OpenCloudOS-Kernel/include/soc/fsl/qman.h

1251 lines
42 KiB
C

/* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __FSL_QMAN_H
#define __FSL_QMAN_H
#include <linux/bitops.h>
#include <linux/device.h>
/* Hardware constants */
#define QM_CHANNEL_SWPORTAL0 0
#define QMAN_CHANNEL_POOL1 0x21
#define QMAN_CHANNEL_CAAM 0x80
#define QMAN_CHANNEL_POOL1_REV3 0x401
#define QMAN_CHANNEL_CAAM_REV3 0x840
extern u16 qm_channel_pool1;
extern u16 qm_channel_caam;
/* Portal processing (interrupt) sources */
#define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
#define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
#define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
#define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
#define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
/*
* This mask contains all the interrupt sources that need handling except DQRI,
* ie. that if present should trigger slow-path processing.
*/
#define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
QM_PIRQ_MRI)
/* For qman_static_dequeue_*** APIs */
#define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff
/* for n in [1,15] */
#define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n))
/* for conversion from n of qm_channel */
static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
{
return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
}
/* --- QMan data structures (and associated constants) --- */
/* "Frame Descriptor (FD)" */
struct qm_fd {
union {
struct {
u8 cfg8b_w1;
u8 bpid; /* Buffer Pool ID */
u8 cfg8b_w3;
u8 addr_hi; /* high 8-bits of 40-bit address */
__be32 addr_lo; /* low 32-bits of 40-bit address */
} __packed;
__be64 data;
};
__be32 cfg; /* format, offset, length / congestion */
union {
__be32 cmd;
__be32 status;
};
} __aligned(8);
#define QM_FD_FORMAT_SG BIT(31)
#define QM_FD_FORMAT_LONG BIT(30)
#define QM_FD_FORMAT_COMPOUND BIT(29)
#define QM_FD_FORMAT_MASK GENMASK(31, 29)
#define QM_FD_OFF_SHIFT 20
#define QM_FD_OFF_MASK GENMASK(28, 20)
#define QM_FD_LEN_MASK GENMASK(19, 0)
#define QM_FD_LEN_BIG_MASK GENMASK(28, 0)
enum qm_fd_format {
/*
* 'contig' implies a contiguous buffer, whereas 'sg' implies a
* scatter-gather table. 'big' implies a 29-bit length with no offset
* field, otherwise length is 20-bit and offset is 9-bit. 'compound'
* implies a s/g-like table, where each entry itself represents a frame
* (contiguous or scatter-gather) and the 29-bit "length" is
* interpreted purely for congestion calculations, ie. a "congestion
* weight".
*/
qm_fd_contig = 0,
qm_fd_contig_big = QM_FD_FORMAT_LONG,
qm_fd_sg = QM_FD_FORMAT_SG,
qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
qm_fd_compound = QM_FD_FORMAT_COMPOUND
};
static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
{
return be64_to_cpu(fd->data) & 0xffffffffffLLU;
}
static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
{
return be64_to_cpu(fd->data) & 0xffffffffffLLU;
}
static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
{
fd->addr_hi = upper_32_bits(addr);
fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
}
/*
* The 'format' field indicates the interpretation of the remaining
* 29 bits of the 32-bit word.
* If 'format' is _contig or _sg, 20b length and 9b offset.
* If 'format' is _contig_big or _sg_big, 29b length.
* If 'format' is _compound, 29b "congestion weight".
