->scsi_done(cmnd);
/* Wake up waiting threads */
csio_scsi_cmnd(req) = NULL;
complete_all(&req->cmplobj);
}
/*
* csio_scsi_cbfn - SCSI callback function.
* @hw: HW module.
* @req: IO request.
*
*/
static void
csio_scsi_cbfn(struct csio_hw *hw, struct csio_ioreq *req)
{
struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req);
uint8_t scsi_status = SAM_STAT_GOOD;
uint32_t host_status = DID_OK;
if (likely(req->wr_status == FW_SUCCESS)) {
if (req->nsge > 0) {
scsi_dma_unmap(cmnd);
if (req->dcopy)
host_status = csio_scsi_copy_to_sgl(hw, req);
}
cmnd->result = (((host_status) << 16) | scsi_status);
cmnd->scsi_done(cmnd);
csio_scsi_cmnd(req) = NULL;
CSIO_INC_STATS(csio_hw_to_scsim(hw), n_tot_success);
} else {
/* Error handling */
csio_scsi_err_handler(hw, req);
}
}
/**
* csio_queuecommand - Entry point to kickstart an I/O request.
* @host: The scsi_host pointer.
* @cmnd: The I/O request from ML.
*
* This routine does the following:
* - Checks for HW and Rnode module readiness.
* - Gets a free ioreq structure (which is already initialized
* to uninit during its allocation).
* - Maps SG elements.
* - Initializes ioreq members.
* - Kicks off the SCSI state machine for this IO.
* - Returns busy status on error.
*/
static int
csio_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmnd)
{
struct csio_lnode *ln = shost_priv(host);
struct csio_hw *hw = csio_lnode_to_hw(ln);
struct csio_scsim *scsim = csio_hw_to_scsim(hw);
struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
struct csio_ioreq *ioreq = NULL;
unsigned long flags;
int nsge = 0;
int rv = SCSI_MLQUEUE_HOST_BUSY, nr;
int retval;
int cpu;
struct csio_scsi_qset *sqset;
struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
if (!blk_rq_cpu_valid(cmnd->request))
cpu = smp_processor_id();
else
cpu = cmnd->request->cpu;
sqset = &hw->sqset[ln->portid][cpu];
nr = fc_remote_port_chkready(rport);
if (nr) {
cmnd->result = nr;
CSIO_INC_STATS(scsim, n_rn_nr_error);
goto err_done;
}
if (unlikely(!csio_is_hw_ready(hw))) {
cmnd->result = (DID_REQUEUE << 16);
CSIO_INC_STATS(scsim, n_hw_nr_error);
goto err_done;
}
/* Get req->nsge, if there are SG elements to be mapped */
nsge = scsi_dma_map(cmnd);
if (unlikely(nsge < 0)) {
CSIO_INC_STATS(scsim, n_dmamap_error);
goto err;
}
/* Do we support so many mappings? */
if (unlikely(nsge > scsim->max_sge)) {
csio_warn(hw,
"More SGEs than can be supported."
" SGEs: %d, Max SGEs: %d\n", nsge, scsim->max_sge);
CSIO_INC_STATS(scsim, n_unsupp_sge_error);
goto err_dma_unmap;
}
/* Get a free ioreq structure - SM is already set to uninit */
ioreq = csio_get_scsi_ioreq_lock(hw, scsim);
if (!ioreq) {
csio_err(hw, "Out of I/O request elements. Active #:%d\n",
scsim->stats.n_active);
CSIO_INC_STATS(scsim, n_no_req_error);
goto err_dma_unmap;
}
ioreq->nsge = nsge;
ioreq->lnode = ln;
ioreq->rnode = rn;
ioreq->iq_idx = sqset->iq_idx;
ioreq->eq_idx = sqset->eq_idx;
ioreq->wr_status = 0;
ioreq->drv_status = 0;
csio_scsi_cmnd(ioreq) = (void *)cmnd;
ioreq->tmo = 0;
ioreq->datadir = cmnd->sc_data_direction;
if (cmnd->sc_data_direction == DMA_TO_DEVICE) {
CSIO_INC_STATS(ln, n_output_requests);
ln->stats.n_output_bytes += scsi_bufflen(cmnd);
} else if (cmnd->sc_data_direction == DMA_FROM_DEVICE) {
CSIO_INC_STATS(ln, n_input_requests);
ln->stats.n_input_bytes += scsi_bufflen(cmnd);
} else
CSIO_INC_STATS(ln, n_control_requests);
/* Set cbfn */
ioreq->io_cbfn = csio_scsi_cbfn;
/* Needed during abort */
