OpenCloudOS-Kernel/drivers/thermal/tegra/soctherm.c

1498 lines
42 KiB
C

/*
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
*
* Author:
* Mikko Perttunen <mperttunen@nvidia.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/debugfs.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/thermal.h>
#include <dt-bindings/thermal/tegra124-soctherm.h>
#include "../thermal_core.h"
#include "soctherm.h"
#define SENSOR_CONFIG0 0
#define SENSOR_CONFIG0_STOP BIT(0)
#define SENSOR_CONFIG0_CPTR_OVER BIT(2)
#define SENSOR_CONFIG0_OVER BIT(3)
#define SENSOR_CONFIG0_TCALC_OVER BIT(4)
#define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8)
#define SENSOR_CONFIG0_TALL_SHIFT 8
#define SENSOR_CONFIG1 4
#define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff
#define SENSOR_CONFIG1_TSAMPLE_SHIFT 0
#define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15)
#define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15
#define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24)
#define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24
#define SENSOR_CONFIG1_TEMP_ENABLE BIT(31)
/*
* SENSOR_CONFIG2 is defined in soctherm.h
* because, it will be used by tegra_soctherm_fuse.c
*/
#define SENSOR_STATUS0 0xc
#define SENSOR_STATUS0_VALID_MASK BIT(31)
#define SENSOR_STATUS0_CAPTURE_MASK 0xffff
#define SENSOR_STATUS1 0x10
#define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31)
#define SENSOR_STATUS1_TEMP_MASK 0xffff
#define READBACK_VALUE_MASK 0xff00
#define READBACK_VALUE_SHIFT 8
#define READBACK_ADD_HALF BIT(7)
#define READBACK_NEGATE BIT(0)
/*
* THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
* because it will be used by tegraxxx_soctherm.c
*/
#define THERMCTL_LVL0_CPU0_EN_MASK BIT(8)
#define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5)
#define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1
#define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2
#define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3)
#define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1
#define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2
#define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2)
#define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3
#define THERMCTL_LVL0_UP_STATS 0x10
#define THERMCTL_LVL0_DN_STATS 0x14
#define THERMCTL_STATS_CTL 0x94
#define STATS_CTL_CLR_DN 0x8
#define STATS_CTL_EN_DN 0x4
#define STATS_CTL_CLR_UP 0x2
#define STATS_CTL_EN_UP 0x1
#define THROT_GLOBAL_CFG 0x400
#define THROT_GLOBAL_ENB_MASK BIT(0)
#define CPU_PSKIP_STATUS 0x418
#define XPU_PSKIP_STATUS_M_MASK (0xff << 12)
#define XPU_PSKIP_STATUS_N_MASK (0xff << 4)
#define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1)
#define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0)
#define THROT_PRIORITY_LOCK 0x424
#define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff
#define THROT_STATUS 0x428
#define THROT_STATUS_BREACH_MASK BIT(12)
#define THROT_STATUS_STATE_MASK (0xff << 4)
#define THROT_STATUS_ENABLED_MASK BIT(0)
#define THROT_PSKIP_CTRL_LITE_CPU 0x430
#define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31)
#define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
#define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
#define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16)
#define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8)
#define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7
#define THROT_VECT_NONE 0x0 /* 3'b000 */
#define THROT_VECT_LOW 0x1 /* 3'b001 */
#define THROT_VECT_MED 0x3 /* 3'b011 */
#define THROT_VECT_HIGH 0x7 /* 3'b111 */
#define THROT_PSKIP_RAMP_LITE_CPU 0x434
#define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
#define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
#define THROT_PSKIP_RAMP_STEP_MASK 0xff
#define THROT_PRIORITY_LITE 0x444
#define THROT_PRIORITY_LITE_PRIO_MASK 0xff
#define THROT_DELAY_LITE 0x448
#define THROT_DELAY_LITE_DELAY_MASK 0xff
/* car register offsets needed for enabling HW throttling */
#define CAR_SUPER_CCLKG_DIVIDER 0x36c
#define CDIVG_USE_THERM_CONTROLS_MASK BIT(30)
/* ccroc register offsets needed for enabling HW throttling for Tegra132 */
#define CCROC_SUPER_CCLKG_DIVIDER 0x024
#define CCROC_GLOBAL_CFG 0x148
#define CCROC_THROT_PSKIP_RAMP_CPU 0x150
#define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
#define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
#define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff
#define CCROC_THROT_PSKIP_CTRL_CPU 0x154