*/
static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
{
return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
}
static inline int qm_fd_get_offset(const struct qm_fd *fd)
{
return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
}
static inline int qm_fd_get_length(const struct qm_fd *fd)
{
return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
}
static inline int qm_fd_get_len_big(const struct qm_fd *fd)
{
return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
}
static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
int off, int len)
{
fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
}
#define qm_fd_set_contig(fd, off, len) \
qm_fd_set_param(fd, qm_fd_contig, off, len)
#define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
#define qm_fd_set_contig_big(fd, len) \
qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
#define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
#define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len)
static inline void qm_fd_clear_fd(struct qm_fd *fd)
{
fd->data = 0;
fd->cfg = 0;
fd->cmd = 0;
}
/* Scatter/Gather table entry */
struct qm_sg_entry {
union {
struct {
u8 __reserved1[3];
u8 addr_hi; /* high 8-bits of 40-bit address */
__be32 addr_lo; /* low 32-bits of 40-bit address */
};
__be64 data;
};
__be32 cfg; /* E bit, F bit, length */
u8 __reserved2;
u8 bpid;
__be16 offset; /* 13-bit, _res[13-15]*/
} __packed;
#define QM_SG_LEN_MASK GENMASK(29, 0)
#define QM_SG_OFF_MASK GENMASK(12, 0)
#define QM_SG_FIN BIT(30)
#define QM_SG_EXT BIT(31)
static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
{
return be64_to_cpu(sg->data) & 0xffffffffffLLU;
}
static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
{
return be64_to_cpu(sg->data) & 0xffffffffffLLU;
}
static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
{
sg->addr_hi = upper_32_bits(addr);
sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
}
static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
{
return be32_to_cpu(sg->cfg) & QM_SG_FIN;
}
static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
{
return be32_to_cpu(sg->cfg) & QM_SG_EXT;
}
static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
{
return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
}
static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
{
sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
}
static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
{
sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
}
static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
{
return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK;
}
/* "Frame Dequeue Response" */
struct qm_dqrr_entry {
u8 verb;
u8 stat;
__be16 seqnum; /* 15-bit */
u8 tok;
u8 __reserved2[3];
__be32 fqid; /* 24-bit */
__be32 context_b;
struct qm_fd fd;
u8 __reserved4[32];
} __packed __aligned(64);
#define QM_DQRR_VERB_VBIT 0x80
#define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */
#define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */
#define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */
#define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */
#define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */
#define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */
#define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */
#define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/
/* 'fqid' is a 24-bit field in every h/w descriptor */
#define QM_FQID_MASK GENMASK(23, 0)
#define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK))
#define qm_fqid_get(p) (be32_to_cpu((p)->fqid) & QM_FQID_MASK)
/* "ERN Message Response" */
/* "FQ State Change Notification" */
union qm_mr_entry {
struct {
u8 verb;
u8 __reserved[63];
};
struct {
u8 verb;
u8 dca;
__be16 seqnum;
u8 rc; /* Rej Code: 8-bit */
u8 __reserved[3];
__be32 fqid; /* 24-bit */
__be32 tag;
struct qm_fd fd;
u8 __reserved1[32];
} __packed __aligned(64) ern;
struct {
u8 verb;
u8 fqs; /* Frame Queue Status */
u8 __reserved1[6];
__be32 fqid; /* 24-bit */
__be32 context_b;
u8 __reserved2[48];
} __packed fq; /* FQRN/FQRNI/FQRL/FQPN */
};
#define QM_MR_VERB_VBIT 0x80
/*
* ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
* which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
* from the other MR types by noting if the 0x20 bit is unset.
*/
#define QM_MR_VERB_TYPE_MASK 0x27
#define QM_MR_VERB_DC_ERN 0x20
#define QM_MR_VERB_FQRN 0x21
#define QM_MR_VERB_FQRNI 0x22
#define QM_MR_VERB_FQRL 0x23
#define QM_MR_VERB_FQPN 0x24
#define QM_MR_RC_MASK 0xf0 /* contains one of; */
#define QM_MR_RC_CGR_TAILDROP 0x00
#define QM_MR_RC_WRED 0x10
#define QM_MR_RC_ERROR 0x20
#define QM_MR_RC_ORPWINDOW_EARLY 0x30
#define QM_MR_RC_ORPWINDOW_LATE 0x40
#define QM_MR_RC_FQ_TAILDROP 0x50
#define QM_MR_RC_ORPWINDOW_RETIRED 0x60
#define QM_MR_RC_ORP_ZERO 0x70
#define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
#define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
/*
* An identical structure of FQD fields is present in the "Init FQ" command and
* the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
* Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
* latter has two inlines to assist with converting to/from the mant+exp
* representation.
*/
struct qm_fqd_stashing {
/* See QM_STASHING_EXCL_<...> */
u8 exclusive;
/* Numbers of cachelines */
u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
};
struct qm_fqd_oac {
/* "Overhead Accounting Control", see QM_OAC_<...> */
u8 oac; /* oac[6-7], _res[0-5] */
/* Two's-complement value (-128 to +127) */
s8 oal; /* "Overhead Accounting Length" */
};
struct qm_fqd {
/* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
u8 orpc;
u8 cgid;
__be16 fq_ctrl; /* See QM_FQCTRL_<...> */
__be16 dest_wq; /* channel[3-15], wq[0-2] */
__be16 ics_cred; /* 15-bit */
/*
* For "Initialize Frame Queue" commands, the write-enable mask
* determines whether 'td' or 'oac_init' is observed. For query
* commands, this field is always 'td', and 'oac_query' (below) reflects
* the Overhead ACcounting values.
