1277 lines
30 KiB
C
1277 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* pSeries NUMA support
|
|
*
|
|
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*/
|
|
#define pr_fmt(fmt) "numa: " fmt
|
|
|
|
#include <linux/threads.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/export.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/of.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/node.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/sparsemem.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/topology.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/drmem.h>
|
|
|
|
static int numa_enabled = 1;
|
|
|
|
static char *cmdline __initdata;
|
|
|
|
static int numa_debug;
|
|
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
|
|
|
|
int numa_cpu_lookup_table[NR_CPUS];
|
|
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
|
|
struct pglist_data *node_data[MAX_NUMNODES];
|
|
|
|
EXPORT_SYMBOL(numa_cpu_lookup_table);
|
|
EXPORT_SYMBOL(node_to_cpumask_map);
|
|
EXPORT_SYMBOL(node_data);
|
|
|
|
static int min_common_depth;
|
|
static int n_mem_addr_cells, n_mem_size_cells;
|
|
static int form1_affinity;
|
|
|
|
#define MAX_DISTANCE_REF_POINTS 4
|
|
static int distance_ref_points_depth;
|
|
static const __be32 *distance_ref_points;
|
|
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
|
|
|
|
/*
|
|
* Allocate node_to_cpumask_map based on number of available nodes
|
|
* Requires node_possible_map to be valid.
|
|
*
|
|
* Note: cpumask_of_node() is not valid until after this is done.
|
|
*/
|
|
static void __init setup_node_to_cpumask_map(void)
|
|
{
|
|
unsigned int node;
|
|
|
|
/* setup nr_node_ids if not done yet */
|
|
if (nr_node_ids == MAX_NUMNODES)
|
|
setup_nr_node_ids();
|
|
|
|
/* allocate the map */
|
|
for_each_node(node)
|
|
alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
|
|
|
|
/* cpumask_of_node() will now work */
|
|
dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
|
|
}
|
|
|
|
static int __init fake_numa_create_new_node(unsigned long end_pfn,
|
|
unsigned int *nid)
|
|
{
|
|
unsigned long long mem;
|
|
char *p = cmdline;
|
|
static unsigned int fake_nid;
|
|
static unsigned long long curr_boundary;
|
|
|
|
/*
|
|
* Modify node id, iff we started creating NUMA nodes
|
|
* We want to continue from where we left of the last time
|
|
*/
|
|
if (fake_nid)
|
|
*nid = fake_nid;
|
|
/*
|
|
* In case there are no more arguments to parse, the
|
|
* node_id should be the same as the last fake node id
|
|
* (we've handled this above).
|
|
*/
|
|
if (!p)
|
|
return 0;
|
|
|
|
mem = memparse(p, &p);
|
|
if (!mem)
|
|
return 0;
|
|
|
|
if (mem < curr_boundary)
|
|
return 0;
|
|
|
|
curr_boundary = mem;
|
|
|
|
if ((end_pfn << PAGE_SHIFT) > mem) {
|
|
/*
|
|
* Skip commas and spaces
|
|
*/
|
|
while (*p == ',' || *p == ' ' || *p == '\t')
|
|
p++;
|
|
|
|
cmdline = p;
|
|
fake_nid++;
|
|
*nid = fake_nid;
|
|
dbg("created new fake_node with id %d\n", fake_nid);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void reset_numa_cpu_lookup_table(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
numa_cpu_lookup_table[cpu] = -1;
|
|
}
|
|
|
|
static void map_cpu_to_node(int cpu, int node)
|
|
{
|
|
update_numa_cpu_lookup_table(cpu, node);
|
|
|
|
dbg("adding cpu %d to node %d\n", cpu, node);
|
|
|
|
if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
|
|
cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
|
|
}
|
|
|
|
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
|
|
static void unmap_cpu_from_node(unsigned long cpu)
|
|
{
|
|
int node = numa_cpu_lookup_table[cpu];
|
|
|
|
dbg("removing cpu %lu from node %d\n", cpu, node);
|
|
|
|
if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
|
|
cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
|
|
} else {
|
|
printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
|
|
cpu, node);
|
|
}
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
|
|
|
|
int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
|
|
{
|
|
int dist = 0;
|
|
|
|
int i, index;
|
|
|
|
for (i = 0; i < distance_ref_points_depth; i++) {
|
|
index = be32_to_cpu(distance_ref_points[i]);
|
|
if (cpu1_assoc[index] == cpu2_assoc[index])
|
|
break;
|
|
dist++;
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
|
|
/* must hold reference to node during call */
|
|
static const __be32 *of_get_associativity(struct device_node *dev)
|
|
{
|
|
return of_get_property(dev, "ibm,associativity", NULL);
|
|
}
|
|
|
|
int __node_distance(int a, int b)
|
|
{
|
|
int i;
|
|
int distance = LOCAL_DISTANCE;
|
|
|
|
if (!form1_affinity)
|
|
return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
|
|
|
|
for (i = 0; i < distance_ref_points_depth; i++) {
|
|
if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
|
|
break;
|
|
|
|
/* Double the distance for each NUMA level */
|
|
distance *= 2;
|
|
}
|
|
|
|
return distance;
|
|
}
|
|
EXPORT_SYMBOL(__node_distance);
|
|
|
|
static void initialize_distance_lookup_table(int nid,
|
|
const __be32 *associativity)
|
|
{
|
|
int i;
|
|
|
|
if (!form1_affinity)
|
|
return;
|
|
|
|
for (i = 0; i < distance_ref_points_depth; i++) {
|
|
const __be32 *entry;
|
|
|
|
entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
|
|
distance_lookup_table[nid][i] = of_read_number(entry, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
|
|
* info is found.