#define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31)
#define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
#define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
/* get val from register(r) mask bits(m) */
#define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1))
/* set val(v) to mask bits(m) of register(r) */
#define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \
(((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
/* get dividend from the depth */
#define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1)
/* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
#define THROT_OFFSET 0x30
#define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \
(THROT_OFFSET * throt) + (8 * dev))
#define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \
(THROT_OFFSET * throt) + (8 * dev))
/* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
#define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \
(THROT_OFFSET * throt))
#define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \
(THROT_OFFSET * throt))
/* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
#define CCROC_THROT_OFFSET 0x0c
#define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \
(CCROC_THROT_OFFSET * vect))
#define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \
(CCROC_THROT_OFFSET * vect))
/* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
#define THERMCTL_LVL_REGS_SIZE 0x20
#define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
static const int min_low_temp = -127000;
static const int max_high_temp = 127000;
enum soctherm_throttle_id {
THROTTLE_LIGHT = 0,
THROTTLE_HEAVY,
THROTTLE_SIZE,
};
enum soctherm_throttle_dev_id {
THROTTLE_DEV_CPU = 0,
THROTTLE_DEV_GPU,
THROTTLE_DEV_SIZE,
};
static const char *const throt_names[] = {
[THROTTLE_LIGHT] = "light",
[THROTTLE_HEAVY] = "heavy",
};
struct tegra_soctherm;
struct tegra_thermctl_zone {
void __iomem *reg;
struct device *dev;
struct tegra_soctherm *ts;
struct thermal_zone_device *tz;
const struct tegra_tsensor_group *sg;
};
struct soctherm_throt_cfg {
const char *name;
unsigned int id;
u8 priority;
u8 cpu_throt_level;
u32 cpu_throt_depth;
struct thermal_cooling_device *cdev;
bool init;
};
struct tegra_soctherm {
struct reset_control *reset;
struct clk *clock_tsensor;
struct clk *clock_soctherm;
void __iomem *regs;
void __iomem *clk_regs;
void __iomem *ccroc_regs;
u32 *calib;
struct thermal_zone_device **thermctl_tzs;
struct tegra_soctherm_soc *soc;
struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
struct dentry *debugfs_dir;
};
/**
* clk_writel() - writes a value to a CAR register
* @ts: pointer to a struct tegra_soctherm
* @v: the value to write
* @reg: the register offset
*
* Writes @v to @reg. No return value.
*/
static inline void clk_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
{
writel(value, (ts->clk_regs + reg));
}
/**
* clk_readl() - reads specified register from CAR IP block
* @ts: pointer to a struct tegra_soctherm
* @reg: register address to be read
*
* Return: the value of the register
*/
static inline u32 clk_readl(struct tegra_soctherm *ts, u32 reg)
{
return readl(ts->clk_regs + reg);
}
/**
* ccroc_writel() - writes a value to a CCROC register
* @ts: pointer to a struct tegra_soctherm
* @v: the value to write
* @reg: the register offset
*
* Writes @v to @reg. No return value.
*/
static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
{
writel(value, (ts->ccroc_regs + reg));
}
/**
* ccroc_readl() - reads specified register from CCROC IP block
* @ts: pointer to a struct tegra_soctherm
* @reg: register address to be read
*
* Return: the value of the register
*/
static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
{
return readl(ts->ccroc_regs + reg);
}
static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
{
const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
void __iomem *base = tegra->regs + sensor->base;
unsigned int val;
val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
writel(val, base + SENSOR_CONFIG0);
val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
val |= SENSOR_CONFIG1_TEMP_ENABLE;
writel(val, base + SENSOR_CONFIG1);
writel(tegra->calib[i], base + SENSOR_CONFIG2);
}
/*
* Translate from soctherm readback format to millicelsius.
* The soctherm readback format in bits is as follows:
* TTTTTTTT H______N
* where T's contain the temperature in Celsius,
* H denotes an addition of 0.5 Celsius and N denotes negation
* of the final value.
