OpenCloudOS-Kernel/drivers/mmc/host/sdhci-of-arasan.c

2057 lines
59 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Arasan Secure Digital Host Controller Interface.
* Copyright (C) 2011 - 2012 Michal Simek <monstr@monstr.eu>
* Copyright (c) 2012 Wind River Systems, Inc.
* Copyright (C) 2013 Pengutronix e.K.
* Copyright (C) 2013 Xilinx Inc.
*
* Based on sdhci-of-esdhc.c
*
* Copyright (c) 2007 Freescale Semiconductor, Inc.
* Copyright (c) 2009 MontaVista Software, Inc.
*
* Authors: Xiaobo Xie <X.Xie@freescale.com>
* Anton Vorontsov <avorontsov@ru.mvista.com>
*/
#include <linux/clk-provider.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/phy/phy.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/of.h>
#include <linux/firmware/xlnx-zynqmp.h>
#include "cqhci.h"
#include "sdhci-cqhci.h"
#include "sdhci-pltfm.h"
#define SDHCI_ARASAN_VENDOR_REGISTER 0x78
#define SDHCI_ARASAN_ITAPDLY_REGISTER 0xF0F8
#define SDHCI_ARASAN_ITAPDLY_SEL_MASK 0xFF
#define SDHCI_ARASAN_OTAPDLY_REGISTER 0xF0FC
#define SDHCI_ARASAN_OTAPDLY_SEL_MASK 0x3F
#define SDHCI_ARASAN_CQE_BASE_ADDR 0x200
#define VENDOR_ENHANCED_STROBE BIT(0)
#define PHY_CLK_TOO_SLOW_HZ 400000
#define MIN_PHY_CLK_HZ 50000000
#define SDHCI_ITAPDLY_CHGWIN 0x200
#define SDHCI_ITAPDLY_ENABLE 0x100
#define SDHCI_OTAPDLY_ENABLE 0x40
#define PHY_CTRL_REG1 0x270
#define PHY_CTRL_ITAPDLY_ENA_MASK BIT(0)
#define PHY_CTRL_ITAPDLY_SEL_MASK GENMASK(5, 1)
#define PHY_CTRL_ITAPDLY_SEL_SHIFT 1
#define PHY_CTRL_ITAP_CHG_WIN_MASK BIT(6)
#define PHY_CTRL_OTAPDLY_ENA_MASK BIT(8)
#define PHY_CTRL_OTAPDLY_SEL_MASK GENMASK(15, 12)
#define PHY_CTRL_OTAPDLY_SEL_SHIFT 12
#define PHY_CTRL_STRB_SEL_MASK GENMASK(23, 16)
#define PHY_CTRL_STRB_SEL_SHIFT 16
#define PHY_CTRL_TEST_CTRL_MASK GENMASK(31, 24)
#define PHY_CTRL_REG2 0x274
#define PHY_CTRL_EN_DLL_MASK BIT(0)
#define PHY_CTRL_DLL_RDY_MASK BIT(1)
#define PHY_CTRL_FREQ_SEL_MASK GENMASK(6, 4)
#define PHY_CTRL_FREQ_SEL_SHIFT 4
#define PHY_CTRL_SEL_DLY_TX_MASK BIT(16)
#define PHY_CTRL_SEL_DLY_RX_MASK BIT(17)
#define FREQSEL_200M_170M 0x0
#define FREQSEL_170M_140M 0x1
#define FREQSEL_140M_110M 0x2
#define FREQSEL_110M_80M 0x3
#define FREQSEL_80M_50M 0x4
#define FREQSEL_275M_250M 0x5
#define FREQSEL_250M_225M 0x6
#define FREQSEL_225M_200M 0x7
#define PHY_DLL_TIMEOUT_MS 100
/* Default settings for ZynqMP Clock Phases */
#define ZYNQMP_ICLK_PHASE {0, 63, 63, 0, 63, 0, 0, 183, 54, 0, 0}
#define ZYNQMP_OCLK_PHASE {0, 72, 60, 0, 60, 72, 135, 48, 72, 135, 0}
#define VERSAL_ICLK_PHASE {0, 132, 132, 0, 132, 0, 0, 162, 90, 0, 0}
#define VERSAL_OCLK_PHASE {0, 60, 48, 0, 48, 72, 90, 36, 60, 90, 0}
#define VERSAL_NET_EMMC_ICLK_PHASE {0, 0, 0, 0, 0, 0, 0, 0, 39, 0, 0}
#define VERSAL_NET_EMMC_OCLK_PHASE {0, 113, 0, 0, 0, 0, 0, 0, 113, 79, 45}
#define VERSAL_NET_PHY_CTRL_STRB90_STRB180_VAL 0X77
/*
* On some SoCs the syscon area has a feature where the upper 16-bits of
* each 32-bit register act as a write mask for the lower 16-bits. This allows
* atomic updates of the register without locking. This macro is used on SoCs
* that have that feature.
*/
#define HIWORD_UPDATE(val, mask, shift) \
((val) << (shift) | (mask) << ((shift) + 16))
/**
* struct sdhci_arasan_soc_ctl_field - Field used in sdhci_arasan_soc_ctl_map
*
* @reg: Offset within the syscon of the register containing this field
* @width: Number of bits for this field
* @shift: Bit offset within @reg of this field (or -1 if not avail)
*/
struct sdhci_arasan_soc_ctl_field {
u32 reg;
u16 width;
s16 shift;
};
/**
* struct sdhci_arasan_soc_ctl_map - Map in syscon to corecfg registers
*
* @baseclkfreq: Where to find corecfg_baseclkfreq
* @clockmultiplier: Where to find corecfg_clockmultiplier
* @support64b: Where to find SUPPORT64B bit
* @hiword_update: If true, use HIWORD_UPDATE to access the syscon
*
* It's up to the licensee of the Arsan IP block to make these available
* somewhere if needed. Presumably these will be scattered somewhere that's
* accessible via the syscon API.
*/
struct sdhci_arasan_soc_ctl_map {
struct sdhci_arasan_soc_ctl_field baseclkfreq;
struct sdhci_arasan_soc_ctl_field clockmultiplier;
struct sdhci_arasan_soc_ctl_field support64b;
bool hiword_update;
};
/**
* struct sdhci_arasan_clk_ops - Clock Operations for Arasan SD controller
*
* @sdcardclk_ops: The output clock related operations
* @sampleclk_ops: The sample clock related operations
*/
struct sdhci_arasan_clk_ops {
const struct clk_ops *sdcardclk_ops;
const struct clk_ops *sampleclk_ops;
};
/**
* struct sdhci_arasan_clk_data - Arasan Controller Clock Data.
*
* @sdcardclk_hw: Struct for the clock we might provide to a PHY.
* @sdcardclk: Pointer to normal 'struct clock' for sdcardclk_hw.
* @sampleclk_hw: Struct for the clock we might provide to a PHY.
* @sampleclk: Pointer to normal 'struct clock' for sampleclk_hw.
* @clk_phase_in: Array of Input Clock Phase Delays for all speed modes
* @clk_phase_out: Array of Output Clock Phase Delays for all speed modes
* @set_clk_delays: Function pointer for setting Clock Delays
* @clk_of_data: Platform specific runtime clock data storage pointer
*/
struct sdhci_arasan_clk_data {
struct clk_hw sdcardclk_hw;
struct clk *sdcardclk;
struct clk_hw sampleclk_hw;
struct clk *sampleclk;
int clk_phase_in[MMC_TIMING_MMC_HS400 + 1];
int clk_phase_out[MMC_TIMING_MMC_HS400 + 1];
void (*set_clk_delays)(struct sdhci_host *host);
void *clk_of_data;
};
/**
* struct sdhci_arasan_data - Arasan Controller Data
*
* @host: Pointer to the main SDHCI host structure.
* @clk_ahb: Pointer to the AHB clock
* @phy: Pointer to the generic phy
* @is_phy_on: True if the PHY is on; false if not.
* @internal_phy_reg: True if the PHY is within the Host controller.