|
|
*/
|
|
static int associativity_to_nid(const __be32 *associativity)
|
|
{
|
|
int nid = NUMA_NO_NODE;
|
|
|
|
if (!numa_enabled)
|
|
goto out;
|
|
|
|
if (of_read_number(associativity, 1) >= min_common_depth)
|
|
nid = of_read_number(&associativity[min_common_depth], 1);
|
|
|
|
/* POWER4 LPAR uses 0xffff as invalid node */
|
|
if (nid == 0xffff || nid >= nr_node_ids)
|
|
nid = NUMA_NO_NODE;
|
|
|
|
if (nid > 0 &&
|
|
of_read_number(associativity, 1) >= distance_ref_points_depth) {
|
|
/*
|
|
* Skip the length field and send start of associativity array
|
|
*/
|
|
initialize_distance_lookup_table(nid, associativity + 1);
|
|
}
|
|
|
|
out:
|
|
return nid;
|
|
}
|
|
|
|
/* Returns the nid associated with the given device tree node,
|
|
* or -1 if not found.
|
|
*/
|
|
static int of_node_to_nid_single(struct device_node *device)
|
|
{
|
|
int nid = NUMA_NO_NODE;
|
|
const __be32 *tmp;
|
|
|
|
tmp = of_get_associativity(device);
|
|
if (tmp)
|
|
nid = associativity_to_nid(tmp);
|
|
return nid;
|
|
}
|
|
|
|
/* Walk the device tree upwards, looking for an associativity id */
|
|
int of_node_to_nid(struct device_node *device)
|
|
{
|
|
int nid = NUMA_NO_NODE;
|
|
|
|
of_node_get(device);
|
|
while (device) {
|
|
nid = of_node_to_nid_single(device);
|
|
if (nid != -1)
|
|
break;
|
|
|
|
device = of_get_next_parent(device);
|
|
}
|
|
of_node_put(device);
|
|
|
|
return nid;
|
|
}
|
|
EXPORT_SYMBOL(of_node_to_nid);
|
|
|
|
static int __init find_min_common_depth(void)
|
|
{
|
|
int depth;
|
|
struct device_node *root;
|
|
|
|
if (firmware_has_feature(FW_FEATURE_OPAL))
|
|
root = of_find_node_by_path("/ibm,opal");
|
|
else
|
|
root = of_find_node_by_path("/rtas");
|
|
if (!root)
|
|
root = of_find_node_by_path("/");
|
|
|
|
/*
|
|
* This property is a set of 32-bit integers, each representing
|
|
* an index into the ibm,associativity nodes.
|
|
*
|
|
* With form 0 affinity the first integer is for an SMP configuration
|
|
* (should be all 0's) and the second is for a normal NUMA
|
|
* configuration. We have only one level of NUMA.
|
|
*
|
|
* With form 1 affinity the first integer is the most significant
|
|
* NUMA boundary and the following are progressively less significant
|
|
* boundaries. There can be more than one level of NUMA.
|
|
*/
|
|
distance_ref_points = of_get_property(root,
|
|
"ibm,associativity-reference-points",
|
|
&distance_ref_points_depth);
|
|
|
|
if (!distance_ref_points) {
|
|
dbg("NUMA: ibm,associativity-reference-points not found.\n");
|
|
goto err;
|
|
}
|
|
|
|
distance_ref_points_depth /= sizeof(int);
|
|
|
|
if (firmware_has_feature(FW_FEATURE_OPAL) ||
|
|
firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
|
|
dbg("Using form 1 affinity\n");
|
|
form1_affinity = 1;
|
|
}
|
|
|
|
if (form1_affinity) {
|
|
depth = of_read_number(distance_ref_points, 1);
|
|
} else {
|
|
if (distance_ref_points_depth < 2) {
|
|
printk(KERN_WARNING "NUMA: "
|
|
"short ibm,associativity-reference-points\n");
|
|
goto err;
|
|
}
|
|
|
|
depth = of_read_number(&distance_ref_points[1], 1);
|
|
}
|
|
|
|
/*
|
|
* Warn and cap if the hardware supports more than
|
|
* MAX_DISTANCE_REF_POINTS domains.
