OpenCloudOS-Kernel/drivers/gpu/drm/i915/intel_bios.c

774 lines
21 KiB
C

/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <linux/dmi.h>
#include <drm/drm_dp_helper.h>
#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "intel_bios.h"
#define SLAVE_ADDR1 0x70
#define SLAVE_ADDR2 0x72
static int panel_type;
static void *
find_section(struct bdb_header *bdb, int section_id)
{
u8 *base = (u8 *)bdb;
int index = 0;
u16 total, current_size;
u8 current_id;
/* skip to first section */
index += bdb->header_size;
total = bdb->bdb_size;
/* walk the sections looking for section_id */
while (index < total) {
current_id = *(base + index);
index++;
current_size = *((u16 *)(base + index));
index += 2;
if (current_id == section_id)
return base + index;
index += current_size;
}
return NULL;
}
static u16
get_blocksize(void *p)
{
u16 *block_ptr, block_size;
block_ptr = (u16 *)((char *)p - 2);
block_size = *block_ptr;
return block_size;
}
static void
fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
const struct lvds_dvo_timing *dvo_timing)
{
panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
dvo_timing->hactive_lo;
panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
dvo_timing->hsync_pulse_width;
panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
dvo_timing->vactive_lo;
panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
dvo_timing->vsync_off;
panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
dvo_timing->vsync_pulse_width;
panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
panel_fixed_mode->clock = dvo_timing->clock * 10;
panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
if (dvo_timing->hsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (dvo_timing->vsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
/* Some VBTs have bogus h/vtotal values */
if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
drm_mode_set_name(panel_fixed_mode);
}
static bool
lvds_dvo_timing_equal_size(const struct lvds_dvo_timing *a,
const struct lvds_dvo_timing *b)
{
if (a->hactive_hi != b->hactive_hi ||
a->hactive_lo != b->hactive_lo)
return false;
if (a->hsync_off_hi != b->hsync_off_hi ||
a->hsync_off_lo != b->hsync_off_lo)
return false;
if (a->hsync_pulse_width != b->hsync_pulse_width)
return false;
if (a->hblank_hi != b->hblank_hi ||
a->hblank_lo != b->hblank_lo)
return false;
if (a->vactive_hi != b->vactive_hi ||
a->vactive_lo != b->vactive_lo)
return false;
if (a->vsync_off != b->vsync_off)
return false;
if (a->vsync_pulse_width != b->vsync_pulse_width)
return false;
if (a->vblank_hi != b->vblank_hi ||
a->vblank_lo != b->vblank_lo)
return false;
return true;
}
static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
int index)
{
/*
* the size of fp_timing varies on the different platform.
* So calculate the DVO timing relative offset in LVDS data
* entry to get the DVO timing entry
*/
int lfp_data_size =
lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
int dvo_timing_offset =
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
}
/* get lvds_fp_timing entry
* this function may return NULL if the corresponding entry is invalid
*/
static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_header *bdb,
const struct bdb_lvds_lfp_data *data,
const struct bdb_lvds_lfp_data_ptrs *ptrs,
int index)
{
size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
size_t ofs;
if (index >= ARRAY_SIZE(ptrs->ptr))
return NULL;
ofs = ptrs->ptr[index].fp_timing_offset;
if (ofs < data_ofs ||
ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
return NULL;
return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
}
/* Try to find integrated panel data */
static void
parse_lfp_panel_data(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
const struct bdb_lvds_options *lvds_options;
const struct bdb_lvds_lfp_data *lvds_lfp_data;
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
const struct lvds_dvo_timing *panel_dvo_timing;
const struct lvds_fp_timing *fp_timing;
struct drm_display_mode *panel_fixed_mode;
int i, downclock;
lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
if (!lvds_options)
return;
dev_priv->lvds_dither = lvds_options->pixel_dither;
if (lvds_options->panel_type == 0xff)
return;
panel_type = lvds_options->panel_type;
lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
if (!lvds_lfp_data)
return;
lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
if (!lvds_lfp_data_ptrs)
return;
dev_priv->lvds_vbt = 1;
panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
lvds_options->panel_type);
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
dev_priv->lfp_lvds_vbt_mode = panel_fixed_mode;
DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
/*
* Iterate over the LVDS panel timing info to find the lowest clock
* for the native resolution.