* @has_cqe: True if controller has command queuing engine.
* @clk_data: Struct for the Arasan Controller Clock Data.
* @clk_ops: Struct for the Arasan Controller Clock Operations.
* @soc_ctl_base: Pointer to regmap for syscon for soc_ctl registers.
* @soc_ctl_map: Map to get offsets into soc_ctl registers.
* @quirks: Arasan deviations from spec.
*/
struct sdhci_arasan_data {
struct sdhci_host *host;
struct clk *clk_ahb;
struct phy *phy;
bool is_phy_on;
bool internal_phy_reg;
bool has_cqe;
struct sdhci_arasan_clk_data clk_data;
const struct sdhci_arasan_clk_ops *clk_ops;
struct regmap *soc_ctl_base;
const struct sdhci_arasan_soc_ctl_map *soc_ctl_map;
unsigned int quirks;
/* Controller does not have CD wired and will not function normally without */
#define SDHCI_ARASAN_QUIRK_FORCE_CDTEST BIT(0)
/* Controller immediately reports SDHCI_CLOCK_INT_STABLE after enabling the
* internal clock even when the clock isn't stable */
#define SDHCI_ARASAN_QUIRK_CLOCK_UNSTABLE BIT(1)
/*
* Some of the Arasan variations might not have timing requirements
* met at 25MHz for Default Speed mode, those controllers work at
* 19MHz instead
*/
#define SDHCI_ARASAN_QUIRK_CLOCK_25_BROKEN BIT(2)
};
struct sdhci_arasan_of_data {
const struct sdhci_arasan_soc_ctl_map *soc_ctl_map;
const struct sdhci_pltfm_data *pdata;
const struct sdhci_arasan_clk_ops *clk_ops;
};
static const struct sdhci_arasan_soc_ctl_map rk3399_soc_ctl_map = {
.baseclkfreq = { .reg = 0xf000, .width = 8, .shift = 8 },
.clockmultiplier = { .reg = 0xf02c, .width = 8, .shift = 0},
.hiword_update = true,
};
static const struct sdhci_arasan_soc_ctl_map intel_lgm_emmc_soc_ctl_map = {
.baseclkfreq = { .reg = 0xa0, .width = 8, .shift = 2 },
.clockmultiplier = { .reg = 0, .width = -1, .shift = -1 },
.hiword_update = false,
};
static const struct sdhci_arasan_soc_ctl_map intel_lgm_sdxc_soc_ctl_map = {
.baseclkfreq = { .reg = 0x80, .width = 8, .shift = 2 },
.clockmultiplier = { .reg = 0, .width = -1, .shift = -1 },
.hiword_update = false,
};
static const struct sdhci_arasan_soc_ctl_map intel_keembay_soc_ctl_map = {
.baseclkfreq = { .reg = 0x0, .width = 8, .shift = 14 },
.clockmultiplier = { .reg = 0x4, .width = 8, .shift = 14 },
.support64b = { .reg = 0x4, .width = 1, .shift = 24 },
.hiword_update = false,
};
static void sdhci_arasan_phy_set_delaychain(struct sdhci_host *host, bool enable)
{
u32 reg;
reg = readl(host->ioaddr + PHY_CTRL_REG2);
if (enable)
reg |= (PHY_CTRL_SEL_DLY_TX_MASK | PHY_CTRL_SEL_DLY_RX_MASK);
else
reg &= ~(PHY_CTRL_SEL_DLY_TX_MASK | PHY_CTRL_SEL_DLY_RX_MASK);
writel(reg, host->ioaddr + PHY_CTRL_REG2);
}
static int sdhci_arasan_phy_set_dll(struct sdhci_host *host, bool enable)
{
u32 reg;
reg = readl(host->ioaddr + PHY_CTRL_REG2);
if (enable)
reg |= PHY_CTRL_EN_DLL_MASK;
else
reg &= ~PHY_CTRL_EN_DLL_MASK;
writel(reg, host->ioaddr + PHY_CTRL_REG2);
if (!enable)
return 0;
return readl_relaxed_poll_timeout(host->ioaddr + PHY_CTRL_REG2, reg,
(reg & PHY_CTRL_DLL_RDY_MASK), 10,
1000 * PHY_DLL_TIMEOUT_MS);
}
static void sdhci_arasan_phy_dll_set_freq(struct sdhci_host *host, int clock)
{
u32 reg, freq_sel, freq;
freq = DIV_ROUND_CLOSEST(clock, 1000000);
if (freq <= 200 && freq > 170)
freq_sel = FREQSEL_200M_170M;
else if (freq <= 170 && freq > 140)
freq_sel = FREQSEL_170M_140M;
else if (freq <= 140 && freq > 110)
freq_sel = FREQSEL_140M_110M;
else if (freq <= 110 && freq > 80)
freq_sel = FREQSEL_110M_80M;
else
freq_sel = FREQSEL_80M_50M;
reg = readl(host->ioaddr + PHY_CTRL_REG2);
reg &= ~PHY_CTRL_FREQ_SEL_MASK;
reg |= (freq_sel << PHY_CTRL_FREQ_SEL_SHIFT);
writel(reg, host->ioaddr + PHY_CTRL_REG2);
}
/**
* sdhci_arasan_syscon_write - Write to a field in soc_ctl registers
*
* @host: The sdhci_host
* @fld: The field to write to
* @val: The value to write
*
* This function allows writing to fields in sdhci_arasan_soc_ctl_map.
* Note that if a field is specified as not available (shift < 0) then
* this function will silently return an error code. It will be noisy
* and print errors for any other (unexpected) errors.
*
* Return: 0 on success and error value on error
*/
static int sdhci_arasan_syscon_write(struct sdhci_host *host,
const struct sdhci_arasan_soc_ctl_field *fld,
u32 val)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
struct regmap *soc_ctl_base = sdhci_arasan->soc_ctl_base;
u32 reg = fld->reg;
u16 width = fld->width;
s16 shift = fld->shift;
int ret;
/*
* Silently return errors for shift < 0 so caller doesn't have
* to check for fields which are optional. For fields that
* are required then caller needs to do something special
* anyway.
*/
if (shift < 0)
return -EINVAL;
if (sdhci_arasan->soc_ctl_map->hiword_update)
ret = regmap_write(soc_ctl_base, reg,
HIWORD_UPDATE(val, GENMASK(width, 0),
shift));
else
ret = regmap_update_bits(soc_ctl_base, reg,
GENMASK(shift + width, shift),
val << shift);
/* Yell about (unexpected) regmap errors */
if (ret)
pr_warn("%s: Regmap write fail: %d\n",
mmc_hostname(host->mmc), ret);
return ret;
}
static void sdhci_arasan_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data;
bool ctrl_phy = false;
if (!IS_ERR(sdhci_arasan->phy)) {
if (!sdhci_arasan->is_phy_on && clock <= PHY_CLK_TOO_SLOW_HZ) {
/*
* If PHY off, set clock to max speed and power PHY on.
*
* Although PHY docs apparently suggest power cycling
* when changing the clock the PHY doesn't like to be
* powered on while at low speeds like those used in ID
* mode. Even worse is powering the PHY on while the
* clock is off.
*
* To workaround the PHY limitations, the best we can
* do is to power it on at a faster speed and then slam
* through low speeds without power cycling.
*/
sdhci_set_clock(host, host->max_clk);
if (phy_power_on(sdhci_arasan->phy)) {
pr_err("%s: Cannot power on phy.\n",
mmc_hostname(host->mmc));
return;
}
sdhci_arasan->is_phy_on = true;
/*
* We'll now fall through to the below case with
* ctrl_phy = false (so we won't turn off/on). The
* sdhci_set_clock() will set the real clock.
*/
} else if (clock > PHY_CLK_TOO_SLOW_HZ) {
/*
* At higher clock speeds the PHY is fine being power
* cycled and docs say you _should_ power cycle when
* changing clock speeds.