*/
static int translate_temp(u16 val)
{
int t;
t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
if (val & READBACK_ADD_HALF)
t += 500;
if (val & READBACK_NEGATE)
t *= -1;
return t;
}
static int tegra_thermctl_get_temp(void *data, int *out_temp)
{
struct tegra_thermctl_zone *zone = data;
u32 val;
val = readl(zone->reg);
val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
*out_temp = translate_temp(val);
return 0;
}
static int
thermtrip_program(struct device *dev, const struct tegra_tsensor_group *sg,
int trip_temp);
static int
throttrip_program(struct device *dev, const struct tegra_tsensor_group *sg,
struct soctherm_throt_cfg *stc, int trip_temp);
static struct soctherm_throt_cfg *
find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name);
static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
{
struct tegra_thermctl_zone *zone = data;
struct thermal_zone_device *tz = zone->tz;
struct tegra_soctherm *ts = zone->ts;
const struct tegra_tsensor_group *sg = zone->sg;
struct device *dev = zone->dev;
enum thermal_trip_type type;
int ret;
if (!tz)
return -EINVAL;
ret = tz->ops->get_trip_type(tz, trip, &type);
if (ret)
return ret;
if (type == THERMAL_TRIP_CRITICAL) {
return thermtrip_program(dev, sg, temp);
} else if (type == THERMAL_TRIP_HOT) {
int i;
for (i = 0; i < THROTTLE_SIZE; i++) {
struct thermal_cooling_device *cdev;
struct soctherm_throt_cfg *stc;
if (!ts->throt_cfgs[i].init)
continue;
cdev = ts->throt_cfgs[i].cdev;
if (get_thermal_instance(tz, cdev, trip))
stc = find_throttle_cfg_by_name(ts, cdev->type);
else
continue;
return throttrip_program(dev, sg, stc, temp);
}
}
return 0;
}
static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
.get_temp = tegra_thermctl_get_temp,
.set_trip_temp = tegra_thermctl_set_trip_temp,
};
/**
* enforce_temp_range() - check and enforce temperature range [min, max]
* @trip_temp: the trip temperature to check
*
* Checks and enforces the permitted temperature range that SOC_THERM
* HW can support This is
* done while taking care of precision.
*
* Return: The precision adjusted capped temperature in millicelsius.
*/
static int enforce_temp_range(struct device *dev, int trip_temp)
{
int temp;
temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
if (temp != trip_temp)
dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
trip_temp, temp);
return temp;
}
/**
* thermtrip_program() - Configures the hardware to shut down the
* system if a given sensor group reaches a given temperature
* @dev: ptr to the struct device for the SOC_THERM IP block
* @sg: pointer to the sensor group to set the thermtrip temperature for
* @trip_temp: the temperature in millicelsius to trigger the thermal trip at
*
* Sets the thermal trip threshold of the given sensor group to be the
* @trip_temp. If this threshold is crossed, the hardware will shut
* down.
*
* Note that, although @trip_temp is specified in millicelsius, the
* hardware is programmed in degrees Celsius.
*
* Return: 0 upon success, or %-EINVAL upon failure.
*/
static int thermtrip_program(struct device *dev,
const struct tegra_tsensor_group *sg,
int trip_temp)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
int temp;
u32 r;
if (!sg || !sg->thermtrip_threshold_mask)
return -EINVAL;
temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
return 0;
}
/**
* throttrip_program() - Configures the hardware to throttle the
* pulse if a given sensor group reaches a given temperature
* @dev: ptr to the struct device for the SOC_THERM IP block
* @sg: pointer to the sensor group to set the thermtrip temperature for
* @stc: pointer to the throttle need to be triggered
* @trip_temp: the temperature in millicelsius to trigger the thermal trip at
*
* Sets the thermal trip threshold and throttle event of the given sensor
* group. If this threshold is crossed, the hardware will trigger the
* throttle.
*
* Note that, although @trip_temp is specified in millicelsius, the
* hardware is programmed in degrees Celsius.
*
* Return: 0 upon success, or %-EINVAL upon failure.
*/
static int throttrip_program(struct device *dev,
const struct tegra_tsensor_group *sg,
struct soctherm_throt_cfg *stc,
int trip_temp)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
int temp, cpu_throt, gpu_throt;
unsigned int throt;
u32 r, reg_off;
if (!sg || !stc || !stc->init)
return -EINVAL;
temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
/* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
throt = stc->id;
reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
if (throt == THROTTLE_LIGHT) {
cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
} else {
cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
if (throt != THROTTLE_HEAVY)
dev_warn(dev,
"invalid throt id %d - assuming HEAVY",
throt);
}
r = readl(ts->regs + reg_off);
r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
writel(r, ts->regs + reg_off);
return 0;
}
static struct soctherm_throt_cfg *
find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
{
unsigned int i;
for (i = 0; ts->throt_cfgs[i].name; i++)
if (!strcmp(ts->throt_cfgs[i].name, name))
return &ts->throt_cfgs[i];
return NULL;
}
static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
{
int ntrips, i, ret;
enum thermal_trip_type type;
ntrips = of_thermal_get_ntrips(tz);
if (ntrips <= 0)
return -EINVAL;
for (i = 0; i < ntrips; i++) {
ret = tz->ops->get_trip_type(tz, i, &type);
if (ret)
return -EINVAL;
if (type == THERMAL_TRIP_HOT) {
ret = tz->ops->get_trip_temp(tz, i, temp);
if (!ret)
*trip = i;
return ret;
}
}
return -EINVAL;
}
/**
* tegra_soctherm_set_hwtrips() - set HW trip point from DT data
* @dev: struct device * of the SOC_THERM instance
*
* Configure the SOC_THERM HW trip points, setting "THERMTRIP"
* "THROTTLE" trip points , using "critical" or "hot" type trip_temp
* from thermal zone.