|
|
*/
|
|
if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
|
|
printk(KERN_WARNING "NUMA: distance array capped at "
|
|
"%d entries\n", MAX_DISTANCE_REF_POINTS);
|
|
distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
|
|
}
|
|
|
|
of_node_put(root);
|
|
return depth;
|
|
|
|
err:
|
|
of_node_put(root);
|
|
return -1;
|
|
}
|
|
|
|
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
|
|
{
|
|
struct device_node *memory = NULL;
|
|
|
|
memory = of_find_node_by_type(memory, "memory");
|
|
if (!memory)
|
|
panic("numa.c: No memory nodes found!");
|
|
|
|
*n_addr_cells = of_n_addr_cells(memory);
|
|
*n_size_cells = of_n_size_cells(memory);
|
|
of_node_put(memory);
|
|
}
|
|
|
|
static unsigned long read_n_cells(int n, const __be32 **buf)
|
|
{
|
|
unsigned long result = 0;
|
|
|
|
while (n--) {
|
|
result = (result << 32) | of_read_number(*buf, 1);
|
|
(*buf)++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
struct assoc_arrays {
|
|
u32 n_arrays;
|
|
u32 array_sz;
|
|
const __be32 *arrays;
|
|
};
|
|
|
|
/*
|
|
* Retrieve and validate the list of associativity arrays for drconf
|
|
* memory from the ibm,associativity-lookup-arrays property of the
|
|
* device tree..
|
|
*
|
|
* The layout of the ibm,associativity-lookup-arrays property is a number N
|
|
* indicating the number of associativity arrays, followed by a number M
|
|
* indicating the size of each associativity array, followed by a list
|
|
* of N associativity arrays.
|
|
*/
|
|
static int of_get_assoc_arrays(struct assoc_arrays *aa)
|
|
{
|
|
struct device_node *memory;
|
|
const __be32 *prop;
|
|
u32 len;
|
|
|
|
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
|
|
if (!memory)
|
|
return -1;
|
|
|
|
prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
|
|
if (!prop || len < 2 * sizeof(unsigned int)) {
|
|
of_node_put(memory);
|
|
return -1;
|
|
}
|
|
|
|
aa->n_arrays = of_read_number(prop++, 1);
|
|
aa->array_sz = of_read_number(prop++, 1);
|
|
|
|
of_node_put(memory);
|
|
|
|
/* Now that we know the number of arrays and size of each array,
|
|
* revalidate the size of the property read in.
|
|
*/
|
|
if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
|
|
return -1;
|
|
|
|
aa->arrays = prop;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is like of_node_to_nid_single() for memory represented in the
|
|
* ibm,dynamic-reconfiguration-memory node.
|
|
*/
|
|
int of_drconf_to_nid_single(struct drmem_lmb *lmb)
|
|
{
|
|
struct assoc_arrays aa = { .arrays = NULL };
|
|
int default_nid = NUMA_NO_NODE;
|
|
int nid = default_nid;
|
|
int rc, index;
|
|
|
|
if ((min_common_depth < 0) || !numa_enabled)
|
|
return default_nid;
|
|
|
|
rc = of_get_assoc_arrays(&aa);
|
|
if (rc)
|
|
return default_nid;
|
|
|
|
if (min_common_depth <= aa.array_sz &&
|
|
!(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
|
|
index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
|
|
nid = of_read_number(&aa.arrays[index], 1);
|
|
|
|
if (nid == 0xffff || nid >= nr_node_ids)
|
|
nid = default_nid;
|
|
|
|
if (nid > 0) {
|
|
index = lmb->aa_index * aa.array_sz;
|
|
initialize_distance_lookup_table(nid,
|
|
&aa.arrays[index]);
|
|
}
|
|
}
|
|
|
|
return nid;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_SPLPAR
|
|
static int vphn_get_nid(long lcpu)
|
|
{
|
|
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
|
|
long rc, hwid;
|
|
|
|
/*
|
|
* On a shared lpar, device tree will not have node associativity.
|
|
* At this time lppaca, or its __old_status field may not be
|
|
* updated. Hence kernel cannot detect if its on a shared lpar. So
|
|
* request an explicit associativity irrespective of whether the
|
|
* lpar is shared or dedicated. Use the device tree property as a
|
|
* fallback. cpu_to_phys_id is only valid between
|
|
* smp_setup_cpu_maps() and smp_setup_pacas().
|
|
*/
|
|
if (firmware_has_feature(FW_FEATURE_VPHN)) {
|
|
if (cpu_to_phys_id)
|
|
hwid = cpu_to_phys_id[lcpu];
|
|
else
|
|
hwid = get_hard_smp_processor_id(lcpu);
|
|
|
|
rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
|
|
if (rc == H_SUCCESS)
|
|
return associativity_to_nid(associativity);
|
|
}
|
|
|
|
return NUMA_NO_NODE;
|
|
}
|
|
#else
|
|
static int vphn_get_nid(long unused)
|
|
{
|
|
return NUMA_NO_NODE;
|
|
}
|
|
#endif /* CONFIG_PPC_SPLPAR */
|
|
|
|
/*
|
|
* Figure out to which domain a cpu belongs and stick it there.
