OpenCloudOS-Kernel/arch/x86/include/asm/pgtable.h

579 lines
18 KiB
C

#ifndef _ASM_X86_PGTABLE_H
#define _ASM_X86_PGTABLE_H
#define FIRST_USER_ADDRESS 0
#define _PAGE_BIT_PRESENT 0 /* is present */
#define _PAGE_BIT_RW 1 /* writeable */
#define _PAGE_BIT_USER 2 /* userspace addressable */
#define _PAGE_BIT_PWT 3 /* page write through */
#define _PAGE_BIT_PCD 4 /* page cache disabled */
#define _PAGE_BIT_ACCESSED 5 /* was accessed (raised by CPU) */
#define _PAGE_BIT_DIRTY 6 /* was written to (raised by CPU) */
#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */
#define _PAGE_BIT_PAT 7 /* on 4KB pages */
#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
#define _PAGE_BIT_UNUSED1 9 /* available for programmer */
#define _PAGE_BIT_IOMAP 10 /* flag used to indicate IO mapping */
#define _PAGE_BIT_UNUSED3 11
#define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */
#define _PAGE_BIT_SPECIAL _PAGE_BIT_UNUSED1
#define _PAGE_BIT_CPA_TEST _PAGE_BIT_UNUSED1
#define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */
/* If _PAGE_BIT_PRESENT is clear, we use these: */
/* - if the user mapped it with PROT_NONE; pte_present gives true */
#define _PAGE_BIT_PROTNONE _PAGE_BIT_GLOBAL
/* - set: nonlinear file mapping, saved PTE; unset:swap */
#define _PAGE_BIT_FILE _PAGE_BIT_DIRTY
#define _PAGE_PRESENT (_AT(pteval_t, 1) << _PAGE_BIT_PRESENT)
#define _PAGE_RW (_AT(pteval_t, 1) << _PAGE_BIT_RW)
#define _PAGE_USER (_AT(pteval_t, 1) << _PAGE_BIT_USER)
#define _PAGE_PWT (_AT(pteval_t, 1) << _PAGE_BIT_PWT)
#define _PAGE_PCD (_AT(pteval_t, 1) << _PAGE_BIT_PCD)
#define _PAGE_ACCESSED (_AT(pteval_t, 1) << _PAGE_BIT_ACCESSED)
#define _PAGE_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_DIRTY)
#define _PAGE_PSE (_AT(pteval_t, 1) << _PAGE_BIT_PSE)
#define _PAGE_GLOBAL (_AT(pteval_t, 1) << _PAGE_BIT_GLOBAL)
#define _PAGE_UNUSED1 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED1)
#define _PAGE_IOMAP (_AT(pteval_t, 1) << _PAGE_BIT_IOMAP)
#define _PAGE_UNUSED3 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED3)
#define _PAGE_PAT (_AT(pteval_t, 1) << _PAGE_BIT_PAT)
#define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE)
#define _PAGE_SPECIAL (_AT(pteval_t, 1) << _PAGE_BIT_SPECIAL)
#define _PAGE_CPA_TEST (_AT(pteval_t, 1) << _PAGE_BIT_CPA_TEST)
#define __HAVE_ARCH_PTE_SPECIAL
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
#define _PAGE_NX (_AT(pteval_t, 1) << _PAGE_BIT_NX)
#else
#define _PAGE_NX (_AT(pteval_t, 0))
#endif
#define _PAGE_FILE (_AT(pteval_t, 1) << _PAGE_BIT_FILE)
#define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE)
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \
_PAGE_ACCESSED | _PAGE_DIRTY)
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | \
_PAGE_DIRTY)
/* Set of bits not changed in pte_modify */
#define _PAGE_CHG_MASK (PTE_PFN_MASK | _PAGE_PCD | _PAGE_PWT | \
_PAGE_SPECIAL | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _PAGE_CACHE_MASK (_PAGE_PCD | _PAGE_PWT)
#define _PAGE_CACHE_WB (0)
#define _PAGE_CACHE_WC (_PAGE_PWT)