*/
ctrl_phy = true;
}
}
if (ctrl_phy && sdhci_arasan->is_phy_on) {
phy_power_off(sdhci_arasan->phy);
sdhci_arasan->is_phy_on = false;
}
if (sdhci_arasan->quirks & SDHCI_ARASAN_QUIRK_CLOCK_25_BROKEN) {
/*
* Some of the Arasan variations might not have timing
* requirements met at 25MHz for Default Speed mode,
* those controllers work at 19MHz instead.
*/
if (clock == DEFAULT_SPEED_MAX_DTR)
clock = (DEFAULT_SPEED_MAX_DTR * 19) / 25;
}
/* Set the Input and Output Clock Phase Delays */
if (clk_data->set_clk_delays && clock > PHY_CLK_TOO_SLOW_HZ)
clk_data->set_clk_delays(host);
if (sdhci_arasan->internal_phy_reg && clock >= MIN_PHY_CLK_HZ) {
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
sdhci_arasan_phy_set_dll(host, 0);
sdhci_arasan_phy_set_delaychain(host, 0);
sdhci_arasan_phy_dll_set_freq(host, clock);
} else if (sdhci_arasan->internal_phy_reg) {
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
sdhci_arasan_phy_set_delaychain(host, 1);
}
sdhci_set_clock(host, clock);
if (sdhci_arasan->internal_phy_reg && clock >= MIN_PHY_CLK_HZ)
sdhci_arasan_phy_set_dll(host, 1);
if (sdhci_arasan->quirks & SDHCI_ARASAN_QUIRK_CLOCK_UNSTABLE)
/*
* Some controllers immediately report SDHCI_CLOCK_INT_STABLE
* after enabling the clock even though the clock is not
* stable. Trying to use a clock without waiting here results
* in EILSEQ while detecting some older/slower cards. The
* chosen delay is the maximum delay from sdhci_set_clock.
*/
msleep(20);
if (ctrl_phy) {
if (phy_power_on(sdhci_arasan->phy)) {
pr_err("%s: Cannot power on phy.\n",
mmc_hostname(host->mmc));
return;
}
sdhci_arasan->is_phy_on = true;
}
}
static void sdhci_arasan_hs400_enhanced_strobe(struct mmc_host *mmc,
struct mmc_ios *ios)
{
u32 vendor;
struct sdhci_host *host = mmc_priv(mmc);
vendor = sdhci_readl(host, SDHCI_ARASAN_VENDOR_REGISTER);
if (ios->enhanced_strobe)
vendor |= VENDOR_ENHANCED_STROBE;
else
vendor &= ~VENDOR_ENHANCED_STROBE;
sdhci_writel(host, vendor, SDHCI_ARASAN_VENDOR_REGISTER);
}
static void sdhci_arasan_reset(struct sdhci_host *host, u8 mask)
{
u8 ctrl;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
sdhci_and_cqhci_reset(host, mask);
if (sdhci_arasan->quirks & SDHCI_ARASAN_QUIRK_FORCE_CDTEST) {
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl |= SDHCI_CTRL_CDTEST_INS | SDHCI_CTRL_CDTEST_EN;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
}
static int sdhci_arasan_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_180:
/*
* Plese don't switch to 1V8 as arasan,5.1 doesn't
* actually refer to this setting to indicate the
* signal voltage and the state machine will be broken
* actually if we force to enable 1V8. That's something
* like broken quirk but we could work around here.
*/
return 0;
case MMC_SIGNAL_VOLTAGE_330:
case MMC_SIGNAL_VOLTAGE_120:
/* We don't support 3V3 and 1V2 */
break;
}
return -EINVAL;
}
static const struct sdhci_ops sdhci_arasan_ops = {
.set_clock = sdhci_arasan_set_clock,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.get_timeout_clock = sdhci_pltfm_clk_get_max_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_arasan_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.set_power = sdhci_set_power_and_bus_voltage,
};
static u32 sdhci_arasan_cqhci_irq(struct sdhci_host *host, u32 intmask)
{
int cmd_error = 0;
int data_error = 0;
if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
return intmask;
cqhci_irq(host->mmc, intmask, cmd_error, data_error);
return 0;
}
static void sdhci_arasan_dumpregs(struct mmc_host *mmc)
{
sdhci_dumpregs(mmc_priv(mmc));
}
static void sdhci_arasan_cqe_enable(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 reg;
reg = sdhci_readl(host, SDHCI_PRESENT_STATE);
while (reg & SDHCI_DATA_AVAILABLE) {
sdhci_readl(host, SDHCI_BUFFER);
reg = sdhci_readl(host, SDHCI_PRESENT_STATE);
}
sdhci_cqe_enable(mmc);
}
static const struct cqhci_host_ops sdhci_arasan_cqhci_ops = {
.enable = sdhci_arasan_cqe_enable,
.disable = sdhci_cqe_disable,
.dumpregs = sdhci_arasan_dumpregs,
};
static const struct sdhci_ops sdhci_arasan_cqe_ops = {
.set_clock = sdhci_arasan_set_clock,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.get_timeout_clock = sdhci_pltfm_clk_get_max_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_arasan_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.set_power = sdhci_set_power_and_bus_voltage,
.irq = sdhci_arasan_cqhci_irq,
};
static const struct sdhci_pltfm_data sdhci_arasan_cqe_pdata = {
.ops = &sdhci_arasan_cqe_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN,
};
#ifdef CONFIG_PM_SLEEP
/**
* sdhci_arasan_suspend - Suspend method for the driver
* @dev: Address of the device structure
*
* Put the device in a low power state.
*
* Return: 0 on success and error value on error
*/
static int sdhci_arasan_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
int ret;
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
if (sdhci_arasan->has_cqe) {
ret = cqhci_suspend(host->mmc);
if (ret)
return ret;
}
ret = sdhci_suspend_host(host);
if (ret)
return ret;
if (!IS_ERR(sdhci_arasan->phy) && sdhci_arasan->is_phy_on) {
ret = phy_power_off(sdhci_arasan->phy);
if (ret) {
dev_err(dev, "Cannot power off phy.\n");
if (sdhci_resume_host(host))
dev_err(dev, "Cannot resume host.\n");
return ret;
}
sdhci_arasan->is_phy_on = false;
}
clk_disable(pltfm_host->clk);
clk_disable(sdhci_arasan->clk_ahb);
return 0;
}
/**
* sdhci_arasan_resume - Resume method for the driver
* @dev: Address of the device structure
*
* Resume operation after suspend
*
* Return: 0 on success and error value on error
*/
static int sdhci_arasan_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
int ret;
ret = clk_enable(sdhci_arasan->clk_ahb);
if (ret) {
dev_err(dev, "Cannot enable AHB clock.\n");
return ret;
}
ret = clk_enable(pltfm_host->clk);
if (ret) {
dev_err(dev, "Cannot enable SD clock.\n");
return ret;
}
if (!IS_ERR(sdhci_arasan->phy) && host->mmc->actual_clock) {
ret = phy_power_on(sdhci_arasan->phy);
if (ret) {
dev_err(dev, "Cannot power on phy.\n");
return ret;
}
sdhci_arasan->is_phy_on = true;
}
ret = sdhci_resume_host(host);
if (ret) {
dev_err(dev, "Cannot resume host.\n");
return ret;
}
if (sdhci_arasan->has_cqe)
return cqhci_resume(host->mmc);
return 0;
}
#endif /* ! CONFIG_PM_SLEEP */
static SIMPLE_DEV_PM_OPS(sdhci_arasan_dev_pm_ops, sdhci_arasan_suspend,
sdhci_arasan_resume);
/**
* sdhci_arasan_sdcardclk_recalc_rate - Return the card clock rate
*
* @hw: Pointer to the hardware clock structure.
* @parent_rate: The parent rate (should be rate of clk_xin).
*
* Return the current actual rate of the SD card clock. This can be used
* to communicate with out PHY.
*
* Return: The card clock rate.