*/
union {
__be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
struct qm_fqd_oac oac_init;
};
__be32 context_b;
union {
/* Treat it as 64-bit opaque */
__be64 opaque;
struct {
__be32 hi;
__be32 lo;
};
/* Treat it as s/w portal stashing config */
/* see "FQD Context_A field used for [...]" */
struct {
struct qm_fqd_stashing stashing;
/*
* 48-bit address of FQ context to
* stash, must be cacheline-aligned
*/
__be16 context_hi;
__be32 context_lo;
} __packed;
} context_a;
struct qm_fqd_oac oac_query;
} __packed;
#define QM_FQD_CHAN_OFF 3
#define QM_FQD_WQ_MASK GENMASK(2, 0)
#define QM_FQD_TD_EXP_MASK GENMASK(4, 0)
#define QM_FQD_TD_MANT_OFF 5
#define QM_FQD_TD_MANT_MASK GENMASK(12, 5)
#define QM_FQD_TD_MAX 0xe0000000
#define QM_FQD_TD_MANT_MAX 0xff
#define QM_FQD_OAC_OFF 6
#define QM_FQD_AS_OFF 4
#define QM_FQD_DS_OFF 2
#define QM_FQD_XS_MASK 0x3
/* 64-bit converters for context_hi/lo */
static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
{
return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
}
static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
{
return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
}
static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
{
return qm_fqd_stashing_get64(fqd);
}
static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
{
fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr));
fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr));
}
static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
{
fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr));
fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
}
/* convert a threshold value into mant+exp representation */
static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
int roundup)
{
u32 e = 0;
int td, oddbit = 0;
if (val > QM_FQD_TD_MAX)
return -ERANGE;
while (val > QM_FQD_TD_MANT_MAX) {
oddbit = val & 1;
val >>= 1;
e++;
if (roundup && oddbit)
val++;
}
td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
td |= (e & QM_FQD_TD_EXP_MASK);
fqd->td = cpu_to_be16(td);
return 0;
}
/* and the other direction */
static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
{
int td = be16_to_cpu(fqd->td);
return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
<< (td & QM_FQD_TD_EXP_MASK);
}
static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
{
struct qm_fqd_stashing *st = &fqd->context_a.stashing;
st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
(cs & QM_FQD_XS_MASK);
}
static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
{
return fqd->context_a.stashing.cl;
}
static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
{
fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
}
static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
{
fqd->oac_init.oal = val;
}
static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
{
fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
(wq & QM_FQD_WQ_MASK));
}
static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
{
return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
}
static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
{
return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
}
/* See "Frame Queue Descriptor (FQD)" */
/* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
#define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */
#define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */
#define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */
#define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */
#define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */
#define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */
#define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */
#define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */
#define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */
#define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */
/* See "FQD Context_A field used for [...] */
/* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
#define QM_STASHING_EXCL_ANNOTATION 0x04
#define QM_STASHING_EXCL_DATA 0x02
#define QM_STASHING_EXCL_CTX 0x01
/* See "Intra Class Scheduling" */
/* FQD field 'OAC' (Overhead ACcounting) uses these constants */
#define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */
#define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */
/*
* This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
* and associated commands/responses. The WRED parameters are calculated from
* these fields as follows;
* MaxTH = MA * (2 ^ Mn)
* Slope = SA / (2 ^ Sn)
* MaxP = 4 * (Pn + 1)
*/
struct qm_cgr_wr_parm {
/* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
__be32 word;
};
/*
* This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
* management commands, this is padded to a 16-bit structure field, so that's
* how we represent it here. The congestion state threshold is calculated from
* these fields as follows;
* CS threshold = TA * (2 ^ Tn)
*/
struct qm_cgr_cs_thres {
/* _res[13-15], TA[5-12], Tn[0-4] */
__be16 word;
};
/*
* This identical structure of CGR fields is present in the "Init/Modify CGR"
* commands and the "Query CGR" result. It's suctioned out here into its own
* struct.