* After they have been configured, THERMTRIP or THROTTLE will take
* action when the configured SoC thermal sensor group reaches a
* certain temperature.
*
* Return: 0 upon success, or a negative error code on failure.
* "Success" does not mean that trips was enabled; it could also
* mean that no node was found in DT.
* THERMTRIP has been enabled successfully when a message similar to
* this one appears on the serial console:
* "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
* THROTTLE has been enabled successfully when a message similar to
* this one appears on the serial console:
* ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
*/
static int tegra_soctherm_set_hwtrips(struct device *dev,
const struct tegra_tsensor_group *sg,
struct thermal_zone_device *tz)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
struct soctherm_throt_cfg *stc;
int i, trip, temperature;
int ret;
ret = tz->ops->get_crit_temp(tz, &temperature);
if (ret) {
dev_warn(dev, "thermtrip: %s: missing critical temperature\n",
sg->name);
goto set_throttle;
}
ret = thermtrip_program(dev, sg, temperature);
if (ret) {
dev_err(dev, "thermtrip: %s: error during enable\n",
sg->name);
return ret;
}
dev_info(dev,
"thermtrip: will shut down when %s reaches %d mC\n",
sg->name, temperature);
set_throttle:
ret = get_hot_temp(tz, &trip, &temperature);
if (ret) {
dev_warn(dev, "throttrip: %s: missing hot temperature\n",
sg->name);
return 0;
}
for (i = 0; i < THROTTLE_SIZE; i++) {
struct thermal_cooling_device *cdev;
if (!ts->throt_cfgs[i].init)
continue;
cdev = ts->throt_cfgs[i].cdev;
if (get_thermal_instance(tz, cdev, trip))
stc = find_throttle_cfg_by_name(ts, cdev->type);
else
continue;
ret = throttrip_program(dev, sg, stc, temperature);
if (ret) {
dev_err(dev, "throttrip: %s: error during enable\n",
sg->name);
return ret;
}
dev_info(dev,
"throttrip: will throttle when %s reaches %d mC\n",
sg->name, temperature);
break;
}
if (i == THROTTLE_SIZE)
dev_warn(dev, "throttrip: %s: missing throttle cdev\n",
sg->name);
return 0;
}
#ifdef CONFIG_DEBUG_FS
static int regs_show(struct seq_file *s, void *data)
{
struct platform_device *pdev = s->private;
struct tegra_soctherm *ts = platform_get_drvdata(pdev);
const struct tegra_tsensor *tsensors = ts->soc->tsensors;
const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
u32 r, state;
int i, level;
seq_puts(s, "-----TSENSE (convert HW)-----\n");
for (i = 0; i < ts->soc->num_tsensors; i++) {
r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
seq_printf(s, "%s: ", tsensors[i].name);
seq_printf(s, "En(%d) ", state);
if (!state) {
seq_puts(s, "\n");
continue;
}
state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
seq_printf(s, "tiddq(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
seq_printf(s, "ten_count(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
seq_printf(s, "tsample(%d) ", state + 1);
r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
seq_printf(s, "Temp(%d/", state);
state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
seq_printf(s, "%d) ", translate_temp(state));
r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
seq_printf(s, "Capture(%d/", state);
state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
seq_printf(s, "%d) ", state);
r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
seq_printf(s, "Stop(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
seq_printf(s, "Tall(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
seq_printf(s, "Over(%d/", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
seq_printf(s, "%d/", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
seq_printf(s, "%d) ", state);
r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
seq_printf(s, "Therm_A/B(%d/", state);
state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
seq_printf(s, "%d)\n", (s16)state);
}
r = readl(ts->regs + SENSOR_PDIV);
seq_printf(s, "PDIV: 0x%x\n", r);
r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
seq_printf(s, "HOTSPOT: 0x%x\n", r);
seq_puts(s, "\n");
seq_puts(s, "-----SOC_THERM-----\n");
r = readl(ts->regs + SENSOR_TEMP1);
state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
seq_printf(s, " GPU(%d) ", translate_temp(state));
r = readl(ts->regs + SENSOR_TEMP2);
state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
seq_printf(s, " PLLX(%d) ", translate_temp(state));
