OpenCloudOS-Kernel/kernel/wait.c

246 lines
7.1 KiB
C

/*
* Generic waiting primitives.
*
* (C) 2004 William Irwin, Oracle
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/wait.h>
#include <linux/hash.h>
void fastcall add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(add_wait_queue);
void fastcall add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
wait->flags |= WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue_tail(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(add_wait_queue_exclusive);
void fastcall remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
__remove_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(remove_wait_queue);
/*
* Note: we use "set_current_state()" _after_ the wait-queue add,
* because we need a memory barrier there on SMP, so that any
* wake-function that tests for the wait-queue being active
* will be guaranteed to see waitqueue addition _or_ subsequent
* tests in this thread will see the wakeup having taken place.
*
* The spin_unlock() itself is semi-permeable and only protects
* one way (it only protects stuff inside the critical region and
* stops them from bleeding out - it would still allow subsequent
* loads to move into the the critical region).
*/
void fastcall
prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list))
__add_wait_queue(q, wait);
/*
* don't alter the task state if this is just going to
* queue an async wait queue callback
*/
if (is_sync_wait(wait))
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(prepare_to_wait);
void fastcall
prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
wait->flags |= WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list))
__add_wait_queue_tail(q, wait);
/*
* don't alter the task state if this is just going to
* queue an async wait queue callback
*/
if (is_sync_wait(wait))
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(prepare_to_wait_exclusive);
void fastcall finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
__set_current_state(TASK_RUNNING);
/*
* We can check for list emptiness outside the lock
* IFF:
* - we use the "careful" check that verifies both
* the next and prev pointers, so that there cannot
* be any half-pending updates in progress on other
* CPU's that we haven't seen yet (and that might
* still change the stack area.
* and
* - all other users take the lock (ie we can only
* have _one_ other CPU that looks at or modifies
* the list).
*/
if (!list_empty_careful(&wait->task_list)) {
spin_lock_irqsave(&q->lock, flags);
list_del_init(&wait->task_list);
spin_unlock_irqrestore(&q->lock, flags);
}
}
EXPORT_SYMBOL(finish_wait);
int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
int ret = default_wake_function(wait, mode, sync, key);
if (ret)
list_del_init(&wait->task_list);
return ret;
}
EXPORT_SYMBOL(autoremove_wake_function);
int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
{
struct wait_bit_key *key = arg;
struct wait_bit_queue *wait_bit
= container_of(wait, struct wait_bit_queue, wait);
if (wait_bit->key.flags != key->flags ||
wait_bit->key.bit_nr != key->bit_nr ||
test_bit(key->bit_nr, key->flags))
return 0;
else
return autoremove_wake_function(wait, mode, sync, key);
}
EXPORT_SYMBOL(wake_bit_function);
/*
* To allow interruptible waiting and asynchronous (i.e. nonblocking)
* waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
* permitted return codes. Nonzero return codes halt waiting and return.
*/
int __sched fastcall
__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
int (*action)(void *), unsigned mode)
{
int ret = 0;
do {
prepare_to_wait(wq, &q->wait, mode);
if (test_bit(q->key.bit_nr, q->key.flags))
ret = (*action)(q->key.flags);
} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
finish_wait(wq, &q->wait);
return ret;
}
EXPORT_SYMBOL(__wait_on_bit);
int __sched fastcall out_of_line_wait_on_bit(void *word, int bit,
int (*action)(void *), unsigned mode)
{
wait_queue_head_t *wq = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wait, word, bit);
return __wait_on_bit(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_bit);
int __sched fastcall
__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
int (*action)(void *), unsigned mode)
{
int ret = 0;
do {
prepare_to_wait_exclusive(wq, &q->wait, mode);
if (test_bit(q->key.bit_nr, q->key.flags)) {
if ((ret = (*action)(q->key.flags)))
break;
}
} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
finish_wait(wq, &q->wait);
return ret;
}
EXPORT_SYMBOL(__wait_on_bit_lock);
int __sched fastcall out_of_line_wait_on_bit_lock(void *word, int bit,
int (*action)(void *), unsigned mode)
{
wait_queue_head_t *wq = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wait, word, bit);
return __wait_on_bit_lock(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
void fastcall __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
{
struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
if (waitqueue_active(wq))
__wake_up(wq, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE, 1, &key);
}
EXPORT_SYMBOL(__wake_up_bit);
/**
* wake_up_bit - wake up a waiter on a bit
* @word: the word being waited on, a kernel virtual address
* @bit: the bit of the word being waited on
*
* There is a standard hashed waitqueue table for generic use. This
* is the part of the hashtable's accessor API that wakes up waiters
* on a bit. For instance, if one were to have waiters on a bitflag,
* one would call wake_up_bit() after clearing the bit.
*
* In order for this to function properly, as it uses waitqueue_active()
* internally, some kind of memory barrier must be done prior to calling
* this. Typically, this will be smp_mb__after_clear_bit(), but in some
* cases where bitflags are manipulated non-atomically under a lock, one
* may need to use a less regular barrier, such fs/inode.c's smp_mb(),
* because spin_unlock() does not guarantee a memory barrier.
*/
void fastcall wake_up_bit(void *word, int bit)
{
__wake_up_bit(bit_waitqueue(word, bit), word, bit);
}
EXPORT_SYMBOL(wake_up_bit);
fastcall wait_queue_head_t *bit_waitqueue(void *word, int bit)
{
const int shift = BITS_PER_LONG == 32 ? 5 : 6;
const struct zone *zone = page_zone(virt_to_page(word));
unsigned long val = (unsigned long)word << shift | bit;
return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
}
EXPORT_SYMBOL(bit_waitqueue);