|
|
* Return the id of the domain used.
|
|
*/
|
|
static int numa_setup_cpu(unsigned long lcpu)
|
|
{
|
|
struct device_node *cpu;
|
|
int fcpu = cpu_first_thread_sibling(lcpu);
|
|
int nid = NUMA_NO_NODE;
|
|
|
|
if (!cpu_present(lcpu)) {
|
|
set_cpu_numa_node(lcpu, first_online_node);
|
|
return first_online_node;
|
|
}
|
|
|
|
/*
|
|
* If a valid cpu-to-node mapping is already available, use it
|
|
* directly instead of querying the firmware, since it represents
|
|
* the most recent mapping notified to us by the platform (eg: VPHN).
|
|
* Since cpu_to_node binding remains the same for all threads in the
|
|
* core. If a valid cpu-to-node mapping is already available, for
|
|
* the first thread in the core, use it.
|
|
*/
|
|
nid = numa_cpu_lookup_table[fcpu];
|
|
if (nid >= 0) {
|
|
map_cpu_to_node(lcpu, nid);
|
|
return nid;
|
|
}
|
|
|
|
nid = vphn_get_nid(lcpu);
|
|
if (nid != NUMA_NO_NODE)
|
|
goto out_present;
|
|
|
|
cpu = of_get_cpu_node(lcpu, NULL);
|
|
|
|
if (!cpu) {
|
|
WARN_ON(1);
|
|
if (cpu_present(lcpu))
|
|
goto out_present;
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
nid = of_node_to_nid_single(cpu);
|
|
of_node_put(cpu);
|
|
|
|
out_present:
|
|
if (nid < 0 || !node_possible(nid))
|
|
nid = first_online_node;
|
|
|
|
/*
|
|
* Update for the first thread of the core. All threads of a core
|
|
* have to be part of the same node. This not only avoids querying
|
|
* for every other thread in the core, but always avoids a case
|
|
* where virtual node associativity change causes subsequent threads
|
|
* of a core to be associated with different nid. However if first
|
|
* thread is already online, expect it to have a valid mapping.
|
|
*/
|
|
if (fcpu != lcpu) {
|
|
WARN_ON(cpu_online(fcpu));
|
|
map_cpu_to_node(fcpu, nid);
|
|
}
|
|
|
|
map_cpu_to_node(lcpu, nid);
|
|
out:
|
|
return nid;
|
|
}
|
|
|
|
static void verify_cpu_node_mapping(int cpu, int node)
|
|
{
|
|
int base, sibling, i;
|
|
|
|
/* Verify that all the threads in the core belong to the same node */
|
|
base = cpu_first_thread_sibling(cpu);
|
|
|
|
for (i = 0; i < threads_per_core; i++) {
|
|
sibling = base + i;
|
|
|
|
if (sibling == cpu || cpu_is_offline(sibling))
|
|
continue;
|
|
|
|
if (cpu_to_node(sibling) != node) {
|
|
WARN(1, "CPU thread siblings %d and %d don't belong"
|
|
" to the same node!\n", cpu, sibling);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Must run before sched domains notifier. */
|
|
static int ppc_numa_cpu_prepare(unsigned int cpu)
|
|
{
|
|
int nid;
|
|
|
|
nid = numa_setup_cpu(cpu);
|
|
verify_cpu_node_mapping(cpu, nid);
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_numa_cpu_dead(unsigned int cpu)
|
|
{
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
unmap_cpu_from_node(cpu);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check and possibly modify a memory region to enforce the memory limit.
|
|
*
|
|
* Returns the size the region should have to enforce the memory limit.
|
|
* This will either be the original value of size, a truncated value,
|
|
* or zero. If the returned value of size is 0 the region should be
|
|
* discarded as it lies wholly above the memory limit.
|
|
*/
|
|
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
|
|
unsigned long size)
|
|
{
|
|
/*
|
|
* We use memblock_end_of_DRAM() in here instead of memory_limit because
|
|
* we've already adjusted it for the limit and it takes care of
|
|
* having memory holes below the limit. Also, in the case of
|
|
* iommu_is_off, memory_limit is not set but is implicitly enforced.
|
|
*/
|
|
|
|
if (start + size <= memblock_end_of_DRAM())
|
|
return size;
|
|
|
|
if (start >= memblock_end_of_DRAM())
|
|
return 0;
|
|
|
|
return memblock_end_of_DRAM() - start;
|
|
}
|
|
|
|
/*
|
|
* Reads the counter for a given entry in
|
|
* linux,drconf-usable-memory property
|
|
*/
|
|
static inline int __init read_usm_ranges(const __be32 **usm)
|
|
{
|
|
/*
|
|
* For each lmb in ibm,dynamic-memory a corresponding
|
|
* entry in linux,drconf-usable-memory property contains
|
|
* a counter followed by that many (base, size) duple.