*/
static unsigned long sdhci_arasan_sdcardclk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
return host->mmc->actual_clock;
}
static const struct clk_ops arasan_sdcardclk_ops = {
.recalc_rate = sdhci_arasan_sdcardclk_recalc_rate,
};
/**
* sdhci_arasan_sampleclk_recalc_rate - Return the sampling clock rate
*
* @hw: Pointer to the hardware clock structure.
* @parent_rate: The parent rate (should be rate of clk_xin).
*
* Return the current actual rate of the sampling clock. This can be used
* to communicate with out PHY.
*
* Return: The sample clock rate.
*/
static unsigned long sdhci_arasan_sampleclk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
return host->mmc->actual_clock;
}
static const struct clk_ops arasan_sampleclk_ops = {
.recalc_rate = sdhci_arasan_sampleclk_recalc_rate,
};
/**
* sdhci_zynqmp_sdcardclk_set_phase - Set the SD Output Clock Tap Delays
*
* @hw: Pointer to the hardware clock structure.
* @degrees: The clock phase shift between 0 - 359.
*
* Set the SD Output Clock Tap Delays for Output path
*
* Return: 0 on success and error value on error
*/
static int sdhci_zynqmp_sdcardclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
const char *clk_name = clk_hw_get_name(hw);
u32 node_id = !strcmp(clk_name, "clk_out_sd0") ? NODE_SD_0 : NODE_SD_1;
u8 tap_delay, tap_max = 0;
int ret;
/* This is applicable for SDHCI_SPEC_300 and above */
if (host->version < SDHCI_SPEC_300)
return 0;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 30 Taps are available */
tap_max = 30;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 15 Taps are available */
tap_max = 15;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 8 Taps are available */
tap_max = 8;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
ret = zynqmp_pm_set_sd_tapdelay(node_id, PM_TAPDELAY_OUTPUT, tap_delay);
if (ret)
pr_err("Error setting Output Tap Delay\n");
/* Release DLL Reset */
zynqmp_pm_sd_dll_reset(node_id, PM_DLL_RESET_RELEASE);
return ret;
}
static const struct clk_ops zynqmp_sdcardclk_ops = {
.recalc_rate = sdhci_arasan_sdcardclk_recalc_rate,
.set_phase = sdhci_zynqmp_sdcardclk_set_phase,
};
/**
* sdhci_zynqmp_sampleclk_set_phase - Set the SD Input Clock Tap Delays
*
* @hw: Pointer to the hardware clock structure.
* @degrees: The clock phase shift between 0 - 359.
*
* Set the SD Input Clock Tap Delays for Input path
*
* Return: 0 on success and error value on error
*/
static int sdhci_zynqmp_sampleclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
const char *clk_name = clk_hw_get_name(hw);
u32 node_id = !strcmp(clk_name, "clk_in_sd0") ? NODE_SD_0 : NODE_SD_1;
u8 tap_delay, tap_max = 0;
int ret;
/* This is applicable for SDHCI_SPEC_300 and above */
if (host->version < SDHCI_SPEC_300)
return 0;
/* Assert DLL Reset */
zynqmp_pm_sd_dll_reset(node_id, PM_DLL_RESET_ASSERT);
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 120 Taps are available */
tap_max = 120;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 60 Taps are available */
tap_max = 60;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 30 Taps are available */
tap_max = 30;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
ret = zynqmp_pm_set_sd_tapdelay(node_id, PM_TAPDELAY_INPUT, tap_delay);
if (ret)
pr_err("Error setting Input Tap Delay\n");
return ret;
}
static const struct clk_ops zynqmp_sampleclk_ops = {
.recalc_rate = sdhci_arasan_sampleclk_recalc_rate,
.set_phase = sdhci_zynqmp_sampleclk_set_phase,
};
/**
* sdhci_versal_sdcardclk_set_phase - Set the SD Output Clock Tap Delays
*
* @hw: Pointer to the hardware clock structure.
* @degrees: The clock phase shift between 0 - 359.
*
* Set the SD Output Clock Tap Delays for Output path
*
* Return: 0 on success and error value on error
*/
static int sdhci_versal_sdcardclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
u8 tap_delay, tap_max = 0;
/* This is applicable for SDHCI_SPEC_300 and above */
if (host->version < SDHCI_SPEC_300)
return 0;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 30 Taps are available */
tap_max = 30;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 15 Taps are available */
tap_max = 15;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 8 Taps are available */
tap_max = 8;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
if (tap_delay) {
u32 regval;
regval = sdhci_readl(host, SDHCI_ARASAN_OTAPDLY_REGISTER);
regval |= SDHCI_OTAPDLY_ENABLE;
sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER);
regval &= ~SDHCI_ARASAN_OTAPDLY_SEL_MASK;
regval |= tap_delay;
sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER);
}
return 0;
}
static const struct clk_ops versal_sdcardclk_ops = {
.recalc_rate = sdhci_arasan_sdcardclk_recalc_rate,
.set_phase = sdhci_versal_sdcardclk_set_phase,
};
/**
* sdhci_versal_sampleclk_set_phase - Set the SD Input Clock Tap Delays
*
* @hw: Pointer to the hardware clock structure.
* @degrees: The clock phase shift between 0 - 359.
*
* Set the SD Input Clock Tap Delays for Input path
*
* Return: 0 on success and error value on error
*/
static int sdhci_versal_sampleclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
u8 tap_delay, tap_max = 0;
/* This is applicable for SDHCI_SPEC_300 and above */
if (host->version < SDHCI_SPEC_300)
return 0;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 120 Taps are available */
tap_max = 120;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 60 Taps are available */
tap_max = 60;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 30 Taps are available */
tap_max = 30;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
if (tap_delay) {
u32 regval;
regval = sdhci_readl(host, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval |= SDHCI_ITAPDLY_CHGWIN;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval |= SDHCI_ITAPDLY_ENABLE;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval &= ~SDHCI_ARASAN_ITAPDLY_SEL_MASK;
regval |= tap_delay;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval &= ~SDHCI_ITAPDLY_CHGWIN;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
}
return 0;
}
static const struct clk_ops versal_sampleclk_ops = {
.recalc_rate = sdhci_arasan_sampleclk_recalc_rate,
.set_phase = sdhci_versal_sampleclk_set_phase,
};
static int sdhci_versal_net_emmc_sdcardclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
u8 tap_delay, tap_max = 0;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_MMC_DDR52:
tap_max = 16;
break;
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_MMC_HS400:
/* For 200MHz clock, 32 Taps are available */
tap_max = 32;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
if (tap_delay) {
u32 regval;
regval = sdhci_readl(host, PHY_CTRL_REG1);
regval |= PHY_CTRL_OTAPDLY_ENA_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_OTAPDLY_SEL_MASK;
regval |= tap_delay << PHY_CTRL_OTAPDLY_SEL_SHIFT;
sdhci_writel(host, regval, PHY_CTRL_REG1);
}
return 0;
}
static const struct clk_ops versal_net_sdcardclk_ops = {
.recalc_rate = sdhci_arasan_sdcardclk_recalc_rate,
.set_phase = sdhci_versal_net_emmc_sdcardclk_set_phase,
};
static int sdhci_versal_net_emmc_sampleclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
u8 tap_delay, tap_max = 0;
u32 regval;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_MMC_DDR52:
tap_max = 32;
break;
case MMC_TIMING_MMC_HS400:
/* Strobe select tap point for strb90 and strb180 */
regval = sdhci_readl(host, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_STRB_SEL_MASK;
regval |= VERSAL_NET_PHY_CTRL_STRB90_STRB180_VAL << PHY_CTRL_STRB_SEL_SHIFT;
sdhci_writel(host, regval, PHY_CTRL_REG1);
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
if (tap_delay) {
regval = sdhci_readl(host, PHY_CTRL_REG1);
regval |= PHY_CTRL_ITAP_CHG_WIN_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval |= PHY_CTRL_ITAPDLY_ENA_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_ITAPDLY_SEL_MASK;
regval |= tap_delay << PHY_CTRL_ITAPDLY_SEL_SHIFT;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_ITAP_CHG_WIN_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
}
return 0;
}
static const struct clk_ops versal_net_sampleclk_ops = {
.recalc_rate = sdhci_arasan_sampleclk_recalc_rate,
.set_phase = sdhci_versal_net_emmc_sampleclk_set_phase,
};
static void arasan_zynqmp_dll_reset(struct sdhci_host *host, u32 deviceid)
{
u16 clk;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~(SDHCI_CLOCK_CARD_EN | SDHCI_CLOCK_INT_EN);
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Issue DLL Reset */
zynqmp_pm_sd_dll_reset(deviceid, PM_DLL_RESET_PULSE);
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
sdhci_enable_clk(host, clk);
}
static int arasan_zynqmp_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
struct clk_hw *hw = &sdhci_arasan->clk_data.sdcardclk_hw;
const char *clk_name = clk_hw_get_name(hw);
u32 device_id = !strcmp(clk_name, "clk_out_sd0") ? NODE_SD_0 :
NODE_SD_1;
int err;
/* ZynqMP SD controller does not perform auto tuning in DDR50 mode */
if (mmc->ios.timing == MMC_TIMING_UHS_DDR50)
return 0;
arasan_zynqmp_dll_reset(host, device_id);
err = sdhci_execute_tuning(mmc, opcode);
if (err)
return err;
arasan_zynqmp_dll_reset(host, device_id);
return 0;
}
/**
* sdhci_arasan_update_clockmultiplier - Set corecfg_clockmultiplier
*
* @host: The sdhci_host
* @value: The value to write
*
* The corecfg_clockmultiplier is supposed to contain clock multiplier
* value of programmable clock generator.