*/
downclock = panel_dvo_timing->clock;
for (i = 0; i < 16; i++) {
const struct lvds_dvo_timing *dvo_timing;
dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
i);
if (lvds_dvo_timing_equal_size(dvo_timing, panel_dvo_timing) &&
dvo_timing->clock < downclock)
downclock = dvo_timing->clock;
}
if (downclock < panel_dvo_timing->clock && i915_lvds_downclock) {
dev_priv->lvds_downclock_avail = 1;
dev_priv->lvds_downclock = downclock * 10;
DRM_DEBUG_KMS("LVDS downclock is found in VBT. "
"Normal Clock %dKHz, downclock %dKHz\n",
panel_fixed_mode->clock, 10*downclock);
}
fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
lvds_lfp_data_ptrs,
lvds_options->panel_type);
if (fp_timing) {
/* check the resolution, just to be sure */
if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
fp_timing->y_res == panel_fixed_mode->vdisplay) {
dev_priv->bios_lvds_val = fp_timing->lvds_reg_val;
DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
dev_priv->bios_lvds_val);
}
}
}
/* Try to find sdvo panel data */
static void
parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct lvds_dvo_timing *dvo_timing;
struct drm_display_mode *panel_fixed_mode;
int index;
index = i915_vbt_sdvo_panel_type;
if (index == -2) {
DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
return;
}
if (index == -1) {
struct bdb_sdvo_lvds_options *sdvo_lvds_options;
sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
if (!sdvo_lvds_options)
return;
index = sdvo_lvds_options->panel_type;
}
dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS);
if (!dvo_timing)
return;
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, dvo_timing + index);
dev_priv->sdvo_lvds_vbt_mode = panel_fixed_mode;
DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
}
static int intel_bios_ssc_frequency(struct drm_device *dev,
bool alternate)
{
switch (INTEL_INFO(dev)->gen) {
case 2:
return alternate ? 66 : 48;
case 3:
case 4:
return alternate ? 100 : 96;
default:
return alternate ? 100 : 120;
}
}
static void
parse_general_features(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct drm_device *dev = dev_priv->dev;
struct bdb_general_features *general;
general = find_section(bdb, BDB_GENERAL_FEATURES);
if (general) {
dev_priv->int_tv_support = general->int_tv_support;
dev_priv->int_crt_support = general->int_crt_support;
dev_priv->lvds_use_ssc = general->enable_ssc;
dev_priv->lvds_ssc_freq =
intel_bios_ssc_frequency(dev, general->ssc_freq);
dev_priv->display_clock_mode = general->display_clock_mode;
DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d\n",
dev_priv->int_tv_support,
dev_priv->int_crt_support,
dev_priv->lvds_use_ssc,
dev_priv->lvds_ssc_freq,
dev_priv->display_clock_mode);
}
}
static void
parse_general_definitions(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct bdb_general_definitions *general;
general = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (general) {
u16 block_size = get_blocksize(general);
if (block_size >= sizeof(*general)) {
int bus_pin = general->crt_ddc_gmbus_pin;
DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
if (intel_gmbus_is_port_valid(bus_pin))
dev_priv->crt_ddc_pin = bus_pin;
} else {
DRM_DEBUG_KMS("BDB_GD too small (%d). Invalid.\n",
block_size);
}
}
}
static void
parse_sdvo_device_mapping(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct sdvo_device_mapping *p_mapping;
struct bdb_general_definitions *p_defs;
struct child_device_config *p_child;
int i, child_device_num, count;
u16 block_size;
p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (!p_defs) {
DRM_DEBUG_KMS("No general definition block is found, unable to construct sdvo mapping.\n");
return;
}
/* judge whether the size of child device meets the requirements.