|
|
* read the counter from linux,drconf-usable-memory
|
|
*/
|
|
return read_n_cells(n_mem_size_cells, usm);
|
|
}
|
|
|
|
/*
|
|
* Extract NUMA information from the ibm,dynamic-reconfiguration-memory
|
|
* node. This assumes n_mem_{addr,size}_cells have been set.
|
|
*/
|
|
static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
|
|
const __be32 **usm,
|
|
void *data)
|
|
{
|
|
unsigned int ranges, is_kexec_kdump = 0;
|
|
unsigned long base, size, sz;
|
|
int nid;
|
|
|
|
/*
|
|
* Skip this block if the reserved bit is set in flags (0x80)
|
|
* or if the block is not assigned to this partition (0x8)
|
|
*/
|
|
if ((lmb->flags & DRCONF_MEM_RESERVED)
|
|
|| !(lmb->flags & DRCONF_MEM_ASSIGNED))
|
|
return 0;
|
|
|
|
if (*usm)
|
|
is_kexec_kdump = 1;
|
|
|
|
base = lmb->base_addr;
|
|
size = drmem_lmb_size();
|
|
ranges = 1;
|
|
|
|
if (is_kexec_kdump) {
|
|
ranges = read_usm_ranges(usm);
|
|
if (!ranges) /* there are no (base, size) duple */
|
|
return 0;
|
|
}
|
|
|
|
do {
|
|
if (is_kexec_kdump) {
|
|
base = read_n_cells(n_mem_addr_cells, usm);
|
|
size = read_n_cells(n_mem_size_cells, usm);
|
|
}
|
|
|
|
nid = of_drconf_to_nid_single(lmb);
|
|
fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
|
|
&nid);
|
|
node_set_online(nid);
|
|
sz = numa_enforce_memory_limit(base, size);
|
|
if (sz)
|
|
memblock_set_node(base, sz, &memblock.memory, nid);
|
|
} while (--ranges);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init parse_numa_properties(void)
|
|
{
|
|
struct device_node *memory;
|
|
int default_nid = 0;
|
|
unsigned long i;
|
|
|
|
if (numa_enabled == 0) {
|
|
printk(KERN_WARNING "NUMA disabled by user\n");
|
|
return -1;
|
|
}
|
|
|
|
min_common_depth = find_min_common_depth();
|
|
|
|
if (min_common_depth < 0) {
|
|
/*
|
|
* if we fail to parse min_common_depth from device tree
|
|
* mark the numa disabled, boot with numa disabled.
|
|
*/
|
|
numa_enabled = false;
|
|
return min_common_depth;
|
|
}
|
|
|
|
dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
|
|
|
|
/*
|
|
* Even though we connect cpus to numa domains later in SMP
|
|
* init, we need to know the node ids now. This is because
|
|
* each node to be onlined must have NODE_DATA etc backing it.
|
|
*/
|
|
for_each_present_cpu(i) {
|
|
struct device_node *cpu;
|
|
int nid = vphn_get_nid(i);
|
|
|
|
/*
|
|
* Don't fall back to default_nid yet -- we will plug
|
|
* cpus into nodes once the memory scan has discovered
|
|
* the topology.
|
|
*/
|
|
if (nid == NUMA_NO_NODE) {
|
|
cpu = of_get_cpu_node(i, NULL);
|
|
BUG_ON(!cpu);
|
|
nid = of_node_to_nid_single(cpu);
|
|
of_node_put(cpu);
|
|
}
|
|
|
|
if (likely(nid > 0))
|
|
node_set_online(nid);
|
|
}
|
|
|
|
get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
|
|
|
|
for_each_node_by_type(memory, "memory") {
|
|
unsigned long start;
|
|
unsigned long size;
|
|
int nid;
|
|
int ranges;
|
|
const __be32 *memcell_buf;
|
|
unsigned int len;
|
|
|
|
memcell_buf = of_get_property(memory,
|
|
"linux,usable-memory", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
memcell_buf = of_get_property(memory, "reg", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
continue;
|
|
|
|
/* ranges in cell */
|
|
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
|
|
new_range:
|
|
/* these are order-sensitive, and modify the buffer pointer */
|
|
start = read_n_cells(n_mem_addr_cells, &memcell_buf);
|
|
size = read_n_cells(n_mem_size_cells, &memcell_buf);
|
|
|
|
/*
|
|
* Assumption: either all memory nodes or none will
|
|
* have associativity properties. If none, then
|
|
* everything goes to default_nid.
|
|
*/
|
|
nid = of_node_to_nid_single(memory);
|
|
if (nid < 0)
|
|
nid = default_nid;
|
|
|
|
fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
|
|
node_set_online(nid);
|
|
|
|
size = numa_enforce_memory_limit(start, size);
|
|
if (size)
|
|
memblock_set_node(start, size, &memblock.memory, nid);
|
|
|
|
if (--ranges)
|
|
goto new_range;
|
|
}
|
|
|
|
/*
|
|
* Now do the same thing for each MEMBLOCK listed in the
|
|
* ibm,dynamic-memory property in the
|
|
* ibm,dynamic-reconfiguration-memory node.