*/
struct __qm_mc_cgr {
struct qm_cgr_wr_parm wr_parm_g;
struct qm_cgr_wr_parm wr_parm_y;
struct qm_cgr_wr_parm wr_parm_r;
u8 wr_en_g; /* boolean, use QM_CGR_EN */
u8 wr_en_y; /* boolean, use QM_CGR_EN */
u8 wr_en_r; /* boolean, use QM_CGR_EN */
u8 cscn_en; /* boolean, use QM_CGR_EN */
union {
struct {
__be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */
__be16 cscn_targ_dcp_low;
};
__be32 cscn_targ; /* use QM_CGR_TARG_* */
};
u8 cstd_en; /* boolean, use QM_CGR_EN */
u8 cs; /* boolean, only used in query response */
struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
} __packed;
#define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */
#define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/
#define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */
#define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */
#define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */
#define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */
/* Convert CGR thresholds to/from "cs_thres" format */
static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
{
int thres = be16_to_cpu(th->word);
return ((thres >> 5) & 0xff) << (thres & 0x1f);
}
static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
int roundup)
{
u32 e = 0;
int oddbit = 0;
while (val > 0xff) {
oddbit = val & 1;
val >>= 1;
e++;
if (roundup && oddbit)
val++;
}
th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f));
return 0;
}
/* "Initialize FQ" */
struct qm_mcc_initfq {
u8 __reserved1[2];
__be16 we_mask; /* Write Enable Mask */
__be32 fqid; /* 24-bit */
__be16 count; /* Initialises 'count+1' FQDs */
struct qm_fqd fqd; /* the FQD fields go here */
u8 __reserved2[30];
} __packed;
/* "Initialize/Modify CGR" */
struct qm_mcc_initcgr {
u8 __reserve1[2];
__be16 we_mask; /* Write Enable Mask */
struct __qm_mc_cgr cgr; /* CGR fields */
u8 __reserved2[2];
u8 cgid;
u8 __reserved3[32];
} __packed;
/* INITFQ-specific flags */
#define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */
#define QM_INITFQ_WE_OAC 0x0100
#define QM_INITFQ_WE_ORPC 0x0080
#define QM_INITFQ_WE_CGID 0x0040
#define QM_INITFQ_WE_FQCTRL 0x0020
#define QM_INITFQ_WE_DESTWQ 0x0010
#define QM_INITFQ_WE_ICSCRED 0x0008
#define QM_INITFQ_WE_TDTHRESH 0x0004
#define QM_INITFQ_WE_CONTEXTB 0x0002
#define QM_INITFQ_WE_CONTEXTA 0x0001
/* INITCGR/MODIFYCGR-specific flags */
#define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */
#define QM_CGR_WE_WR_PARM_G 0x0400
#define QM_CGR_WE_WR_PARM_Y 0x0200
#define QM_CGR_WE_WR_PARM_R 0x0100
#define QM_CGR_WE_WR_EN_G 0x0080
#define QM_CGR_WE_WR_EN_Y 0x0040
#define QM_CGR_WE_WR_EN_R 0x0020
#define QM_CGR_WE_CSCN_EN 0x0010
#define QM_CGR_WE_CSCN_TARG 0x0008
#define QM_CGR_WE_CSTD_EN 0x0004
#define QM_CGR_WE_CS_THRES 0x0002
#define QM_CGR_WE_MODE 0x0001
#define QMAN_CGR_FLAG_USE_INIT 0x00000001
#define QMAN_CGR_MODE_FRAME 0x00000001
/* Portal and Frame Queues */
/* Represents a managed portal */
struct qman_portal;
/*
* This object type represents QMan frame queue descriptors (FQD), it is
* cacheline-aligned, and initialised by qman_create_fq(). The structure is
* defined further down.
*/
struct qman_fq;
/*
* This object type represents a QMan congestion group, it is defined further
* down.
*/
struct qman_cgr;
/*
* This enum, and the callback type that returns it, are used when handling
* dequeued frames via DQRR. Note that for "null" callbacks registered with the
* portal object (for handling dequeues that do not demux because context_b is
* NULL), the return value *MUST* be qman_cb_dqrr_consume.
*/
enum qman_cb_dqrr_result {
/* DQRR entry can be consumed */
qman_cb_dqrr_consume,
/* Like _consume, but requests parking - FQ must be held-active */
qman_cb_dqrr_park,
/* Does not consume, for DCA mode only. */
qman_cb_dqrr_defer,
/*
* Stop processing without consuming this ring entry. Exits the current
* qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
* an interrupt handler, the callback would typically call
* qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
* otherwise the interrupt will reassert immediately.