#define _PAGE_CACHE_UC_MINUS (_PAGE_PCD)
#define _PAGE_CACHE_UC (_PAGE_PCD | _PAGE_PWT)
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \
_PAGE_ACCESSED | _PAGE_NX)
#define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | \
_PAGE_USER | _PAGE_ACCESSED)
#define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_ACCESSED | _PAGE_NX)
#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_ACCESSED)
#define PAGE_COPY PAGE_COPY_NOEXEC
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_ACCESSED | _PAGE_NX)
#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_ACCESSED)
#define __PAGE_KERNEL_EXEC \
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL)
#define __PAGE_KERNEL (__PAGE_KERNEL_EXEC | _PAGE_NX)
#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
#define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW)
#define __PAGE_KERNEL_EXEC_NOCACHE (__PAGE_KERNEL_EXEC | _PAGE_PCD | _PAGE_PWT)
#define __PAGE_KERNEL_WC (__PAGE_KERNEL | _PAGE_CACHE_WC)
#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD | _PAGE_PWT)
#define __PAGE_KERNEL_UC_MINUS (__PAGE_KERNEL | _PAGE_PCD)
#define __PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER)
#define __PAGE_KERNEL_VSYSCALL_NOCACHE (__PAGE_KERNEL_VSYSCALL | _PAGE_PCD | _PAGE_PWT)
#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
#define __PAGE_KERNEL_LARGE_NOCACHE (__PAGE_KERNEL | _PAGE_CACHE_UC | _PAGE_PSE)
#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
#define __PAGE_KERNEL_IO (__PAGE_KERNEL | _PAGE_IOMAP)
#define __PAGE_KERNEL_IO_NOCACHE (__PAGE_KERNEL_NOCACHE | _PAGE_IOMAP)
#define __PAGE_KERNEL_IO_UC_MINUS (__PAGE_KERNEL_UC_MINUS | _PAGE_IOMAP)
#define __PAGE_KERNEL_IO_WC (__PAGE_KERNEL_WC | _PAGE_IOMAP)
#define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
#define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX)
#define PAGE_KERNEL_WC __pgprot(__PAGE_KERNEL_WC)
#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
#define PAGE_KERNEL_UC_MINUS __pgprot(__PAGE_KERNEL_UC_MINUS)
#define PAGE_KERNEL_EXEC_NOCACHE __pgprot(__PAGE_KERNEL_EXEC_NOCACHE)
#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
#define PAGE_KERNEL_LARGE_NOCACHE __pgprot(__PAGE_KERNEL_LARGE_NOCACHE)
#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
#define PAGE_KERNEL_VSYSCALL __pgprot(__PAGE_KERNEL_VSYSCALL)
#define PAGE_KERNEL_VSYSCALL_NOCACHE __pgprot(__PAGE_KERNEL_VSYSCALL_NOCACHE)
#define PAGE_KERNEL_IO __pgprot(__PAGE_KERNEL_IO)
#define PAGE_KERNEL_IO_NOCACHE __pgprot(__PAGE_KERNEL_IO_NOCACHE)
#define PAGE_KERNEL_IO_UC_MINUS __pgprot(__PAGE_KERNEL_IO_UC_MINUS)
#define PAGE_KERNEL_IO_WC __pgprot(__PAGE_KERNEL_IO_WC)
/* xwr */
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY_EXEC
#define __P101 PAGE_READONLY_EXEC
#define __P110 PAGE_COPY_EXEC
#define __P111 PAGE_COPY_EXEC
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY_EXEC
#define __S101 PAGE_READONLY_EXEC
#define __S110 PAGE_SHARED_EXEC
#define __S111 PAGE_SHARED_EXEC
/*
* early identity mapping pte attrib macros.