|
|
*/
|
|
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
|
|
if (memory) {
|
|
walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
|
|
of_node_put(memory);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init setup_nonnuma(void)
|
|
{
|
|
unsigned long top_of_ram = memblock_end_of_DRAM();
|
|
unsigned long total_ram = memblock_phys_mem_size();
|
|
unsigned long start_pfn, end_pfn;
|
|
unsigned int nid = 0;
|
|
int i;
|
|
|
|
printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
|
|
top_of_ram, total_ram);
|
|
printk(KERN_DEBUG "Memory hole size: %ldMB\n",
|
|
(top_of_ram - total_ram) >> 20);
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
|
|
fake_numa_create_new_node(end_pfn, &nid);
|
|
memblock_set_node(PFN_PHYS(start_pfn),
|
|
PFN_PHYS(end_pfn - start_pfn),
|
|
&memblock.memory, nid);
|
|
node_set_online(nid);
|
|
}
|
|
}
|
|
|
|
void __init dump_numa_cpu_topology(void)
|
|
{
|
|
unsigned int node;
|
|
unsigned int cpu, count;
|
|
|
|
if (!numa_enabled)
|
|
return;
|
|
|
|
for_each_online_node(node) {
|
|
pr_info("Node %d CPUs:", node);
|
|
|
|
count = 0;
|
|
/*
|
|
* If we used a CPU iterator here we would miss printing
|
|
* the holes in the cpumap.
|
|
*/
|
|
for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
|
|
if (cpumask_test_cpu(cpu,
|
|
node_to_cpumask_map[node])) {
|
|
if (count == 0)
|
|
pr_cont(" %u", cpu);
|
|
++count;
|
|
} else {
|
|
if (count > 1)
|
|
pr_cont("-%u", cpu - 1);
|
|
count = 0;
|
|
}
|
|
}
|
|
|
|
if (count > 1)
|
|
pr_cont("-%u", nr_cpu_ids - 1);
|
|
pr_cont("\n");
|
|
}
|
|
}
|
|
|
|
/* Initialize NODE_DATA for a node on the local memory */
|
|
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
|
|
{
|
|
u64 spanned_pages = end_pfn - start_pfn;
|
|
const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
|
|
u64 nd_pa;
|
|
void *nd;
|
|
int tnid;
|
|
|
|
nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
|
|
if (!nd_pa)
|
|
panic("Cannot allocate %zu bytes for node %d data\n",
|
|
nd_size, nid);
|
|
|
|
nd = __va(nd_pa);
|
|
|
|
/* report and initialize */
|
|
pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
|
|
nd_pa, nd_pa + nd_size - 1);
|
|
tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
|
|
if (tnid != nid)
|
|
pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
|
|
|
|
node_data[nid] = nd;
|
|
memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
|
|
NODE_DATA(nid)->node_id = nid;
|
|
NODE_DATA(nid)->node_start_pfn = start_pfn;
|
|
NODE_DATA(nid)->node_spanned_pages = spanned_pages;
|
|
}
|
|
|
|
static void __init find_possible_nodes(void)
|
|
{
|
|
struct device_node *rtas;
|
|
const __be32 *domains;
|
|
int prop_length, max_nodes;
|
|
u32 i;
|
|
|
|
if (!numa_enabled)
|
|
return;
|
|
|
|
rtas = of_find_node_by_path("/rtas");
|
|
if (!rtas)
|
|
return;
|
|
|
|
/*
|
|
* ibm,current-associativity-domains is a fairly recent property. If
|
|
* it doesn't exist, then fallback on ibm,max-associativity-domains.
|
|
* Current denotes what the platform can support compared to max
|
|
* which denotes what the Hypervisor can support.
|
|
*/
|
|
domains = of_get_property(rtas, "ibm,current-associativity-domains",
|
|
&prop_length);
|
|
if (!domains) {
|
|
domains = of_get_property(rtas, "ibm,max-associativity-domains",
|
|
&prop_length);
|
|
if (!domains)
|
|
goto out;
|
|
}
|
|
|
|
max_nodes = of_read_number(&domains[min_common_depth], 1);
|
|
for (i = 0; i < max_nodes; i++) {
|
|
if (!node_possible(i))
|
|
node_set(i, node_possible_map);
|
|
}
|
|
|
|
prop_length /= sizeof(int);
|
|
if (prop_length > min_common_depth + 2)
|
|
coregroup_enabled = 1;
|
|
|
|
out:
|
|
of_node_put(rtas);
|
|
}
|
|
|
|
void __init mem_topology_setup(void)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* Linux/mm assumes node 0 to be online at boot. However this is not
|
|
* true on PowerPC, where node 0 is similar to any other node, it
|
|
* could be cpuless, memoryless node. So force node 0 to be offline
|
|
* for now. This will prevent cpuless, memoryless node 0 showing up
|
|
* unnecessarily as online. If a node has cpus or memory that need
|
|
* to be online, then node will anyway be marked online.