*/
qman_cb_dqrr_stop,
/* Like qman_cb_dqrr_stop, but consumes the current entry. */
qman_cb_dqrr_consume_stop
};
typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
struct qman_fq *fq,
const struct qm_dqrr_entry *dqrr,
bool sched_napi);
/*
* This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
* are always consumed after the callback returns.
*/
typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
const union qm_mr_entry *msg);
/*
* s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
* held-active + held-suspended are just "sched". Things like "retired" will not
* be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
* then, to indicate it's completing and to gate attempts to retry the retire
* command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
* technically impossible in the case of enqueue DCAs (which refer to DQRR ring
* index rather than the FQ that ring entry corresponds to), so repeated park
* commands are allowed (if you're silly enough to try) but won't change FQ
* state, and the resulting park notifications move FQs from "sched" to
* "parked".
*/
enum qman_fq_state {
qman_fq_state_oos,
qman_fq_state_parked,
qman_fq_state_sched,
qman_fq_state_retired
};
#define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
#define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
#define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
#define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
#define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
#define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */
/*
* Frame queue objects (struct qman_fq) are stored within memory passed to
* qman_create_fq(), as this allows stashing of caller-provided demux callback
* pointers at no extra cost to stashing of (driver-internal) FQ state. If the
* caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
* they should;
*
* (a) extend the qman_fq structure with their state; eg.
*
* // myfq is allocated and driver_fq callbacks filled in;
* struct my_fq {
* struct qman_fq base;
* int an_extra_field;
* [ ... add other fields to be associated with each FQ ...]
* } *myfq = some_my_fq_allocator();
* struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
*
* // in a dequeue callback, access extra fields from 'fq' via a cast;
* struct my_fq *myfq = (struct my_fq *)fq;
* do_something_with(myfq->an_extra_field);
* [...]
*
* (b) when and if configuring the FQ for context stashing, specify how ever
* many cachelines are required to stash 'struct my_fq', to accelerate not
* only the QMan driver but the callback as well.
*/
struct qman_fq_cb {
qman_cb_dqrr dqrr; /* for dequeued frames */
qman_cb_mr ern; /* for s/w ERNs */
qman_cb_mr fqs; /* frame-queue state changes*/
};
struct qman_fq {
/* Caller of qman_create_fq() provides these demux callbacks */
struct qman_fq_cb cb;
/*
* These are internal to the driver, don't touch. In particular, they
* may change, be removed, or extended (so you shouldn't rely on
* sizeof(qman_fq) being a constant).
*/
u32 fqid, idx;
unsigned long flags;
enum qman_fq_state state;
int cgr_groupid;
};
/*
* This callback type is used when handling congestion group entry/exit.
* 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
*/
typedef void (*qman_cb_cgr)(struct qman_portal *qm,
struct qman_cgr *cgr, int congested);
struct qman_cgr {
/* Set these prior to qman_create_cgr() */
u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
qman_cb_cgr cb;
/* These are private to the driver */
u16 chan; /* portal channel this object is created on */
struct list_head node;
};
/* Flags to qman_create_fq() */
#define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
#define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
#define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */
#define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
/* Flags to qman_init_fq() */
#define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
#define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
/*
* For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
* NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
* FQID(n) to fill in the frame queue ID.