cmnd->host_scribble = (unsigned char *)ioreq;
cmnd->SCp.Message = 0;
/* Kick off SCSI IO SM on the ioreq */
spin_lock_irqsave(&hw->lock, flags);
retval = csio_scsi_start_io(ioreq);
spin_unlock_irqrestore(&hw->lock, flags);
if (retval != 0) {
csio_err(hw, "ioreq: %p couldnt be started, status:%d\n",
ioreq, retval);
CSIO_INC_STATS(scsim, n_busy_error);
goto err_put_req;
}
return 0;
err_put_req:
csio_put_scsi_ioreq_lock(hw, scsim, ioreq);
err_dma_unmap:
if (nsge > 0)
scsi_dma_unmap(cmnd);
err:
return rv;
err_done:
cmnd->scsi_done(cmnd);
return 0;
}
static int
csio_do_abrt_cls(struct csio_hw *hw, struct csio_ioreq *ioreq, bool abort)
{
int rv;
int cpu = smp_processor_id();
struct csio_lnode *ln = ioreq->lnode;
struct csio_scsi_qset *sqset = &hw->sqset[ln->portid][cpu];
ioreq->tmo = CSIO_SCSI_ABRT_TMO_MS;
/*
* Use current processor queue for posting the abort/close, but retain
* the ingress queue ID of the original I/O being aborted/closed - we
* need the abort/close completion to be received on the same queue
* as the original I/O.
*/
ioreq->eq_idx = sqset->eq_idx;
if (abort == SCSI_ABORT)
rv = csio_scsi_abort(ioreq);
else
rv = csio_scsi_close(ioreq);
return rv;
}
static int
csio_eh_abort_handler(struct scsi_cmnd *cmnd)
{
struct csio_ioreq *ioreq;
struct csio_lnode *ln = shost_priv(cmnd->device->host);
struct csio_hw *hw = csio_lnode_to_hw(ln);
struct csio_scsim *scsim = csio_hw_to_scsim(hw);
int ready = 0, ret;
unsigned long tmo = 0;
int rv;
struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
ret = fc_block_scsi_eh(cmnd);
if (ret)
return ret;
ioreq = (struct csio_ioreq *)cmnd->host_scribble;
if (!ioreq)
return SUCCESS;
if (!rn)
return FAILED;
csio_dbg(hw,
"Request to abort ioreq:%p cmd:%p cdb:%08llx"
" ssni:0x%x lun:%llu iq:0x%x\n",
ioreq, cmnd, *((uint64_t *)cmnd->cmnd), rn->flowid,
cmnd->device->lun, csio_q_physiqid(hw, ioreq->iq_idx));
if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) != cmnd) {
CSIO_INC_STATS(scsim, n_abrt_race_comp);
return SUCCESS;
}
ready = csio_is_lnode_ready(ln);
tmo = CSIO_SCSI_ABRT_TMO_MS;
spin_lock_irq(&hw->lock);
rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE));
spin_unlock_irq(&hw->lock);
if (rv != 0) {
if (rv == -EINVAL) {
/* Return success, if abort/close request issued on
* already completed IO
*/
return SUCCESS;
}
if (ready)
CSIO_INC_STATS(scsim, n_abrt_busy_error);
else
CSIO_INC_STATS(scsim, n_cls_busy_error);
goto inval_scmnd;
}
/* Wait for completion */
init_completion(&ioreq->cmplobj);
wait_for_completion_timeout(&ioreq->cmplobj, msecs_to_jiffies(tmo));
/* FW didnt respond to abort within our timeout */
if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) {
csio_err(hw, "Abort timed out -- req: %p\n", ioreq);
CSIO_INC_STATS(scsim, n_abrt_timedout);
inval_scmnd:
if (ioreq->nsge > 0)
scsi_dma_unmap(cmnd);
spin_lock_irq(&hw->lock);
csio_scsi_cmnd(ioreq) = NULL;
spin_unlock_irq(&hw->lock);
cmnd->result = (DID_ERROR << 16);
cmnd->scsi_done(cmnd);
return FAILED;
}
/* FW successfully aborted the request */
if (host_byte(cmnd->result) == DID_REQUEUE) {
csio_info(hw,
"Aborted SCSI command to (%d:%llu) serial#:0x%lx\n",
cmnd->device->id, cmnd->device->lun,
cmnd->serial_number);
return SUCCESS;
} else {
csio_info(hw,
"Failed to abort SCSI command, (%d:%llu) serial#:0x%lx\n",
cmnd->device->id, cmnd->device->lun,
cmnd->serial_number);
return FAILED;
}
}
/*
* csio_tm_cbfn - TM callback function.