*
* NOTES:
* - Many existing devices don't seem to do this and work fine. To keep
* compatibility for old hardware where the device tree doesn't provide a
* register map, this function is a noop if a soc_ctl_map hasn't been provided
* for this platform.
* - The value of corecfg_clockmultiplier should sync with that of corresponding
* value reading from sdhci_capability_register. So this function is called
* once at probe time and never called again.
*/
static void sdhci_arasan_update_clockmultiplier(struct sdhci_host *host,
u32 value)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_arasan_soc_ctl_map *soc_ctl_map =
sdhci_arasan->soc_ctl_map;
/* Having a map is optional */
if (!soc_ctl_map)
return;
/* If we have a map, we expect to have a syscon */
if (!sdhci_arasan->soc_ctl_base) {
pr_warn("%s: Have regmap, but no soc-ctl-syscon\n",
mmc_hostname(host->mmc));
return;
}
sdhci_arasan_syscon_write(host, &soc_ctl_map->clockmultiplier, value);
}
/**
* sdhci_arasan_update_baseclkfreq - Set corecfg_baseclkfreq
*
* @host: The sdhci_host
*
* The corecfg_baseclkfreq is supposed to contain the MHz of clk_xin. This
* function can be used to make that happen.
*
* NOTES:
* - Many existing devices don't seem to do this and work fine. To keep
* compatibility for old hardware where the device tree doesn't provide a
* register map, this function is a noop if a soc_ctl_map hasn't been provided
* for this platform.
* - It's assumed that clk_xin is not dynamic and that we use the SDHCI divider
* to achieve lower clock rates. That means that this function is called once
* at probe time and never called again.
*/
static void sdhci_arasan_update_baseclkfreq(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_arasan_soc_ctl_map *soc_ctl_map =
sdhci_arasan->soc_ctl_map;
u32 mhz = DIV_ROUND_CLOSEST_ULL(clk_get_rate(pltfm_host->clk), 1000000);
/* Having a map is optional */
if (!soc_ctl_map)
return;
/* If we have a map, we expect to have a syscon */
if (!sdhci_arasan->soc_ctl_base) {
pr_warn("%s: Have regmap, but no soc-ctl-syscon\n",
mmc_hostname(host->mmc));
return;
}
sdhci_arasan_syscon_write(host, &soc_ctl_map->baseclkfreq, mhz);
}
static void sdhci_arasan_set_clk_delays(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data;
clk_set_phase(clk_data->sampleclk,
clk_data->clk_phase_in[host->timing]);
clk_set_phase(clk_data->sdcardclk,
clk_data->clk_phase_out[host->timing]);
}
static void arasan_dt_read_clk_phase(struct device *dev,
struct sdhci_arasan_clk_data *clk_data,
unsigned int timing, const char *prop)
{
struct device_node *np = dev->of_node;
u32 clk_phase[2] = {0};
int ret;
/*
* Read Tap Delay values from DT, if the DT does not contain the
* Tap Values then use the pre-defined values.
*/
ret = of_property_read_variable_u32_array(np, prop, &clk_phase[0],
2, 0);
if (ret < 0) {
dev_dbg(dev, "Using predefined clock phase for %s = %d %d\n",
prop, clk_data->clk_phase_in[timing],
clk_data->clk_phase_out[timing]);
return;
}
/* The values read are Input and Output Clock Delays in order */
clk_data->clk_phase_in[timing] = clk_phase[0];
clk_data->clk_phase_out[timing] = clk_phase[1];
}
/**
* arasan_dt_parse_clk_phases - Read Clock Delay values from DT
*
* @dev: Pointer to our struct device.
* @clk_data: Pointer to the Clock Data structure
*
* Called at initialization to parse the values of Clock Delays.
*/
static void arasan_dt_parse_clk_phases(struct device *dev,
struct sdhci_arasan_clk_data *clk_data)
{
u32 mio_bank = 0;
int i;
/*
* This has been kept as a pointer and is assigned a function here.
* So that different controller variants can assign their own handling
* function.