*/
#define QM_VDQCR_PRECEDENCE_VDQCR 0x0
#define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000
#define QM_VDQCR_EXACT 0x40000000
#define QM_VDQCR_NUMFRAMES_MASK 0x3f000000
#define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24)
#define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f)
#define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0)
#define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */
#define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */
#define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */
/* "Query FQ Non-Programmable Fields" */
struct qm_mcr_queryfq_np {
u8 verb;
u8 result;
u8 __reserved1;
u8 state; /* QM_MCR_NP_STATE_*** */
u32 fqd_link; /* 24-bit, _res2[24-31] */
u16 odp_seq; /* 14-bit, _res3[14-15] */
u16 orp_nesn; /* 14-bit, _res4[14-15] */
u16 orp_ea_hseq; /* 15-bit, _res5[15] */
u16 orp_ea_tseq; /* 15-bit, _res6[15] */
u32 orp_ea_hptr; /* 24-bit, _res7[24-31] */
u32 orp_ea_tptr; /* 24-bit, _res8[24-31] */
u32 pfdr_hptr; /* 24-bit, _res9[24-31] */
u32 pfdr_tptr; /* 24-bit, _res10[24-31] */
u8 __reserved2[5];
u8 is; /* 1-bit, _res12[1-7] */
u16 ics_surp;
u32 byte_cnt;
u32 frm_cnt; /* 24-bit, _res13[24-31] */
u32 __reserved3;
u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
u16 __reserved4;
u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
} __packed;
#define QM_MCR_NP_STATE_FE 0x10
#define QM_MCR_NP_STATE_R 0x08
#define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */
#define QM_MCR_NP_STATE_OOS 0x00
#define QM_MCR_NP_STATE_RETIRED 0x01
#define QM_MCR_NP_STATE_TEN_SCHED 0x02
#define QM_MCR_NP_STATE_TRU_SCHED 0x03
#define QM_MCR_NP_STATE_PARKED 0x04
#define QM_MCR_NP_STATE_ACTIVE 0x05
#define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */
#define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */
#define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */
#define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */
#define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */
enum qm_mcr_queryfq_np_masks {
qm_mcr_fqd_link_mask = BIT(24) - 1,
qm_mcr_odp_seq_mask = BIT(14) - 1,
qm_mcr_orp_nesn_mask = BIT(14) - 1,
qm_mcr_orp_ea_hseq_mask = BIT(15) - 1,
qm_mcr_orp_ea_tseq_mask = BIT(15) - 1,
qm_mcr_orp_ea_hptr_mask = BIT(24) - 1,
qm_mcr_orp_ea_tptr_mask = BIT(24) - 1,
qm_mcr_pfdr_hptr_mask = BIT(24) - 1,
qm_mcr_pfdr_tptr_mask = BIT(24) - 1,
qm_mcr_is_mask = BIT(1) - 1,
qm_mcr_frm_cnt_mask = BIT(24) - 1,
};
#define qm_mcr_np_get(np, field) \
((np)->field & (qm_mcr_##field##_mask))
/* Portal Management */
/**
* qman_p_irqsource_add - add processing sources to be interrupt-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Adds processing sources that should be interrupt-driven (rather than
* processed via qman_poll_***() functions).
*/
void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
/**
* qman_p_irqsource_remove - remove processing sources from being int-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Removes processing sources from being interrupt-driven, so that they will
* instead be processed via qman_poll_***() functions.
*/
void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
/**
* qman_affine_cpus - return a mask of cpus that have affine portals
*/
const cpumask_t *qman_affine_cpus(void);
/**
* qman_affine_channel - return the channel ID of an portal
* @cpu: the cpu whose affine portal is the subject of the query
*
* If @cpu is -1, the affine portal for the current CPU will be used. It is a
* bug to call this function for any value of @cpu (other than -1) that is not a
* member of the mask returned from qman_affine_cpus().
*/
u16 qman_affine_channel(int cpu);
/**
* qman_get_affine_portal - return the portal pointer affine to cpu
* @cpu: the cpu whose affine portal is the subject of the query
*/
struct qman_portal *qman_get_affine_portal(int cpu);
/**
* qman_start_using_portal - register a device link for the portal user
* @p: the portal that will be in use
* @dev: the device that will use the portal
*
* Makes sure that the devices that use the portal are unbound when the
* portal is unbound
*/
int qman_start_using_portal(struct qman_portal *p, struct device *dev);
/**
* qman_p_poll_dqrr - process DQRR (fast-path) entries
* @limit: the maximum number of DQRR entries to process
*
* Use of this function requires that DQRR processing not be interrupt-driven.
* The return value represents the number of DQRR entries processed.
*/
int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
/**
* qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
* @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
*
* Adds a set of pool channels to the portal's static dequeue command register
* (SDQCR). The requested pools are limited to those the portal has dequeue
* access to.
*/
void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
/* FQ management */
/**
* qman_create_fq - Allocates a FQ
* @fqid: the index of the FQD to encapsulate, must be "Out of Service"
* @flags: bit-mask of QMAN_FQ_FLAG_*** options
* @fq: memory for storing the 'fq', with callbacks filled in
*
* Creates a frame queue object for the given @fqid, unless the
* QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
* dynamically allocated (or the function fails if none are available). Once
* created, the caller should not touch the memory at 'fq' except as extended to
* adjacent memory for user-defined fields (see the definition of "struct
* qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
* pre-existing frame-queues that aren't to be otherwise interfered with, it
* prevents all other modifications to the frame queue. The TO_DCPORTAL flag
* causes the driver to honour any context_b modifications requested in the
* qm_init_fq() API, as this indicates the frame queue will be consumed by a
* direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
* software portals, the context_b field is controlled by the driver and can't
* be modified by the caller.