* @hw: HW module.
* @req: IO request.
*
* Cache the result in 'cmnd', since ioreq will be freed soon
* after we return from here, and the waiting thread shouldnt trust
* the ioreq contents.
*/
static void
csio_tm_cbfn(struct csio_hw *hw, struct csio_ioreq *req)
{
struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req);
struct csio_dma_buf *dma_buf;
uint8_t flags = 0;
struct fcp_resp_with_ext *fcp_resp;
struct fcp_resp_rsp_info *rsp_info;
csio_dbg(hw, "req: %p in csio_tm_cbfn status: %d\n",
req, req->wr_status);
/* Cache FW return status */
cmnd->SCp.Status = req->wr_status;
/* Special handling based on FCP response */
/*
* FW returns us this error, if flags were set. FCP4 says
* FCP_RSP_LEN_VAL in flags shall be set for TM completions.
* So if a target were to set this bit, we expect that the
* rsp_code is set to FCP_TMF_CMPL for a successful TM
* completion. Any other rsp_code means TM operation failed.
* If a target were to just ignore setting flags, we treat
* the TM operation as success, and FW returns FW_SUCCESS.
*/
if (req->wr_status == FW_SCSI_RSP_ERR) {
dma_buf = &req->dma_buf;
fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr;
rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1);
flags = fcp_resp->resp.fr_flags;
/* Modify return status if flags indicate success */
if (flags & FCP_RSP_LEN_VAL)
if (rsp_info->rsp_code == FCP_TMF_CMPL)
cmnd->SCp.Status = FW_SUCCESS;
csio_dbg(hw, "TM FCP rsp code: %d\n", rsp_info->rsp_code);
}
/* Wake up the TM handler thread */
csio_scsi_cmnd(req) = NULL;
}
static int
csio_eh_lun_reset_handler(struct scsi_cmnd *cmnd)
{
struct csio_lnode *ln = shost_priv(cmnd->device->host);
struct csio_hw *hw = csio_lnode_to_hw(ln);
struct csio_scsim *scsim = csio_hw_to_scsim(hw);
struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
struct csio_ioreq *ioreq = NULL;
struct csio_scsi_qset *sqset;
unsigned long flags;
int retval;
int count, ret;
LIST_HEAD(local_q);
struct csio_scsi_level_data sld;
if (!rn)
goto fail;
csio_dbg(hw, "Request to reset LUN:%llu (ssni:0x%x tgtid:%d)\n",
cmnd->device->lun, rn->flowid, rn->scsi_id);
if (!csio_is_lnode_ready(ln)) {
csio_err(hw,
"LUN reset cannot be issued on non-ready"
" local node vnpi:0x%x (LUN:%llu)\n",
ln->vnp_flowid, cmnd->device->lun);
goto fail;
}
/* Lnode is ready, now wait on rport node readiness */
ret = fc_block_scsi_eh(cmnd);
if (ret)
return ret;
/*
* If we have blocked in the previous call, at this point, either the
* remote node has come back online, or device loss timer has fired
* and the remote node is destroyed. Allow the LUN reset only for
* the former case, since LUN reset is a TMF I/O on the wire, and we
* need a valid session to issue it.
*/
if (fc_remote_port_chkready(rn->rport)) {
csio_err(hw,
"LUN reset cannot be issued on non-ready"
" remote node ssni:0x%x (LUN:%llu)\n",
rn->flowid, cmnd->device->lun);
goto fail;
}
/* Get a free ioreq structure - SM is already set to uninit */
ioreq = csio_get_scsi_ioreq_lock(hw, scsim);
if (!ioreq) {
csio_err(hw, "Out of IO request elements. Active # :%d\n",
scsim->stats.n_active);
goto fail;
}
sqset = &hw->sqset[ln->portid][smp_processor_id()];
ioreq->nsge = 0;
ioreq->lnode = ln;
ioreq->rnode = rn;
ioreq->iq_idx = sqset->iq_idx;
ioreq->eq_idx = sqset->eq_idx;
csio_scsi_cmnd(ioreq) = cmnd;
cmnd->host_scribble = (unsigned char *)ioreq;
cmnd->SCp.Status = 0;
cmnd->SCp.Message = FCP_TMF_LUN_RESET;
ioreq->tmo = CSIO_SCSI_LUNRST_TMO_MS / 1000;
/*
* FW times the LUN reset for ioreq->tmo, so we got to wait a little
* longer (10s for now) than that to allow FW to return the timed
* out command.