* If the child device size obtained from general definition block
* is different with sizeof(struct child_device_config), skip the
* parsing of sdvo device info
*/
if (p_defs->child_dev_size != sizeof(*p_child)) {
/* different child dev size . Ignore it */
DRM_DEBUG_KMS("different child size is found. Invalid.\n");
return;
}
/* get the block size of general definitions */
block_size = get_blocksize(p_defs);
/* get the number of child device */
child_device_num = (block_size - sizeof(*p_defs)) /
sizeof(*p_child);
count = 0;
for (i = 0; i < child_device_num; i++) {
p_child = &(p_defs->devices[i]);
if (!p_child->device_type) {
/* skip the device block if device type is invalid */
continue;
}
if (p_child->slave_addr != SLAVE_ADDR1 &&
p_child->slave_addr != SLAVE_ADDR2) {
/*
* If the slave address is neither 0x70 nor 0x72,
* it is not a SDVO device. Skip it.
*/
continue;
}
if (p_child->dvo_port != DEVICE_PORT_DVOB &&
p_child->dvo_port != DEVICE_PORT_DVOC) {
/* skip the incorrect SDVO port */
DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
continue;
}
DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
" %s port\n",
p_child->slave_addr,
(p_child->dvo_port == DEVICE_PORT_DVOB) ?
"SDVOB" : "SDVOC");
p_mapping = &(dev_priv->sdvo_mappings[p_child->dvo_port - 1]);
if (!p_mapping->initialized) {
p_mapping->dvo_port = p_child->dvo_port;
p_mapping->slave_addr = p_child->slave_addr;
p_mapping->dvo_wiring = p_child->dvo_wiring;
p_mapping->ddc_pin = p_child->ddc_pin;
p_mapping->i2c_pin = p_child->i2c_pin;
p_mapping->initialized = 1;
DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
p_mapping->dvo_port,
p_mapping->slave_addr,
p_mapping->dvo_wiring,
p_mapping->ddc_pin,
p_mapping->i2c_pin);
} else {
DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
"two SDVO device.\n");
}
if (p_child->slave2_addr) {
/* Maybe this is a SDVO device with multiple inputs */
/* And the mapping info is not added */
DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
" is a SDVO device with multiple inputs.\n");
}
count++;
}
if (!count) {
/* No SDVO device info is found */
DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
}
return;
}
static void
parse_driver_features(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct drm_device *dev = dev_priv->dev;
struct bdb_driver_features *driver;
driver = find_section(bdb, BDB_DRIVER_FEATURES);
if (!driver)
return;
if (SUPPORTS_EDP(dev) &&
driver->lvds_config == BDB_DRIVER_FEATURE_EDP)
dev_priv->edp.support = 1;
if (driver->dual_frequency)
dev_priv->render_reclock_avail = true;
}
static void
parse_edp(struct drm_i915_private *dev_priv, struct bdb_header *bdb)
{
struct bdb_edp *edp;
struct edp_power_seq *edp_pps;
struct edp_link_params *edp_link_params;
edp = find_section(bdb, BDB_EDP);
if (!edp) {
if (SUPPORTS_EDP(dev_priv->dev) && dev_priv->edp.support) {
DRM_DEBUG_KMS("No eDP BDB found but eDP panel "
"supported, assume %dbpp panel color "
"depth.\n",
dev_priv->edp.bpp);
}
return;
}
switch ((edp->color_depth >> (panel_type * 2)) & 3) {
case EDP_18BPP:
dev_priv->edp.bpp = 18;
break;
case EDP_24BPP:
dev_priv->edp.bpp = 24;
break;
case EDP_30BPP:
dev_priv->edp.bpp = 30;
break;
}
/* Get the eDP sequencing and link info */
edp_pps = &edp->power_seqs[panel_type];
edp_link_params = &edp->link_params[panel_type];
dev_priv->edp.pps = *edp_pps;
dev_priv->edp.rate = edp_link_params->rate ? DP_LINK_BW_2_7 :
DP_LINK_BW_1_62;
switch (edp_link_params->lanes) {
case 0:
dev_priv->edp.lanes = 1;
break;
case 1:
dev_priv->edp.lanes = 2;
break;
case 3:
default:
dev_priv->edp.lanes = 4;
break;
}
switch (edp_link_params->preemphasis) {
case 0:
dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_0;
break;
case 1:
dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_3_5;
break;
case 2:
dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_6;
break;
case 3:
dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_9_5;
break;
}
switch (edp_link_params->vswing) {
case 0:
dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_400;
break;
case 1:
dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_600;
break;
case 2:
dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_800;
break;
case 3:
dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_1200;
break;
}
}
static void
parse_device_mapping(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct bdb_general_definitions *p_defs;
struct child_device_config *p_child, *child_dev_ptr;
int i, child_device_num, count;
u16 block_size;
p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (!p_defs) {
DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
return;
}
/* judge whether the size of child device meets the requirements.