*/
clk_data->set_clk_delays = sdhci_arasan_set_clk_delays;
if (of_device_is_compatible(dev->of_node, "xlnx,zynqmp-8.9a")) {
u32 zynqmp_iclk_phase[MMC_TIMING_MMC_HS400 + 1] =
ZYNQMP_ICLK_PHASE;
u32 zynqmp_oclk_phase[MMC_TIMING_MMC_HS400 + 1] =
ZYNQMP_OCLK_PHASE;
of_property_read_u32(dev->of_node, "xlnx,mio-bank", &mio_bank);
if (mio_bank == 2) {
zynqmp_oclk_phase[MMC_TIMING_UHS_SDR104] = 90;
zynqmp_oclk_phase[MMC_TIMING_MMC_HS200] = 90;
}
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = zynqmp_iclk_phase[i];
clk_data->clk_phase_out[i] = zynqmp_oclk_phase[i];
}
}
if (of_device_is_compatible(dev->of_node, "xlnx,versal-8.9a")) {
u32 versal_iclk_phase[MMC_TIMING_MMC_HS400 + 1] =
VERSAL_ICLK_PHASE;
u32 versal_oclk_phase[MMC_TIMING_MMC_HS400 + 1] =
VERSAL_OCLK_PHASE;
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = versal_iclk_phase[i];
clk_data->clk_phase_out[i] = versal_oclk_phase[i];
}
}
if (of_device_is_compatible(dev->of_node, "xlnx,versal-net-emmc")) {
u32 versal_net_iclk_phase[MMC_TIMING_MMC_HS400 + 1] =
VERSAL_NET_EMMC_ICLK_PHASE;
u32 versal_net_oclk_phase[MMC_TIMING_MMC_HS400 + 1] =
VERSAL_NET_EMMC_OCLK_PHASE;
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = versal_net_iclk_phase[i];
clk_data->clk_phase_out[i] = versal_net_oclk_phase[i];
}
}
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_LEGACY,
"clk-phase-legacy");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_HS,
"clk-phase-mmc-hs");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_SD_HS,
"clk-phase-sd-hs");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR12,
"clk-phase-uhs-sdr12");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR25,
"clk-phase-uhs-sdr25");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR50,
"clk-phase-uhs-sdr50");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR104,
"clk-phase-uhs-sdr104");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_DDR50,
"clk-phase-uhs-ddr50");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_DDR52,
"clk-phase-mmc-ddr52");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_HS200,
"clk-phase-mmc-hs200");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_HS400,
"clk-phase-mmc-hs400");
}
static const struct sdhci_pltfm_data sdhci_arasan_pdata = {
.ops = &sdhci_arasan_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_STOP_WITH_TC,
};
static const struct sdhci_arasan_clk_ops arasan_clk_ops = {
.sdcardclk_ops = &arasan_sdcardclk_ops,
.sampleclk_ops = &arasan_sampleclk_ops,
};
static struct sdhci_arasan_of_data sdhci_arasan_generic_data = {
.pdata = &sdhci_arasan_pdata,
.clk_ops = &arasan_clk_ops,
};
static const struct sdhci_pltfm_data sdhci_keembay_emmc_pdata = {
.ops = &sdhci_arasan_cqe_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_NO_LED |
SDHCI_QUIRK_32BIT_DMA_ADDR |
SDHCI_QUIRK_32BIT_DMA_SIZE |
SDHCI_QUIRK_32BIT_ADMA_SIZE,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 |
SDHCI_QUIRK2_STOP_WITH_TC |
SDHCI_QUIRK2_BROKEN_64_BIT_DMA,
};
static const struct sdhci_pltfm_data sdhci_keembay_sd_pdata = {
.ops = &sdhci_arasan_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_NO_LED |
SDHCI_QUIRK_32BIT_DMA_ADDR |
SDHCI_QUIRK_32BIT_DMA_SIZE |
SDHCI_QUIRK_32BIT_ADMA_SIZE,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON |
SDHCI_QUIRK2_STOP_WITH_TC |
SDHCI_QUIRK2_BROKEN_64_BIT_DMA,
};
static const struct sdhci_pltfm_data sdhci_keembay_sdio_pdata = {
.ops = &sdhci_arasan_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_NO_LED |
SDHCI_QUIRK_32BIT_DMA_ADDR |
SDHCI_QUIRK_32BIT_DMA_SIZE |
SDHCI_QUIRK_32BIT_ADMA_SIZE,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_HOST_OFF_CARD_ON |
SDHCI_QUIRK2_BROKEN_64_BIT_DMA,
};
static struct sdhci_arasan_of_data sdhci_arasan_rk3399_data = {
.soc_ctl_map = &rk3399_soc_ctl_map,
.pdata = &sdhci_arasan_cqe_pdata,
.clk_ops = &arasan_clk_ops,
};
static struct sdhci_arasan_of_data intel_lgm_emmc_data = {
.soc_ctl_map = &intel_lgm_emmc_soc_ctl_map,
.pdata = &sdhci_arasan_cqe_pdata,
.clk_ops = &arasan_clk_ops,
};
static struct sdhci_arasan_of_data intel_lgm_sdxc_data = {
.soc_ctl_map = &intel_lgm_sdxc_soc_ctl_map,
.pdata = &sdhci_arasan_cqe_pdata,
.clk_ops = &arasan_clk_ops,
};
static const struct sdhci_pltfm_data sdhci_arasan_zynqmp_pdata = {
.ops = &sdhci_arasan_ops,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_STOP_WITH_TC,
};
static const struct sdhci_pltfm_data sdhci_arasan_versal_net_pdata = {
.ops = &sdhci_arasan_ops,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_STOP_WITH_TC |
SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400,
};
static const struct sdhci_arasan_clk_ops zynqmp_clk_ops = {
.sdcardclk_ops = &zynqmp_sdcardclk_ops,
.sampleclk_ops = &zynqmp_sampleclk_ops,
};
static struct sdhci_arasan_of_data sdhci_arasan_zynqmp_data = {
.pdata = &sdhci_arasan_zynqmp_pdata,
.clk_ops = &zynqmp_clk_ops,
};
static const struct sdhci_arasan_clk_ops versal_clk_ops = {
.sdcardclk_ops = &versal_sdcardclk_ops,
.sampleclk_ops = &versal_sampleclk_ops,
};
static struct sdhci_arasan_of_data sdhci_arasan_versal_data = {
.pdata = &sdhci_arasan_zynqmp_pdata,
.clk_ops = &versal_clk_ops,
};
static const struct sdhci_arasan_clk_ops versal_net_clk_ops = {
.sdcardclk_ops = &versal_net_sdcardclk_ops,
.sampleclk_ops = &versal_net_sampleclk_ops,
};
static struct sdhci_arasan_of_data sdhci_arasan_versal_net_data = {
.pdata = &sdhci_arasan_versal_net_pdata,
.clk_ops = &versal_net_clk_ops,
};
static struct sdhci_arasan_of_data intel_keembay_emmc_data = {
.soc_ctl_map = &intel_keembay_soc_ctl_map,
.pdata = &sdhci_keembay_emmc_pdata,
.clk_ops = &arasan_clk_ops,
};
static struct sdhci_arasan_of_data intel_keembay_sd_data = {
.soc_ctl_map = &intel_keembay_soc_ctl_map,
.pdata = &sdhci_keembay_sd_pdata,
.clk_ops = &arasan_clk_ops,
};
static struct sdhci_arasan_of_data intel_keembay_sdio_data = {
.soc_ctl_map = &intel_keembay_soc_ctl_map,
.pdata = &sdhci_keembay_sdio_pdata,
.clk_ops = &arasan_clk_ops,
};
static const struct of_device_id sdhci_arasan_of_match[] = {
/* SoC-specific compatible strings w/ soc_ctl_map */
{
.compatible = "rockchip,rk3399-sdhci-5.1",
.data = &sdhci_arasan_rk3399_data,
},
{
.compatible = "intel,lgm-sdhci-5.1-emmc",
.data = &intel_lgm_emmc_data,
},
{
.compatible = "intel,lgm-sdhci-5.1-sdxc",
.data = &intel_lgm_sdxc_data,
},
{
.compatible = "intel,keembay-sdhci-5.1-emmc",
.data = &intel_keembay_emmc_data,
},
{
.compatible = "intel,keembay-sdhci-5.1-sd",
.data = &intel_keembay_sd_data,
},
{
.compatible = "intel,keembay-sdhci-5.1-sdio",
.data = &intel_keembay_sdio_data,
},
/* Generic compatible below here */
{
.compatible = "arasan,sdhci-8.9a",
.data = &sdhci_arasan_generic_data,
},
{
.compatible = "arasan,sdhci-5.1",
.data = &sdhci_arasan_generic_data,
},
{
.compatible = "arasan,sdhci-4.9a",
.data = &sdhci_arasan_generic_data,
},
{
.compatible = "xlnx,zynqmp-8.9a",
.data = &sdhci_arasan_zynqmp_data,
},
{
.compatible = "xlnx,versal-8.9a",
.data = &sdhci_arasan_versal_data,
},
{
.compatible = "xlnx,versal-net-emmc",
.data = &sdhci_arasan_versal_net_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdhci_arasan_of_match);
/**
* sdhci_arasan_register_sdcardclk - Register the sdcardclk for a PHY to use
*
* @sdhci_arasan: Our private data structure.
* @clk_xin: Pointer to the functional clock
* @dev: Pointer to our struct device.
*
* Some PHY devices need to know what the actual card clock is. In order for
* them to find out, we'll provide a clock through the common clock framework
* for them to query.