*/
count = DIV_ROUND_UP((ioreq->tmo + 10) * 1000, CSIO_SCSI_TM_POLL_MS);
/* Set cbfn */
ioreq->io_cbfn = csio_tm_cbfn;
/* Save of the ioreq info for later use */
sld.level = CSIO_LEV_LUN;
sld.lnode = ioreq->lnode;
sld.rnode = ioreq->rnode;
sld.oslun = cmnd->device->lun;
spin_lock_irqsave(&hw->lock, flags);
/* Kick off TM SM on the ioreq */
retval = csio_scsi_start_tm(ioreq);
spin_unlock_irqrestore(&hw->lock, flags);
if (retval != 0) {
csio_err(hw, "Failed to issue LUN reset, req:%p, status:%d\n",
ioreq, retval);
goto fail_ret_ioreq;
}
csio_dbg(hw, "Waiting max %d secs for LUN reset completion\n",
count * (CSIO_SCSI_TM_POLL_MS / 1000));
/* Wait for completion */
while ((((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd)
&& count--)
msleep(CSIO_SCSI_TM_POLL_MS);
/* LUN reset timed-out */
if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) {
csio_err(hw, "LUN reset (%d:%llu) timed out\n",
cmnd->device->id, cmnd->device->lun);
spin_lock_irq(&hw->lock);
csio_scsi_drvcleanup(ioreq);
list_del_init(&ioreq->sm.sm_list);
spin_unlock_irq(&hw->lock);
goto fail_ret_ioreq;
}
/* LUN reset returned, check cached status */
if (cmnd->SCp.Status != FW_SUCCESS) {
csio_err(hw, "LUN reset failed (%d:%llu), status: %d\n",
cmnd->device->id, cmnd->device->lun, cmnd->SCp.Status);
goto fail;
}
/* LUN reset succeeded, Start aborting affected I/Os */
/*
* Since the host guarantees during LUN reset that there
* will not be any more I/Os to that LUN, until the LUN reset
* completes, we gather pending I/Os after the LUN reset.
*/
spin_lock_irq(&hw->lock);
csio_scsi_gather_active_ios(scsim, &sld, &local_q);
retval = csio_scsi_abort_io_q(scsim, &local_q, 30000);
spin_unlock_irq(&hw->lock);
/* Aborts may have timed out */
if (retval != 0) {
csio_err(hw,
"Attempt to abort I/Os during LUN reset of %llu"
" returned %d\n", cmnd->device->lun, retval);
/* Return I/Os back to active_q */
spin_lock_irq(&hw->lock);
list_splice_tail_init(&local_q, &scsim->active_q);
spin_unlock_irq(&hw->lock);
goto fail;
}
CSIO_INC_STATS(rn, n_lun_rst);
csio_info(hw, "LUN reset occurred (%d:%llu)\n",
cmnd->device->id, cmnd->device->lun);
return SUCCESS;
fail_ret_ioreq:
csio_put_scsi_ioreq_lock(hw, scsim, ioreq);
fail:
CSIO_INC_STATS(rn, n_lun_rst_fail);
return FAILED;
}
static int
csio_slave_alloc(struct scsi_device *sdev)
{
struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
if (!rport || fc_remote_port_chkready(rport))
return -ENXIO;
sdev->hostdata = *((struct csio_lnode **)(rport->dd_data));
return 0;
}
static int
csio_slave_configure(struct scsi_device *sdev)
{
scsi_change_queue_depth(sdev, csio_lun_qdepth);
return 0;
}
static void
csio_slave_destroy(struct scsi_device *sdev)
{
sdev->hostdata = NULL;
}
static int
csio_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
struct csio_lnode *ln = shost_priv(shost);
int rv = 1;
spin_lock_irq(shost->host_lock);
if (!ln->hwp || csio_list_deleted(&ln->sm.sm_list))
goto out;
rv = csio_scan_done(ln, jiffies, time, csio_max_scan_tmo * HZ,
csio_delta_scan_tmo * HZ);
out:
spin_unlock_irq(shost->host_lock);
return rv;
}
struct scsi_host_template csio_fcoe_shost_template = {