|
|
*/
|
|
node_set_offline(0);
|
|
|
|
if (parse_numa_properties())
|
|
setup_nonnuma();
|
|
|
|
/*
|
|
* Modify the set of possible NUMA nodes to reflect information
|
|
* available about the set of online nodes, and the set of nodes
|
|
* that we expect to make use of for this platform's affinity
|
|
* calculations.
|
|
*/
|
|
nodes_and(node_possible_map, node_possible_map, node_online_map);
|
|
|
|
find_possible_nodes();
|
|
|
|
setup_node_to_cpumask_map();
|
|
|
|
reset_numa_cpu_lookup_table();
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
/*
|
|
* Powerpc with CONFIG_NUMA always used to have a node 0,
|
|
* even if it was memoryless or cpuless. For all cpus that
|
|
* are possible but not present, cpu_to_node() would point
|
|
* to node 0. To remove a cpuless, memoryless dummy node,
|
|
* powerpc need to make sure all possible but not present
|
|
* cpu_to_node are set to a proper node.
|
|
*/
|
|
numa_setup_cpu(cpu);
|
|
}
|
|
}
|
|
|
|
void __init initmem_init(void)
|
|
{
|
|
int nid;
|
|
|
|
max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
|
|
max_pfn = max_low_pfn;
|
|
|
|
memblock_dump_all();
|
|
|
|
for_each_online_node(nid) {
|
|
unsigned long start_pfn, end_pfn;
|
|
|
|
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
|
|
setup_node_data(nid, start_pfn, end_pfn);
|
|
}
|
|
|
|
sparse_init();
|
|
|
|
/*
|
|
* We need the numa_cpu_lookup_table to be accurate for all CPUs,
|
|
* even before we online them, so that we can use cpu_to_{node,mem}
|
|
* early in boot, cf. smp_prepare_cpus().
|
|
* _nocalls() + manual invocation is used because cpuhp is not yet
|
|
* initialized for the boot CPU.
|
|
*/
|
|
cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
|
|
ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
|
|
}
|
|
|
|
static int __init early_numa(char *p)
|
|
{
|
|
if (!p)
|
|
return 0;
|
|
|
|
if (strstr(p, "off"))
|
|
numa_enabled = 0;
|
|
|
|
if (strstr(p, "debug"))
|
|
numa_debug = 1;
|
|
|
|
p = strstr(p, "fake=");
|
|
if (p)
|
|
cmdline = p + strlen("fake=");
|
|
|
|
return 0;
|
|
}
|
|
early_param("numa", early_numa);
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/*
|
|
* Find the node associated with a hot added memory section for
|
|
* memory represented in the device tree by the property
|
|
* ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
|
|
*/
|
|
static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
|
|
{
|
|
struct drmem_lmb *lmb;
|
|
unsigned long lmb_size;
|
|
int nid = NUMA_NO_NODE;
|
|
|
|
lmb_size = drmem_lmb_size();
|
|
|
|
for_each_drmem_lmb(lmb) {
|
|
/* skip this block if it is reserved or not assigned to
|
|
* this partition */
|
|
if ((lmb->flags & DRCONF_MEM_RESERVED)
|
|
|| !(lmb->flags & DRCONF_MEM_ASSIGNED))
|
|
continue;
|
|
|
|
if ((scn_addr < lmb->base_addr)
|
|
|| (scn_addr >= (lmb->base_addr + lmb_size)))
|
|
continue;
|
|
|
|
nid = of_drconf_to_nid_single(lmb);
|
|
break;
|
|
}
|
|
|
|
return nid;
|
|
}
|
|
|
|
/*
|
|
* Find the node associated with a hot added memory section for memory
|
|
* represented in the device tree as a node (i.e. memory@XXXX) for
|
|
* each memblock.
|
|
*/
|
|
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
|
|
{
|
|
struct device_node *memory;
|
|
int nid = NUMA_NO_NODE;
|
|
|
|
for_each_node_by_type(memory, "memory") {
|
|
unsigned long start, size;
|
|
int ranges;
|
|
const __be32 *memcell_buf;
|
|
unsigned int len;
|
|
|
|
memcell_buf = of_get_property(memory, "reg", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
continue;
|
|
|
|
/* ranges in cell */
|
|
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
|
|
|
|
while (ranges--) {
|
|
start = read_n_cells(n_mem_addr_cells, &memcell_buf);
|
|
size = read_n_cells(n_mem_size_cells, &memcell_buf);
|
|
|
|
if ((scn_addr < start) || (scn_addr >= (start + size)))
|
|
continue;
|
|
|
|
nid = of_node_to_nid_single(memory);
|
|
break;
|
|
}
|
|
|
|
if (nid >= 0)
|
|
break;
|
|
}
|
|
|
|
of_node_put(memory);
|
|
|
|
return nid;
|
|
}
|
|
|
|
/*
|
|
* Find the node associated with a hot added memory section. Section
|
|
* corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
|
|
* sections are fully contained within a single MEMBLOCK.