state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
seq_printf(s, " MEM(%d)\n", translate_temp(state));
for (i = 0; i < ts->soc->num_ttgs; i++) {
seq_printf(s, "%s:\n", ttgs[i]->name);
for (level = 0; level < 4; level++) {
s32 v;
u32 mask;
u16 off = ttgs[i]->thermctl_lvl0_offset;
r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
state = REG_GET_MASK(r, mask);
v = sign_extend32(state, ts->soc->bptt - 1);
v *= ts->soc->thresh_grain;
seq_printf(s, " %d: Up/Dn(%d /", level, v);
mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
state = REG_GET_MASK(r, mask);
v = sign_extend32(state, ts->soc->bptt - 1);
v *= ts->soc->thresh_grain;
seq_printf(s, "%d ) ", v);
mask = THERMCTL_LVL0_CPU0_EN_MASK;
state = REG_GET_MASK(r, mask);
seq_printf(s, "En(%d) ", state);
mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
state = REG_GET_MASK(r, mask);
seq_puts(s, "CPU Throt");
if (!state)
seq_printf(s, "(%s) ", "none");
else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
seq_printf(s, "(%s) ", "L");
else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
seq_printf(s, "(%s) ", "H");
else
seq_printf(s, "(%s) ", "H+L");
mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
state = REG_GET_MASK(r, mask);
seq_puts(s, "GPU Throt");
if (!state)
seq_printf(s, "(%s) ", "none");
else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
seq_printf(s, "(%s) ", "L");
else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
seq_printf(s, "(%s) ", "H");
else
seq_printf(s, "(%s) ", "H+L");
mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
state = REG_GET_MASK(r, mask);
seq_printf(s, "Status(%s)\n",
state == 0 ? "LO" :
state == 1 ? "In" :
state == 2 ? "Res" : "HI");
}
}
r = readl(ts->regs + THERMCTL_STATS_CTL);
seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
r & STATS_CTL_EN_UP ? "En" : "--",
r & STATS_CTL_EN_DN ? "En" : "--");
for (level = 0; level < 4; level++) {
u16 off;
off = THERMCTL_LVL0_UP_STATS;
r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
seq_printf(s, " Level_%d Up(%d) ", level, r);
off = THERMCTL_LVL0_DN_STATS;
r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
seq_printf(s, "Dn(%d)\n", r);
}
r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
seq_printf(s, "Thermtrip Any En(%d)\n", state);
for (i = 0; i < ts->soc->num_ttgs; i++) {
state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
seq_printf(s, " %s En(%d) ", ttgs[i]->name, state);
state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
state *= ts->soc->thresh_grain;
seq_printf(s, "Thresh(%d)\n", state);
}
r = readl(ts->regs + THROT_GLOBAL_CFG);
seq_puts(s, "\n");
seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
seq_puts(s, "---------------------------------------------------\n");
r = readl(ts->regs + THROT_STATUS);
state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
seq_printf(s, "THROT STATUS: breach(%d) ", state);
state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
seq_printf(s, "state(%d) ", state);
state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
seq_printf(s, "enabled(%d)\n", state);
r = readl(ts->regs + CPU_PSKIP_STATUS);
if (ts->soc->use_ccroc) {
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
} else {
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
seq_printf(s, "N(%d) ", state);
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
seq_printf(s, "enabled(%d)\n", state);
}
return 0;
}
static int regs_open(struct inode *inode, struct file *file)
{
return single_open(file, regs_show, inode->i_private);
}
static const struct file_operations regs_fops = {
.open = regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void soctherm_debug_init(struct platform_device *pdev)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
struct dentry *root, *file;
root = debugfs_create_dir("soctherm", NULL);
if (!root) {
dev_err(&pdev->dev, "failed to create debugfs directory\n");
return;
}
tegra->debugfs_dir = root;
file = debugfs_create_file("reg_contents", 0644, root,
pdev, &regs_fops);
if (!file) {
dev_err(&pdev->dev, "failed to create debugfs file\n");
debugfs_remove_recursive(tegra->debugfs_dir);
tegra->debugfs_dir = NULL;
}
}
#else
static inline void soctherm_debug_init(struct platform_device *pdev) {}
#endif
static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
int err;
if (!tegra->clock_soctherm || !tegra->clock_tsensor)