*/
int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
/**
* qman_destroy_fq - Deallocates a FQ
* @fq: the frame queue object to release
*
* The memory for this frame queue object ('fq' provided in qman_create_fq()) is
* not deallocated but the caller regains ownership, to do with as desired. The
* FQ must be in the 'out-of-service' or in the 'parked' state.
*/
void qman_destroy_fq(struct qman_fq *fq);
/**
* qman_fq_fqid - Queries the frame queue ID of a FQ object
* @fq: the frame queue object to query
*/
u32 qman_fq_fqid(struct qman_fq *fq);
/**
* qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
* @fq: the frame queue object to modify, must be 'parked' or new.
* @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
* @opts: the FQ-modification settings, as defined in the low-level API
*
* The @opts parameter comes from the low-level portal API. Select
* QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
* rather than parked. NB, @opts can be NULL.
*
* Note that some fields and options within @opts may be ignored or overwritten
* by the driver;
* 1. the 'count' and 'fqid' fields are always ignored (this operation only
* affects one frame queue: @fq).
* 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
* 'fqd' structure's 'context_b' field are sometimes overwritten;
* - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
* initialised to a value used by the driver for demux.
* - if context_b is initialised for demux, so is context_a in case stashing
* is requested (see item 4).
* (So caller control of context_b is only possible for TO_DCPORTAL frame queue
* objects.)
* 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
* 'dest::channel' field will be overwritten to match the portal used to issue
* the command. If the WE_DESTWQ write-enable bit had already been set by the
* caller, the channel workqueue will be left as-is, otherwise the write-enable
* bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
* isn't set, the destination channel/workqueue fields and the write-enable bit
* are left as-is.
* 4. if the driver overwrites context_a/b for demux, then if
* QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
* context_a.address fields and will leave the stashing fields provided by the
* user alone, otherwise it will zero out the context_a.stashing fields.
*/
int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
/**
* qman_schedule_fq - Schedules a FQ
* @fq: the frame queue object to schedule, must be 'parked'
*
* Schedules the frame queue, which must be Parked, which takes it to
* Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
*/
int qman_schedule_fq(struct qman_fq *fq);
/**
* qman_retire_fq - Retires a FQ
* @fq: the frame queue object to retire
* @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
*
* Retires the frame queue. This returns zero if it succeeds immediately, +1 if
* the retirement was started asynchronously, otherwise it returns negative for
* failure. When this function returns zero, @flags is set to indicate whether
* the retired FQ is empty and/or whether it has any ORL fragments (to show up
* as ERNs). Otherwise the corresponding flags will be known when a subsequent
* FQRN message shows up on the portal's message ring.
*
* NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
* Active state), the completion will be via the message ring as a FQRN - but
* the corresponding callback may occur before this function returns!! Ie. the
* caller should be prepared to accept the callback as the function is called,
* not only once it has returned.
*/
int qman_retire_fq(struct qman_fq *fq, u32 *flags);
/**
* qman_oos_fq - Puts a FQ "out of service"
* @fq: the frame queue object to be put out-of-service, must be 'retired'
*
* The frame queue must be retired and empty, and if any order restoration list
* was released as ERNs at the time of retirement, they must all be consumed.
*/
int qman_oos_fq(struct qman_fq *fq);
/*
* qman_volatile_dequeue - Issue a volatile dequeue command
* @fq: the frame queue object to dequeue from
* @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
* @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
*
* Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
* The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
* the VDQCR is already in use, otherwise returns non-zero for failure. If
* QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
* the VDQCR command has finished executing (ie. once the callback for the last
* DQRR entry resulting from the VDQCR command has been called). If not using
* the FINISH flag, completion can be determined either by detecting the
* presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
* in the "stat" parameter passed to the FQ's dequeue callback, or by waiting
* for the QMAN_FQ_STATE_VDQCR bit to disappear.
*/
int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
/**
* qman_enqueue - Enqueue a frame to a frame queue
* @fq: the frame queue object to enqueue to
* @fd: a descriptor of the frame to be enqueued
*
* Fills an entry in the EQCR of portal @qm to enqueue the frame described by
* @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
* field is ignored. The return value is non-zero on error, such as ring full.
*/
int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
/**
* qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
* @result: is set by the API to the base FQID of the allocated range
* @count: the number of FQIDs required
*
* Returns 0 on success, or a negative error code.