|
|
*/
|
|
int hot_add_scn_to_nid(unsigned long scn_addr)
|
|
{
|
|
struct device_node *memory = NULL;
|
|
int nid;
|
|
|
|
if (!numa_enabled)
|
|
return first_online_node;
|
|
|
|
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
|
|
if (memory) {
|
|
nid = hot_add_drconf_scn_to_nid(scn_addr);
|
|
of_node_put(memory);
|
|
} else {
|
|
nid = hot_add_node_scn_to_nid(scn_addr);
|
|
}
|
|
|
|
if (nid < 0 || !node_possible(nid))
|
|
nid = first_online_node;
|
|
|
|
return nid;
|
|
}
|
|
|
|
static u64 hot_add_drconf_memory_max(void)
|
|
{
|
|
struct device_node *memory = NULL;
|
|
struct device_node *dn = NULL;
|
|
const __be64 *lrdr = NULL;
|
|
|
|
dn = of_find_node_by_path("/rtas");
|
|
if (dn) {
|
|
lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
|
|
of_node_put(dn);
|
|
if (lrdr)
|
|
return be64_to_cpup(lrdr);
|
|
}
|
|
|
|
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
|
|
if (memory) {
|
|
of_node_put(memory);
|
|
return drmem_lmb_memory_max();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* memory_hotplug_max - return max address of memory that may be added
|
|
*
|
|
* This is currently only used on systems that support drconfig memory
|
|
* hotplug.
|
|
*/
|
|
u64 memory_hotplug_max(void)
|
|
{
|
|
return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
/* Virtual Processor Home Node (VPHN) support */
|
|
#ifdef CONFIG_PPC_SPLPAR
|
|
static int topology_inited;
|
|
|
|
/*
|
|
* Retrieve the new associativity information for a virtual processor's
|
|
* home node.
|
|
*/
|
|
static long vphn_get_associativity(unsigned long cpu,
|
|
__be32 *associativity)
|
|
{
|
|
long rc;
|
|
|
|
rc = hcall_vphn(get_hard_smp_processor_id(cpu),
|
|
VPHN_FLAG_VCPU, associativity);
|
|
|
|
switch (rc) {
|
|
case H_SUCCESS:
|
|
dbg("VPHN hcall succeeded. Reset polling...\n");
|
|
goto out;
|
|
|
|
case H_FUNCTION:
|
|
pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
|
|
break;
|
|
case H_HARDWARE:
|
|
pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
|
|
"preventing VPHN. Disabling polling...\n");
|
|
break;
|
|
case H_PARAMETER:
|
|
pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
|
|
"Disabling polling...\n");
|
|
break;
|
|
default:
|
|
pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
|
|
, rc);
|
|
break;
|
|
}
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int find_and_online_cpu_nid(int cpu)
|
|
{
|
|
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
|
|
int new_nid;
|
|
|
|
/* Use associativity from first thread for all siblings */
|
|
if (vphn_get_associativity(cpu, associativity))
|
|
return cpu_to_node(cpu);
|
|
|
|
new_nid = associativity_to_nid(associativity);
|
|
if (new_nid < 0 || !node_possible(new_nid))
|
|
new_nid = first_online_node;
|
|
|
|
if (NODE_DATA(new_nid) == NULL) {
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/*
|
|
* Need to ensure that NODE_DATA is initialized for a node from
|
|
* available memory (see memblock_alloc_try_nid). If unable to
|
|
* init the node, then default to nearest node that has memory
|
|
* installed. Skip onlining a node if the subsystems are not
|
|
* yet initialized.
|
|
*/
|
|
if (!topology_inited || try_online_node(new_nid))
|
|
new_nid = first_online_node;
|
|
#else
|
|
/*
|
|
* Default to using the nearest node that has memory installed.
|
|
* Otherwise, it would be necessary to patch the kernel MM code
|
|
* to deal with more memoryless-node error conditions.
|
|
*/
|
|
new_nid = first_online_node;
|
|
#endif
|
|
}
|
|
|
|
pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
|
|
cpu, new_nid);
|
|
return new_nid;
|
|
}
|
|
|
|
int cpu_to_coregroup_id(int cpu)
|
|
{
|
|
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
|
|
int index;
|
|
|
|
if (cpu < 0 || cpu > nr_cpu_ids)
|
|
return -1;
|
|
|
|
if (!coregroup_enabled)
|
|
goto out;
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_VPHN))
|
|
goto out;
|
|
|
|
if (vphn_get_associativity(cpu, associativity))
|
|
goto out;
|
|
|
|
index = of_read_number(associativity, 1);
|
|
if (index > min_common_depth + 1)
|
|
return of_read_number(&associativity[index - 1], 1);
|
|
|
|
out:
|
|
return cpu_to_core_id(cpu);
|
|
}
|
|
|
|
static int topology_update_init(void)
|
|
{
|
|
topology_inited = 1;
|
|
return 0;
|
|
}
|
|
device_initcall(topology_update_init);
|
|
#endif /* CONFIG_PPC_SPLPAR */
|