*/
#ifdef CONFIG_X86_64
#define __PAGE_KERNEL_IDENT_LARGE_EXEC __PAGE_KERNEL_LARGE_EXEC
#else
/*
* For PDE_IDENT_ATTR include USER bit. As the PDE and PTE protection
* bits are combined, this will alow user to access the high address mapped
* VDSO in the presence of CONFIG_COMPAT_VDSO
*/
#define PTE_IDENT_ATTR 0x003 /* PRESENT+RW */
#define PDE_IDENT_ATTR 0x067 /* PRESENT+RW+USER+DIRTY+ACCESSED */
#define PGD_IDENT_ATTR 0x001 /* PRESENT (no other attributes) */
#endif
/*
* Macro to mark a page protection value as UC-
*/
#define pgprot_noncached(prot) \
((boot_cpu_data.x86 > 3) \
? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \
: (prot))
#ifndef __ASSEMBLY__
#define pgprot_writecombine pgprot_writecombine
extern pgprot_t pgprot_writecombine(pgprot_t prot);
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
extern spinlock_t pgd_lock;
extern struct list_head pgd_list;
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_dirty(pte_t pte)
{
return pte_flags(pte) & _PAGE_DIRTY;
}
static inline int pte_young(pte_t pte)
{
return pte_flags(pte) & _PAGE_ACCESSED;
}
static inline int pte_write(pte_t pte)
{
return pte_flags(pte) & _PAGE_RW;
}
static inline int pte_file(pte_t pte)
{
return pte_flags(pte) & _PAGE_FILE;
}
static inline int pte_huge(pte_t pte)
{
return pte_flags(pte) & _PAGE_PSE;
}
static inline int pte_global(pte_t pte)
{
return pte_flags(pte) & _PAGE_GLOBAL;
}
static inline int pte_exec(pte_t pte)
{
return !(pte_flags(pte) & _PAGE_NX);
}
static inline int pte_special(pte_t pte)
{
return pte_flags(pte) & _PAGE_SPECIAL;
}
static inline unsigned long pte_pfn(pte_t pte)
{
return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
}
#define pte_page(pte) pfn_to_page(pte_pfn(pte))
static inline int pmd_large(pmd_t pte)
{
return (pmd_val(pte) & (_PAGE_PSE | _PAGE_PRESENT)) ==
(_PAGE_PSE | _PAGE_PRESENT);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_DIRTY);
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
}
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_RW);
}
static inline pte_t pte_mkexec(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_NX);
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
static inline pte_t pte_mkwrite(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_RW);
}
static inline pte_t pte_mkhuge(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_PSE);
}
static inline pte_t pte_clrhuge(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_PSE);
}
static inline pte_t pte_mkglobal(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_GLOBAL);
}
static inline pte_t pte_clrglobal(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_GLOBAL);
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SPECIAL);
}
extern pteval_t __supported_pte_mask;
static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
{
return __pte((((phys_addr_t)page_nr << PAGE_SHIFT) |
pgprot_val(pgprot)) & __supported_pte_mask);
}
static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
{
return __pmd((((phys_addr_t)page_nr << PAGE_SHIFT) |
pgprot_val(pgprot)) & __supported_pte_mask);
}
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pteval_t val = pte_val(pte);
/*
* Chop off the NX bit (if present), and add the NX portion of
* the newprot (if present):
*/
val &= _PAGE_CHG_MASK;
val |= pgprot_val(newprot) & (~_PAGE_CHG_MASK) & __supported_pte_mask;
return __pte(val);
}
/* mprotect needs to preserve PAT bits when updating vm_page_prot */
#define pgprot_modify pgprot_modify
static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
{
pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
pgprotval_t addbits = pgprot_val(newprot);
return __pgprot(preservebits | addbits);
}
#define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK)
#define canon_pgprot(p) __pgprot(pgprot_val(p) & __supported_pte_mask)
#ifndef __ASSEMBLY__
/* Indicate that x86 has its own track and untrack pfn vma functions */
#define __HAVE_PFNMAP_TRACKING
#define __HAVE_PHYS_MEM_ACCESS_PROT
struct file;
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot);
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t *vma_prot);
#endif
/* Install a pte for a particular vaddr in kernel space. */
void set_pte_vaddr(unsigned long vaddr, pte_t pte);
#ifdef CONFIG_X86_32
extern void native_pagetable_setup_start(pgd_t *base);
extern void native_pagetable_setup_done(pgd_t *base);
#else
static inline void native_pagetable_setup_start(pgd_t *base) {}
static inline void native_pagetable_setup_done(pgd_t *base) {}
#endif
struct seq_file;
extern void arch_report_meminfo(struct seq_file *m);
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else /* !CONFIG_PARAVIRT */
#define set_pte(ptep, pte) native_set_pte(ptep, pte)
#define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
#define set_pte_present(mm, addr, ptep, pte) \
native_set_pte_present(mm, addr, ptep, pte)
#define set_pte_atomic(ptep, pte) \
native_set_pte_atomic(ptep, pte)
#define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