*/
int qman_alloc_fqid_range(u32 *result, u32 count);
#define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
/**
* qman_release_fqid - Release the specified frame queue ID
* @fqid: the FQID to be released back to the resource pool
*
* This function can also be used to seed the allocator with
* FQID ranges that it can subsequently allocate from.
* Returns 0 on success, or a negative error code.
*/
int qman_release_fqid(u32 fqid);
/**
* qman_query_fq_np - Queries non-programmable FQD fields
* @fq: the frame queue object to be queried
* @np: storage for the queried FQD fields
*/
int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
/* Pool-channel management */
/**
* qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
* @result: is set by the API to the base pool-channel ID of the allocated range
* @count: the number of pool-channel IDs required
*
* Returns 0 on success, or a negative error code.
*/
int qman_alloc_pool_range(u32 *result, u32 count);
#define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
/**
* qman_release_pool - Release the specified pool-channel ID
* @id: the pool-chan ID to be released back to the resource pool
*
* This function can also be used to seed the allocator with
* pool-channel ID ranges that it can subsequently allocate from.
* Returns 0 on success, or a negative error code.
*/
int qman_release_pool(u32 id);
/* CGR management */
/**
* qman_create_cgr - Register a congestion group object
* @cgr: the 'cgr' object, with fields filled in
* @flags: QMAN_CGR_FLAG_* values
* @opts: optional state of CGR settings
*
* Registers this object to receiving congestion entry/exit callbacks on the
* portal affine to the cpu portal on which this API is executed. If opts is
* NULL then only the callback (cgr->cb) function is registered. If @flags
* contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
* any unspecified parameters) will be used rather than a modify hw hardware
* (which only modifies the specified parameters).
*/
int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
struct qm_mcc_initcgr *opts);
/**
* qman_delete_cgr - Deregisters a congestion group object
* @cgr: the 'cgr' object to deregister
*
* "Unplugs" this CGR object from the portal affine to the cpu on which this API
* is executed. This must be excuted on the same affine portal on which it was
* created.
*/
int qman_delete_cgr(struct qman_cgr *cgr);
/**
* qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
* @cgr: the 'cgr' object to deregister
*
* This will select the proper CPU and run there qman_delete_cgr().
*/
void qman_delete_cgr_safe(struct qman_cgr *cgr);
/**
* qman_query_cgr_congested - Queries CGR's congestion status
* @cgr: the 'cgr' object to query
* @result: returns 'cgr's congestion status, 1 (true) if congested
*/
int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
/**
* qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
* @result: is set by the API to the base CGR ID of the allocated range
* @count: the number of CGR IDs required
*
* Returns 0 on success, or a negative error code.
*/
int qman_alloc_cgrid_range(u32 *result, u32 count);
#define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
/**
* qman_release_cgrid - Release the specified CGR ID
* @id: the CGR ID to be released back to the resource pool
*
* This function can also be used to seed the allocator with
* CGR ID ranges that it can subsequently allocate from.
* Returns 0 on success, or a negative error code.
*/
int qman_release_cgrid(u32 id);
/**
* qman_is_probed - Check if qman is probed
*
* Returns 1 if the qman driver successfully probed, -1 if the qman driver
* failed to probe or 0 if the qman driver did not probed yet.
*/
int qman_is_probed(void);
/**
* qman_portals_probed - Check if all cpu bound qman portals are probed
*
* Returns 1 if all the required cpu bound qman portals successfully probed,
* -1 if probe errors appeared or 0 if the qman portals did not yet finished
* probing.
*/
int qman_portals_probed(void);
/**
* qman_dqrr_get_ithresh - Get coalesce interrupt threshold
* @portal: portal to get the value for
* @ithresh: threshold pointer
*/
void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh);
/**
* qman_dqrr_set_ithresh - Set coalesce interrupt threshold
* @portal: portal to set the new value on
* @ithresh: new threshold value
*
* Returns 0 on success, or a negative error code.
*/
int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh);
/**
* qman_dqrr_get_iperiod - Get coalesce interrupt period
* @portal: portal to get the value for
* @iperiod: period pointer
*/
void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod);
/**
* qman_dqrr_set_iperiod - Set coalesce interrupt period
* @portal: portal to set the new value on
* @ithresh: new period value
*
* Returns 0 on success, or a negative error code.
*/
int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod);
#endif /* __FSL_QMAN_H */