return -EINVAL;
reset_control_assert(tegra->reset);
if (enable) {
err = clk_prepare_enable(tegra->clock_soctherm);
if (err) {
reset_control_deassert(tegra->reset);
return err;
}
err = clk_prepare_enable(tegra->clock_tsensor);
if (err) {
clk_disable_unprepare(tegra->clock_soctherm);
reset_control_deassert(tegra->reset);
return err;
}
} else {
clk_disable_unprepare(tegra->clock_tsensor);
clk_disable_unprepare(tegra->clock_soctherm);
}
reset_control_deassert(tegra->reset);
return 0;
}
static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
unsigned long *max_state)
{
*max_state = 1;
return 0;
}
static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
unsigned long *cur_state)
{
struct tegra_soctherm *ts = cdev->devdata;
u32 r;
r = readl(ts->regs + THROT_STATUS);
if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
*cur_state = 1;
else
*cur_state = 0;
return 0;
}
static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
unsigned long cur_state)
{
return 0;
}
static struct thermal_cooling_device_ops throt_cooling_ops = {
.get_max_state = throt_get_cdev_max_state,
.get_cur_state = throt_get_cdev_cur_state,
.set_cur_state = throt_set_cdev_state,
};
/**
* soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
* and register them as cooling devices.
*/
static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tegra_soctherm *ts = dev_get_drvdata(dev);
struct device_node *np_stc, *np_stcc;
const char *name;
u32 val;
int i, r;
for (i = 0; i < THROTTLE_SIZE; i++) {
ts->throt_cfgs[i].name = throt_names[i];
ts->throt_cfgs[i].id = i;
ts->throt_cfgs[i].init = false;
}
np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
if (!np_stc) {
dev_info(dev,
"throttle-cfg: no throttle-cfgs - not enabling\n");
return;
}
for_each_child_of_node(np_stc, np_stcc) {
struct soctherm_throt_cfg *stc;
struct thermal_cooling_device *tcd;
name = np_stcc->name;
stc = find_throttle_cfg_by_name(ts, name);
if (!stc) {
dev_err(dev,
"throttle-cfg: could not find %s\n", name);
continue;
}
r = of_property_read_u32(np_stcc, "nvidia,priority", &val);
if (r) {
dev_info(dev,
"throttle-cfg: %s: missing priority\n", name);
continue;
}
stc->priority = val;
if (ts->soc->use_ccroc) {
r = of_property_read_u32(np_stcc,
"nvidia,cpu-throt-level",
&val);
if (r) {
dev_info(dev,
"throttle-cfg: %s: missing cpu-throt-level\n",
name);
continue;
}
stc->cpu_throt_level = val;
} else {
r = of_property_read_u32(np_stcc,
"nvidia,cpu-throt-percent",
&val);
if (r) {
dev_info(dev,
"throttle-cfg: %s: missing cpu-throt-percent\n",
name);
continue;
}
stc->cpu_throt_depth = val;
}
tcd = thermal_of_cooling_device_register(np_stcc,
(char *)name, ts,
&throt_cooling_ops);
of_node_put(np_stcc);
if (IS_ERR_OR_NULL(tcd)) {
dev_err(dev,
"throttle-cfg: %s: failed to register cooling device\n",
name);
continue;
}
stc->cdev = tcd;
stc->init = true;
}
of_node_put(np_stc);
}
/**
* throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
* @level: describing the level LOW/MED/HIGH of throttling
*
* It's necessary to set up the CPU-local CCROC NV_THERM instance with
* the M/N values desired for each level. This function does this.
*
* This function pre-programs the CCROC NV_THERM levels in terms of
* pre-configured "Low", "Medium" or "Heavy" throttle levels which are
* mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
*/
static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
{
u8 depth, dividend;
u32 r;
switch (level) {
case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
depth = 50;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_MED:
depth = 75;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
depth = 80;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
return;
default:
return;
}
dividend = THROT_DEPTH_DIVIDEND(depth);
/* setup PSKIP in ccroc nv_therm registers */
r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
}
/**
* throttlectl_cpu_level_select() - program CPU pulse skipper config
* @throt: the LIGHT/HEAVY of throttle event id
*
* Pulse skippers are used to throttle clock frequencies. This
* function programs the pulse skippers based on @throt and platform
* data. This function is used on SoCs which have CPU-local pulse
* skipper control, such as T13x. It programs soctherm's interface to
* Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
* vectors. PSKIP_BYPASS mode is set as required per HW spec.