#ifndef __PAGETABLE_PUD_FOLDED
#define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
#define pgd_clear(pgd) native_pgd_clear(pgd)
#endif
#ifndef set_pud
# define set_pud(pudp, pud) native_set_pud(pudp, pud)
#endif
#ifndef __PAGETABLE_PMD_FOLDED
#define pud_clear(pud) native_pud_clear(pud)
#endif
#define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
#define pmd_clear(pmd) native_pmd_clear(pmd)
#define pte_update(mm, addr, ptep) do { } while (0)
#define pte_update_defer(mm, addr, ptep) do { } while (0)
static inline void __init paravirt_pagetable_setup_start(pgd_t *base)
{
native_pagetable_setup_start(base);
}
static inline void __init paravirt_pagetable_setup_done(pgd_t *base)
{
native_pagetable_setup_done(base);
}
#endif /* CONFIG_PARAVIRT */
#endif /* __ASSEMBLY__ */
#ifdef CONFIG_X86_32
# include "pgtable_32.h"
#else
# include "pgtable_64.h"
#endif
/*
* the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
*
* this macro returns the index of the entry in the pgd page which would
* control the given virtual address
*/
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
/*
* pgd_offset() returns a (pgd_t *)
* pgd_index() is used get the offset into the pgd page's array of pgd_t's;
*/
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
/*
* a shortcut which implies the use of the kernel's pgd, instead
* of a process's
*/
#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
#define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
#ifndef __ASSEMBLY__
enum {
PG_LEVEL_NONE,
PG_LEVEL_4K,
PG_LEVEL_2M,
PG_LEVEL_1G,
PG_LEVEL_NUM
};
#ifdef CONFIG_PROC_FS
extern void update_page_count(int level, unsigned long pages);
#else
static inline void update_page_count(int level, unsigned long pages) { }
#endif
/*
* Helper function that returns the kernel pagetable entry controlling
* the virtual address 'address'. NULL means no pagetable entry present.
* NOTE: the return type is pte_t but if the pmd is PSE then we return it
* as a pte too.
*/
extern pte_t *lookup_address(unsigned long address, unsigned int *level);
/* local pte updates need not use xchg for locking */
static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
{
pte_t res = *ptep;
/* Pure native function needs no input for mm, addr */
native_pte_clear(NULL, 0, ptep);
return res;
}
static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep , pte_t pte)
{
native_set_pte(ptep, pte);
}
#ifndef CONFIG_PARAVIRT
/*
* Rules for using pte_update - it must be called after any PTE update which
* has not been done using the set_pte / clear_pte interfaces. It is used by
* shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
* updates should either be sets, clears, or set_pte_atomic for P->P
* transitions, which means this hook should only be called for user PTEs.
* This hook implies a P->P protection or access change has taken place, which
* requires a subsequent TLB flush. The notification can optionally be delayed
* until the TLB flush event by using the pte_update_defer form of the
* interface, but care must be taken to assure that the flush happens while
* still holding the same page table lock so that the shadow and primary pages
* do not become out of sync on SMP.
*/
#define pte_update(mm, addr, ptep) do { } while (0)
#define pte_update_defer(mm, addr, ptep) do { } while (0)
#endif
/*
* We only update the dirty/accessed state if we set
* the dirty bit by hand in the kernel, since the hardware
* will do the accessed bit for us, and we don't want to
* race with other CPU's that might be updating the dirty
* bit at the same time.
*/
struct vm_area_struct;
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
extern int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty);
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep);
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
extern int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep);
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_t pte = native_ptep_get_and_clear(ptep);
pte_update(mm, addr, ptep);
return pte;
}
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long addr, pte_t *ptep,
int full)
{
pte_t pte;
if (full) {
/*
* Full address destruction in progress; paravirt does not
* care about updates and native needs no locking
*/
pte = native_local_ptep_get_and_clear(ptep);
} else {
pte = ptep_get_and_clear(mm, addr, ptep);
}
return pte;
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
pte_update(mm, addr, ptep);
}
/*
* clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
*
* dst - pointer to pgd range anwhere on a pgd page
* src - ""
* count - the number of pgds to copy.
*
* dst and src can be on the same page, but the range must not overlap,
* and must not cross a page boundary.
*/
static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
{
memcpy(dst, src, count * sizeof(pgd_t));
}
#include <asm-generic/pgtable.h>
#endif /* __ASSEMBLY__ */
#endif /* _ASM_X86_PGTABLE_H */