*
* Return: 0 on success and error value on error
*/
static int
sdhci_arasan_register_sdcardclk(struct sdhci_arasan_data *sdhci_arasan,
struct clk *clk_xin,
struct device *dev)
{
struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data;
struct device_node *np = dev->of_node;
struct clk_init_data sdcardclk_init;
const char *parent_clk_name;
int ret;
ret = of_property_read_string_index(np, "clock-output-names", 0,
&sdcardclk_init.name);
if (ret) {
dev_err(dev, "DT has #clock-cells but no clock-output-names\n");
return ret;
}
parent_clk_name = __clk_get_name(clk_xin);
sdcardclk_init.parent_names = &parent_clk_name;
sdcardclk_init.num_parents = 1;
sdcardclk_init.flags = CLK_GET_RATE_NOCACHE;
sdcardclk_init.ops = sdhci_arasan->clk_ops->sdcardclk_ops;
clk_data->sdcardclk_hw.init = &sdcardclk_init;
clk_data->sdcardclk =
devm_clk_register(dev, &clk_data->sdcardclk_hw);
if (IS_ERR(clk_data->sdcardclk))
return PTR_ERR(clk_data->sdcardclk);
clk_data->sdcardclk_hw.init = NULL;
ret = of_clk_add_provider(np, of_clk_src_simple_get,
clk_data->sdcardclk);
if (ret)
dev_err(dev, "Failed to add sdcard clock provider\n");
return ret;
}
/**
* sdhci_arasan_register_sampleclk - Register the sampleclk for a PHY to use
*
* @sdhci_arasan: Our private data structure.
* @clk_xin: Pointer to the functional clock
* @dev: Pointer to our struct device.
*
* Some PHY devices need to know what the actual card clock is. In order for
* them to find out, we'll provide a clock through the common clock framework
* for them to query.
*
* Return: 0 on success and error value on error
*/
static int
sdhci_arasan_register_sampleclk(struct sdhci_arasan_data *sdhci_arasan,
struct clk *clk_xin,
struct device *dev)
{
struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data;
struct device_node *np = dev->of_node;
struct clk_init_data sampleclk_init;
const char *parent_clk_name;
int ret;
ret = of_property_read_string_index(np, "clock-output-names", 1,
&sampleclk_init.name);
if (ret) {
dev_err(dev, "DT has #clock-cells but no clock-output-names\n");
return ret;
}
parent_clk_name = __clk_get_name(clk_xin);
sampleclk_init.parent_names = &parent_clk_name;
sampleclk_init.num_parents = 1;
sampleclk_init.flags = CLK_GET_RATE_NOCACHE;
sampleclk_init.ops = sdhci_arasan->clk_ops->sampleclk_ops;
clk_data->sampleclk_hw.init = &sampleclk_init;
clk_data->sampleclk =
devm_clk_register(dev, &clk_data->sampleclk_hw);
if (IS_ERR(clk_data->sampleclk))
return PTR_ERR(clk_data->sampleclk);
clk_data->sampleclk_hw.init = NULL;
ret = of_clk_add_provider(np, of_clk_src_simple_get,
clk_data->sampleclk);
if (ret)
dev_err(dev, "Failed to add sample clock provider\n");
return ret;
}
/**
* sdhci_arasan_unregister_sdclk - Undoes sdhci_arasan_register_sdclk()
*
* @dev: Pointer to our struct device.
*
* Should be called any time we're exiting and sdhci_arasan_register_sdclk()
* returned success.
*/
static void sdhci_arasan_unregister_sdclk(struct device *dev)
{
struct device_node *np = dev->of_node;
if (!of_property_present(np, "#clock-cells"))
return;
of_clk_del_provider(dev->of_node);
}
/**
* sdhci_arasan_update_support64b - Set SUPPORT_64B (64-bit System Bus Support)
* @host: The sdhci_host
* @value: The value to write
*
* This should be set based on the System Address Bus.
* 0: the Core supports only 32-bit System Address Bus.
* 1: the Core supports 64-bit System Address Bus.
*
* NOTE:
* For Keem Bay, it is required to clear this bit. Its default value is 1'b1.
* Keem Bay does not support 64-bit access.
*/
static void sdhci_arasan_update_support64b(struct sdhci_host *host, u32 value)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_arasan_soc_ctl_map *soc_ctl_map;
/* Having a map is optional */
soc_ctl_map = sdhci_arasan->soc_ctl_map;
if (!soc_ctl_map)
return;
/* If we have a map, we expect to have a syscon */
if (!sdhci_arasan->soc_ctl_base) {
pr_warn("%s: Have regmap, but no soc-ctl-syscon\n",
mmc_hostname(host->mmc));
return;
}
sdhci_arasan_syscon_write(host, &soc_ctl_map->support64b, value);
}
/**
* sdhci_arasan_register_sdclk - Register the sdcardclk for a PHY to use
*
* @sdhci_arasan: Our private data structure.
* @clk_xin: Pointer to the functional clock
* @dev: Pointer to our struct device.
*
* Some PHY devices need to know what the actual card clock is. In order for
* them to find out, we'll provide a clock through the common clock framework
* for them to query.
*
* Note: without seriously re-architecting SDHCI's clock code and testing on
* all platforms, there's no way to create a totally beautiful clock here
* with all clock ops implemented. Instead, we'll just create a clock that can
* be queried and set the CLK_GET_RATE_NOCACHE attribute to tell common clock
* framework that we're doing things behind its back. This should be sufficient
* to create nice clean device tree bindings and later (if needed) we can try
* re-architecting SDHCI if we see some benefit to it.
*
* Return: 0 on success and error value on error
*/
static int sdhci_arasan_register_sdclk(struct sdhci_arasan_data *sdhci_arasan,
struct clk *clk_xin,
struct device *dev)
{
struct device_node *np = dev->of_node;
u32 num_clks = 0;
int ret;
/* Providing a clock to the PHY is optional; no error if missing */
if (of_property_read_u32(np, "#clock-cells", &num_clks) < 0)
return 0;
ret = sdhci_arasan_register_sdcardclk(sdhci_arasan, clk_xin, dev);
if (ret)
return ret;
if (num_clks) {
ret = sdhci_arasan_register_sampleclk(sdhci_arasan, clk_xin,
dev);
if (ret) {
sdhci_arasan_unregister_sdclk(dev);
return ret;
}
}
return 0;
}
static int sdhci_zynqmp_set_dynamic_config(struct device *dev,
struct sdhci_arasan_data *sdhci_arasan)
{
struct sdhci_host *host = sdhci_arasan->host;
struct clk_hw *hw = &sdhci_arasan->clk_data.sdcardclk_hw;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
const char *clk_name = clk_hw_get_name(hw);
u32 mhz, node_id = !strcmp(clk_name, "clk_out_sd0") ? NODE_SD_0 : NODE_SD_1;
struct reset_control *rstc;
int ret;
/* Obtain SDHC reset control */
rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
if (IS_ERR(rstc)) {
dev_err(dev, "Cannot get SDHC reset.\n");
return PTR_ERR(rstc);
}
ret = reset_control_assert(rstc);
if (ret)
return ret;
ret = zynqmp_pm_set_sd_config(node_id, SD_CONFIG_FIXED, 0);
if (ret)
return ret;
ret = zynqmp_pm_set_sd_config(node_id, SD_CONFIG_EMMC_SEL,
!!(host->mmc->caps & MMC_CAP_NONREMOVABLE));
if (ret)
return ret;
mhz = DIV_ROUND_CLOSEST_ULL(clk_get_rate(pltfm_host->clk), 1000000);
if (mhz > 100 && mhz <= 200)
mhz = 200;
else if (mhz > 50 && mhz <= 100)
mhz = 100;
else if (mhz > 25 && mhz <= 50)