*/
static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r, throt_vect;
/* Denver:CCROC NV_THERM interface N:3 Mapping */
switch (ts->throt_cfgs[throt].cpu_throt_level) {
case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
throt_vect = THROT_VECT_LOW;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_MED:
throt_vect = THROT_VECT_MED;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
throt_vect = THROT_VECT_HIGH;
break;
default:
throt_vect = THROT_VECT_NONE;
break;
}
r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
/* bypass sequencer in soc_therm as it is programmed in ccroc */
r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
}
/**
* throttlectl_cpu_mn() - program CPU pulse skipper configuration
* @throt: the LIGHT/HEAVY of throttle event id
*
* Pulse skippers are used to throttle clock frequencies. This
* function programs the pulse skippers based on @throt and platform
* data. This function is used for CPUs that have "remote" pulse
* skipper control, e.g., the CPU pulse skipper is controlled by the
* SOC_THERM IP block. (SOC_THERM is located outside the CPU
* complex.)
*/
static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r;
int depth;
u8 dividend;
depth = ts->throt_cfgs[throt].cpu_throt_depth;
dividend = THROT_DEPTH_DIVIDEND(depth);
r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
}
/**
* soctherm_throttle_program() - programs pulse skippers' configuration
* @throt: the LIGHT/HEAVY of the throttle event id.
*
* Pulse skippers are used to throttle clock frequencies.
* This function programs the pulse skippers.
*/
static void soctherm_throttle_program(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r;
struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
if (!stc.init)
return;
/* Setup PSKIP parameters */
if (ts->soc->use_ccroc)
throttlectl_cpu_level_select(ts, throt);
else
throttlectl_cpu_mn(ts, throt);
r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
writel(r, ts->regs + THROT_DELAY_CTRL(throt));
r = readl(ts->regs + THROT_PRIORITY_LOCK);
r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
if (r >= stc.priority)
return;
r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
stc.priority);
writel(r, ts->regs + THROT_PRIORITY_LOCK);
}
static void tegra_soctherm_throttle(struct device *dev)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
u32 v;
int i;
/* configure LOW, MED and HIGH levels for CCROC NV_THERM */
if (ts->soc->use_ccroc) {
throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
}
/* Thermal HW throttle programming */
for (i = 0; i < THROTTLE_SIZE; i++)
soctherm_throttle_program(ts, i);
v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
if (ts->soc->use_ccroc) {
ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
} else {
writel(v, ts->regs + THROT_GLOBAL_CFG);
v = clk_readl(ts, CAR_SUPER_CCLKG_DIVIDER);
v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
clk_writel(ts, v, CAR_SUPER_CCLKG_DIVIDER);
}
/* initialize stats collection */
v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
writel(v, ts->regs + THERMCTL_STATS_CTL);
}
static void soctherm_init(struct platform_device *pdev)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
int i;
u32 pdiv, hotspot;
/* Initialize raw sensors */
for (i = 0; i < tegra->soc->num_tsensors; ++i)
enable_tsensor(tegra, i);
/* program pdiv and hotspot offsets per THERM */
pdiv = readl(tegra->regs + SENSOR_PDIV);
hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
for (i = 0; i < tegra->soc->num_ttgs; ++i) {
pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
ttgs[i]->pdiv);
/* hotspot offset from PLLX, doesn't need to configure PLLX */
if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
continue;
hotspot = REG_SET_MASK(hotspot,
ttgs[i]->pllx_hotspot_mask,
ttgs[i]->pllx_hotspot_diff);
}
writel(pdiv, tegra->regs + SENSOR_PDIV);
writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
/* Configure hw throttle */
tegra_soctherm_throttle(&pdev->dev);
}
static const struct of_device_id tegra_soctherm_of_match[] = {
#ifdef CONFIG_ARCH_TEGRA_124_SOC
{
.compatible = "nvidia,tegra124-soctherm",
.data = &tegra124_soctherm,
},
#endif
#ifdef CONFIG_ARCH_TEGRA_132_SOC
{
.compatible = "nvidia,tegra132-soctherm",
.data = &tegra132_soctherm,
},
#endif
#ifdef CONFIG_ARCH_TEGRA_210_SOC
{
.compatible = "nvidia,tegra210-soctherm",
.data = &tegra210_soctherm,
},
#endif
{ },
};
MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
static int tegra_soctherm_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct tegra_soctherm *tegra;