.module = THIS_MODULE,
.name = CSIO_DRV_DESC,
.proc_name = KBUILD_MODNAME,
.queuecommand = csio_queuecommand,
.eh_abort_handler = csio_eh_abort_handler,
.eh_device_reset_handler = csio_eh_lun_reset_handler,
.slave_alloc = csio_slave_alloc,
.slave_configure = csio_slave_configure,
.slave_destroy = csio_slave_destroy,
.scan_finished = csio_scan_finished,
.this_id = -1,
.sg_tablesize = CSIO_SCSI_MAX_SGE,
.cmd_per_lun = CSIO_MAX_CMD_PER_LUN,
.use_clustering = ENABLE_CLUSTERING,
.shost_attrs = csio_fcoe_lport_attrs,
.max_sectors = CSIO_MAX_SECTOR_SIZE,
.use_blk_tags = 1,
};
struct scsi_host_template csio_fcoe_shost_vport_template = {
.module = THIS_MODULE,
.name = CSIO_DRV_DESC,
.proc_name = KBUILD_MODNAME,
.queuecommand = csio_queuecommand,
.eh_abort_handler = csio_eh_abort_handler,
.eh_device_reset_handler = csio_eh_lun_reset_handler,
.slave_alloc = csio_slave_alloc,
.slave_configure = csio_slave_configure,
.slave_destroy = csio_slave_destroy,
.scan_finished = csio_scan_finished,
.this_id = -1,
.sg_tablesize = CSIO_SCSI_MAX_SGE,
.cmd_per_lun = CSIO_MAX_CMD_PER_LUN,
.use_clustering = ENABLE_CLUSTERING,
.shost_attrs = csio_fcoe_vport_attrs,
.max_sectors = CSIO_MAX_SECTOR_SIZE,
.use_blk_tags = 1,
};
/*
* csio_scsi_alloc_ddp_bufs - Allocate buffers for DDP of unaligned SGLs.
* @scm: SCSI Module
* @hw: HW device.
* @buf_size: buffer size
* @num_buf : Number of buffers.
*
* This routine allocates DMA buffers required for SCSI Data xfer, if
* each SGL buffer for a SCSI Read request posted by SCSI midlayer are
* not virtually contiguous.
*/
static int
csio_scsi_alloc_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw,
int buf_size, int num_buf)
{
int n = 0;
struct list_head *tmp;
struct csio_dma_buf *ddp_desc = NULL;
uint32_t unit_size = 0;
if (!num_buf)
return 0;
if (!buf_size)
return -EINVAL;
INIT_LIST_HEAD(&scm->ddp_freelist);
/* Align buf size to page size */
buf_size = (buf_size + PAGE_SIZE - 1) & PAGE_MASK;
/* Initialize dma descriptors */
for (n = 0; n < num_buf; n++) {
/* Set unit size to request size */
unit_size = buf_size;
ddp_desc = kzalloc(sizeof(struct csio_dma_buf), GFP_KERNEL);
if (!ddp_desc) {
csio_err(hw,
"Failed to allocate ddp descriptors,"
" Num allocated = %d.\n",
scm->stats.n_free_ddp);
goto no_mem;
}
/* Allocate Dma buffers for DDP */
ddp_desc->vaddr = pci_alloc_consistent(hw->pdev, unit_size,
&ddp_desc->paddr);
if (!ddp_desc->vaddr) {
csio_err(hw,
"SCSI response DMA buffer (ddp) allocation"
" failed!\n");
kfree(ddp_desc);
goto no_mem;
}
ddp_desc->len = unit_size;
/* Added it to scsi ddp freelist */
list_add_tail(&ddp_desc->list, &scm->ddp_freelist);
CSIO_INC_STATS(scm, n_free_ddp);
}
return 0;
no_mem:
/* release dma descs back to freelist and free dma memory */
list_for_each(tmp, &scm->ddp_freelist) {
ddp_desc = (struct csio_dma_buf *) tmp;
tmp = csio_list_prev(tmp);
pci_free_consistent(hw->pdev, ddp_desc->len, ddp_desc->vaddr,
ddp_desc->paddr);
list_del_init(&ddp_desc->list);
kfree(ddp_desc);
}
scm->stats.n_free_ddp = 0;
return -ENOMEM;
}
/*
* csio_scsi_free_ddp_bufs - free DDP buffers of unaligned SGLs.