mhz = 50;
else
mhz = 25;
ret = zynqmp_pm_set_sd_config(node_id, SD_CONFIG_BASECLK, mhz);
if (ret)
return ret;
ret = zynqmp_pm_set_sd_config(node_id, SD_CONFIG_8BIT,
!!(host->mmc->caps & MMC_CAP_8_BIT_DATA));
if (ret)
return ret;
ret = reset_control_deassert(rstc);
if (ret)
return ret;
usleep_range(1000, 1500);
return 0;
}
static int sdhci_arasan_add_host(struct sdhci_arasan_data *sdhci_arasan)
{
struct sdhci_host *host = sdhci_arasan->host;
struct cqhci_host *cq_host;
bool dma64;
int ret;
if (!sdhci_arasan->has_cqe)
return sdhci_add_host(host);
ret = sdhci_setup_host(host);
if (ret)
return ret;
cq_host = devm_kzalloc(host->mmc->parent,
sizeof(*cq_host), GFP_KERNEL);
if (!cq_host) {
ret = -ENOMEM;
goto cleanup;
}
cq_host->mmio = host->ioaddr + SDHCI_ARASAN_CQE_BASE_ADDR;
cq_host->ops = &sdhci_arasan_cqhci_ops;
dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
if (dma64)
cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
ret = cqhci_init(cq_host, host->mmc, dma64);
if (ret)
goto cleanup;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
return 0;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
static int sdhci_arasan_probe(struct platform_device *pdev)
{
int ret;
struct device_node *node;
struct clk *clk_xin;
struct clk *clk_dll;
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct sdhci_arasan_data *sdhci_arasan;
const struct sdhci_arasan_of_data *data;
data = of_device_get_match_data(dev);
if (!data)
return -EINVAL;
host = sdhci_pltfm_init(pdev, data->pdata, sizeof(*sdhci_arasan));
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
sdhci_arasan->host = host;
sdhci_arasan->soc_ctl_map = data->soc_ctl_map;
sdhci_arasan->clk_ops = data->clk_ops;
node = of_parse_phandle(np, "arasan,soc-ctl-syscon", 0);
if (node) {
sdhci_arasan->soc_ctl_base = syscon_node_to_regmap(node);
of_node_put(node);
if (IS_ERR(sdhci_arasan->soc_ctl_base)) {
ret = dev_err_probe(dev,
PTR_ERR(sdhci_arasan->soc_ctl_base),
"Can't get syscon\n");
goto err_pltfm_free;
}
}
sdhci_get_of_property(pdev);
sdhci_arasan->clk_ahb = devm_clk_get(dev, "clk_ahb");
if (IS_ERR(sdhci_arasan->clk_ahb)) {
ret = dev_err_probe(dev, PTR_ERR(sdhci_arasan->clk_ahb),
"clk_ahb clock not found.\n");
goto err_pltfm_free;
}
clk_xin = devm_clk_get(dev, "clk_xin");
if (IS_ERR(clk_xin)) {
ret = dev_err_probe(dev, PTR_ERR(clk_xin), "clk_xin clock not found.\n");
goto err_pltfm_free;
}
ret = clk_prepare_enable(sdhci_arasan->clk_ahb);
if (ret) {
dev_err(dev, "Unable to enable AHB clock.\n");
goto err_pltfm_free;
}
/* If clock-frequency property is set, use the provided value */
if (pltfm_host->clock &&
pltfm_host->clock != clk_get_rate(clk_xin)) {
ret = clk_set_rate(clk_xin, pltfm_host->clock);
if (ret) {
dev_err(&pdev->dev, "Failed to set SD clock rate\n");
goto clk_dis_ahb;
}
}
ret = clk_prepare_enable(clk_xin);
if (ret) {
dev_err(dev, "Unable to enable SD clock.\n");
goto clk_dis_ahb;
}
clk_dll = devm_clk_get_optional_enabled(dev, "gate");
if (IS_ERR(clk_dll)) {
ret = dev_err_probe(dev, PTR_ERR(clk_dll), "failed to get dll clk\n");
goto clk_disable_all;
}
if (of_property_read_bool(np, "xlnx,fails-without-test-cd"))
sdhci_arasan->quirks |= SDHCI_ARASAN_QUIRK_FORCE_CDTEST;
if (of_property_read_bool(np, "xlnx,int-clock-stable-broken"))
sdhci_arasan->quirks |= SDHCI_ARASAN_QUIRK_CLOCK_UNSTABLE;
pltfm_host->clk = clk_xin;
if (of_device_is_compatible(np, "rockchip,rk3399-sdhci-5.1"))
sdhci_arasan_update_clockmultiplier(host, 0x0);
if (of_device_is_compatible(np, "intel,keembay-sdhci-5.1-emmc") ||
of_device_is_compatible(np, "intel,keembay-sdhci-5.1-sd") ||
of_device_is_compatible(np, "intel,keembay-sdhci-5.1-sdio")) {
sdhci_arasan_update_clockmultiplier(host, 0x0);
sdhci_arasan_update_support64b(host, 0x0);
host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
}
sdhci_arasan_update_baseclkfreq(host);
ret = sdhci_arasan_register_sdclk(sdhci_arasan, clk_xin, dev);
if (ret)
goto clk_disable_all;
if (of_device_is_compatible(np, "xlnx,zynqmp-8.9a")) {
host->mmc_host_ops.execute_tuning =
arasan_zynqmp_execute_tuning;
sdhci_arasan->quirks |= SDHCI_ARASAN_QUIRK_CLOCK_25_BROKEN;
host->quirks |= SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12;
}
arasan_dt_parse_clk_phases(dev, &sdhci_arasan->clk_data);
ret = mmc_of_parse(host->mmc);
if (ret) {
ret = dev_err_probe(dev, ret, "parsing dt failed.\n");
goto unreg_clk;
}
if (of_device_is_compatible(np, "xlnx,zynqmp-8.9a")) {
ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_SD_CONFIG);
if (!ret) {
ret = sdhci_zynqmp_set_dynamic_config(dev, sdhci_arasan);
if (ret)
goto unreg_clk;
}
}
sdhci_arasan->phy = ERR_PTR(-ENODEV);
if (of_device_is_compatible(np, "arasan,sdhci-5.1")) {
sdhci_arasan->phy = devm_phy_get(dev, "phy_arasan");
if (IS_ERR(sdhci_arasan->phy)) {
ret = dev_err_probe(dev, PTR_ERR(sdhci_arasan->phy),
"No phy for arasan,sdhci-5.1.\n");
goto unreg_clk;
}
ret = phy_init(sdhci_arasan->phy);
if (ret < 0) {
dev_err(dev, "phy_init err.\n");
goto unreg_clk;
}
host->mmc_host_ops.hs400_enhanced_strobe =
sdhci_arasan_hs400_enhanced_strobe;
host->mmc_host_ops.start_signal_voltage_switch =
sdhci_arasan_voltage_switch;
sdhci_arasan->has_cqe = true;
host->mmc->caps2 |= MMC_CAP2_CQE;
if (!of_property_read_bool(np, "disable-cqe-dcmd"))
host->mmc->caps2 |= MMC_CAP2_CQE_DCMD;
}
if (of_device_is_compatible(np, "xlnx,versal-net-emmc"))
sdhci_arasan->internal_phy_reg = true;
ret = sdhci_arasan_add_host(sdhci_arasan);
if (ret)
goto err_add_host;
return 0;
err_add_host:
if (!IS_ERR(sdhci_arasan->phy))
phy_exit(sdhci_arasan->phy);
unreg_clk:
sdhci_arasan_unregister_sdclk(dev);
clk_disable_all:
clk_disable_unprepare(clk_xin);
clk_dis_ahb:
clk_disable_unprepare(sdhci_arasan->clk_ahb);
err_pltfm_free:
sdhci_pltfm_free(pdev);
return ret;
}
static int sdhci_arasan_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
struct clk *clk_ahb = sdhci_arasan->clk_ahb;
if (!IS_ERR(sdhci_arasan->phy)) {
if (sdhci_arasan->is_phy_on)
phy_power_off(sdhci_arasan->phy);
phy_exit(sdhci_arasan->phy);
}
sdhci_arasan_unregister_sdclk(&pdev->dev);
sdhci_pltfm_unregister(pdev);
clk_disable_unprepare(clk_ahb);
return 0;
}
static struct platform_driver sdhci_arasan_driver = {
.driver = {
.name = "sdhci-arasan",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = sdhci_arasan_of_match,
.pm = &sdhci_arasan_dev_pm_ops,
},
.probe = sdhci_arasan_probe,
.remove = sdhci_arasan_remove,
};
module_platform_driver(sdhci_arasan_driver);
MODULE_DESCRIPTION("Driver for the Arasan SDHCI Controller");
MODULE_AUTHOR("Soeren Brinkmann <soren.brinkmann@xilinx.com>");
MODULE_LICENSE("GPL");