struct thermal_zone_device *z;
struct tsensor_shared_calib shared_calib;
struct resource *res;
struct tegra_soctherm_soc *soc;
unsigned int i;
int err;
match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
if (!match)
return -ENODEV;
soc = (struct tegra_soctherm_soc *)match->data;
if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
return -EINVAL;
tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
if (!tegra)
return -ENOMEM;
dev_set_drvdata(&pdev->dev, tegra);
tegra->soc = soc;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"soctherm-reg");
tegra->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->regs)) {
dev_err(&pdev->dev, "can't get soctherm registers");
return PTR_ERR(tegra->regs);
}
if (!tegra->soc->use_ccroc) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"car-reg");
tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->clk_regs)) {
dev_err(&pdev->dev, "can't get car clk registers");
return PTR_ERR(tegra->clk_regs);
}
} else {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"ccroc-reg");
tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->ccroc_regs)) {
dev_err(&pdev->dev, "can't get ccroc registers");
return PTR_ERR(tegra->ccroc_regs);
}
}
tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
if (IS_ERR(tegra->reset)) {
dev_err(&pdev->dev, "can't get soctherm reset\n");
return PTR_ERR(tegra->reset);
}
tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
if (IS_ERR(tegra->clock_tsensor)) {
dev_err(&pdev->dev, "can't get tsensor clock\n");
return PTR_ERR(tegra->clock_tsensor);
}
tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
if (IS_ERR(tegra->clock_soctherm)) {
dev_err(&pdev->dev, "can't get soctherm clock\n");
return PTR_ERR(tegra->clock_soctherm);
}
tegra->calib = devm_kzalloc(&pdev->dev,
sizeof(u32) * soc->num_tsensors,
GFP_KERNEL);
if (!tegra->calib)
return -ENOMEM;
/* calculate shared calibration data */
err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
if (err)
return err;
/* calculate tsensor calibaration data */
for (i = 0; i < soc->num_tsensors; ++i) {
err = tegra_calc_tsensor_calib(&soc->tsensors[i],
&shared_calib,
&tegra->calib[i]);
if (err)
return err;
}
tegra->thermctl_tzs = devm_kzalloc(&pdev->dev,
sizeof(*z) * soc->num_ttgs,
GFP_KERNEL);
if (!tegra->thermctl_tzs)
return -ENOMEM;
err = soctherm_clk_enable(pdev, true);
if (err)
return err;
soctherm_init_hw_throt_cdev(pdev);
soctherm_init(pdev);
for (i = 0; i < soc->num_ttgs; ++i) {
struct tegra_thermctl_zone *zone =
devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
if (!zone) {
err = -ENOMEM;
goto disable_clocks;
}
zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
zone->dev = &pdev->dev;
zone->sg = soc->ttgs[i];
zone->ts = tegra;
z = devm_thermal_zone_of_sensor_register(&pdev->dev,
soc->ttgs[i]->id, zone,
&tegra_of_thermal_ops);
if (IS_ERR(z)) {
err = PTR_ERR(z);
dev_err(&pdev->dev, "failed to register sensor: %d\n",
err);
goto disable_clocks;
}
zone->tz = z;
tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
/* Configure hw trip points */
err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
if (err)
goto disable_clocks;
}
soctherm_debug_init(pdev);
return 0;
disable_clocks:
soctherm_clk_enable(pdev, false);
return err;
}
static int tegra_soctherm_remove(struct platform_device *pdev)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
debugfs_remove_recursive(tegra->debugfs_dir);
soctherm_clk_enable(pdev, false);
return 0;
}
static int __maybe_unused soctherm_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
soctherm_clk_enable(pdev, false);
return 0;
}
static int __maybe_unused soctherm_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
struct tegra_soctherm_soc *soc = tegra->soc;
int err, i;
err = soctherm_clk_enable(pdev, true);
if (err) {
dev_err(&pdev->dev,
"Resume failed: enable clocks failed\n");
return err;
}
soctherm_init(pdev);
for (i = 0; i < soc->num_ttgs; ++i) {
struct thermal_zone_device *tz;
tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
if (err) {
dev_err(&pdev->dev,
"Resume failed: set hwtrips failed\n");
return err;
}
}
return 0;
}
static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
static struct platform_driver tegra_soctherm_driver = {
.probe = tegra_soctherm_probe,
.remove = tegra_soctherm_remove,
.driver = {
.name = "tegra_soctherm",
.pm = &tegra_soctherm_pm,
.of_match_table = tegra_soctherm_of_match,
},
};
module_platform_driver(tegra_soctherm_driver);
MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
MODULE_LICENSE("GPL v2");