* @scm: SCSI Module
* @hw: HW device.
*
* This routine frees ddp buffers.
*/
static void
csio_scsi_free_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw)
{
struct list_head *tmp;
struct csio_dma_buf *ddp_desc;
/* release dma descs back to freelist and free dma memory */
list_for_each(tmp, &scm->ddp_freelist) {
ddp_desc = (struct csio_dma_buf *) tmp;
tmp = csio_list_prev(tmp);
pci_free_consistent(hw->pdev, ddp_desc->len, ddp_desc->vaddr,
ddp_desc->paddr);
list_del_init(&ddp_desc->list);
kfree(ddp_desc);
}
scm->stats.n_free_ddp = 0;
}
/**
* csio_scsim_init - Initialize SCSI Module
* @scm: SCSI Module
* @hw: HW module
*
*/
int
csio_scsim_init(struct csio_scsim *scm, struct csio_hw *hw)
{
int i;
struct csio_ioreq *ioreq;
struct csio_dma_buf *dma_buf;
INIT_LIST_HEAD(&scm->active_q);
scm->hw = hw;
scm->proto_cmd_len = sizeof(struct fcp_cmnd);
scm->proto_rsp_len = CSIO_SCSI_RSP_LEN;
scm->max_sge = CSIO_SCSI_MAX_SGE;
spin_lock_init(&scm->freelist_lock);
/* Pre-allocate ioreqs and initialize them */
INIT_LIST_HEAD(&scm->ioreq_freelist);
for (i = 0; i < csio_scsi_ioreqs; i++) {
ioreq = kzalloc(sizeof(struct csio_ioreq), GFP_KERNEL);
if (!ioreq) {
csio_err(hw,
"I/O request element allocation failed, "
" Num allocated = %d.\n",
scm->stats.n_free_ioreq);
goto free_ioreq;
}
/* Allocate Dma buffers for Response Payload */
dma_buf = &ioreq->dma_buf;
dma_buf->vaddr = pci_pool_alloc(hw->scsi_pci_pool, GFP_KERNEL,
&dma_buf->paddr);
if (!dma_buf->vaddr) {
csio_err(hw,
"SCSI response DMA buffer allocation"
" failed!\n");
kfree(ioreq);
goto free_ioreq;
}
dma_buf->len = scm->proto_rsp_len;
/* Set state to uninit */
csio_init_state(&ioreq->sm, csio_scsis_uninit);
INIT_LIST_HEAD(&ioreq->gen_list);
init_completion(&ioreq->cmplobj);
list_add_tail(&ioreq->sm.sm_list, &scm->ioreq_freelist);
CSIO_INC_STATS(scm, n_free_ioreq);
}
if (csio_scsi_alloc_ddp_bufs(scm, hw, PAGE_SIZE, csio_ddp_descs))
goto free_ioreq;
return 0;
free_ioreq:
/*
* Free up existing allocations, since an error
* from here means we are returning for good
*/
while (!list_empty(&scm->ioreq_freelist)) {
struct csio_sm *tmp;
tmp = list_first_entry(&scm->ioreq_freelist,
struct csio_sm, sm_list);
list_del_init(&tmp->sm_list);
ioreq = (struct csio_ioreq *)tmp;
dma_buf = &ioreq->dma_buf;
pci_pool_free(hw->scsi_pci_pool, dma_buf->vaddr,
dma_buf->paddr);
kfree(ioreq);
}
scm->stats.n_free_ioreq = 0;
return -ENOMEM;
}
/**
* csio_scsim_exit: Uninitialize SCSI Module
* @scm: SCSI Module
*
*/
void
csio_scsim_exit(struct csio_scsim *scm)
{
struct csio_ioreq *ioreq;
struct csio_dma_buf *dma_buf;
while (!list_empty(&scm->ioreq_freelist)) {
struct csio_sm *tmp;
tmp = list_first_entry(&scm->ioreq_freelist,
struct csio_sm, sm_list);
list_del_init(&tmp->sm_list);
ioreq = (struct csio_ioreq *)tmp;
dma_buf = &ioreq->dma_buf;
pci_pool_free(scm->hw->scsi_pci_pool, dma_buf->vaddr,
dma_buf->paddr);
kfree(ioreq);
}
scm->stats.n_free_ioreq = 0;
csio_scsi_free_ddp_bufs(scm, scm->hw);
}