* If the child device size obtained from general definition block
* is different with sizeof(struct child_device_config), skip the
* parsing of sdvo device info
*/
if (p_defs->child_dev_size != sizeof(*p_child)) {
/* different child dev size . Ignore it */
DRM_DEBUG_KMS("different child size is found. Invalid.\n");
return;
}
/* get the block size of general definitions */
block_size = get_blocksize(p_defs);
/* get the number of child device */
child_device_num = (block_size - sizeof(*p_defs)) /
sizeof(*p_child);
count = 0;
/* get the number of child device that is present */
for (i = 0; i < child_device_num; i++) {
p_child = &(p_defs->devices[i]);
if (!p_child->device_type) {
/* skip the device block if device type is invalid */
continue;
}
count++;
}
if (!count) {
DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
return;
}
dev_priv->child_dev = kcalloc(count, sizeof(*p_child), GFP_KERNEL);
if (!dev_priv->child_dev) {
DRM_DEBUG_KMS("No memory space for child device\n");
return;
}
dev_priv->child_dev_num = count;
count = 0;
for (i = 0; i < child_device_num; i++) {
p_child = &(p_defs->devices[i]);
if (!p_child->device_type) {
/* skip the device block if device type is invalid */
continue;
}
child_dev_ptr = dev_priv->child_dev + count;
count++;
memcpy((void *)child_dev_ptr, (void *)p_child,
sizeof(*p_child));
}
return;
}
static void
init_vbt_defaults(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
dev_priv->crt_ddc_pin = GMBUS_PORT_VGADDC;
/* LFP panel data */
dev_priv->lvds_dither = 1;
dev_priv->lvds_vbt = 0;
/* SDVO panel data */
dev_priv->sdvo_lvds_vbt_mode = NULL;
/* general features */
dev_priv->int_tv_support = 1;
dev_priv->int_crt_support = 1;
/* Default to using SSC */
dev_priv->lvds_use_ssc = 1;
dev_priv->lvds_ssc_freq = intel_bios_ssc_frequency(dev, 1);
DRM_DEBUG_KMS("Set default to SSC at %dMHz\n", dev_priv->lvds_ssc_freq);
/* eDP data */
dev_priv->edp.bpp = 18;
}
static int __init intel_no_opregion_vbt_callback(const struct dmi_system_id *id)
{
DRM_DEBUG_KMS("Falling back to manually reading VBT from "
"VBIOS ROM for %s\n",
id->ident);
return 1;
}
static const struct dmi_system_id intel_no_opregion_vbt[] = {
{
.callback = intel_no_opregion_vbt_callback,
.ident = "ThinkCentre A57",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_NAME, "97027RG"),
},
},
{ }
};
/**
* intel_parse_bios - find VBT and initialize settings from the BIOS
* @dev: DRM device
*
* Loads the Video BIOS and checks that the VBT exists. Sets scratch registers
* to appropriate values.
*
* Returns 0 on success, nonzero on failure.
*/
bool
intel_parse_bios(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct pci_dev *pdev = dev->pdev;
struct bdb_header *bdb = NULL;
u8 __iomem *bios = NULL;
init_vbt_defaults(dev_priv);
/* XXX Should this validation be moved to intel_opregion.c? */
if (!dmi_check_system(intel_no_opregion_vbt) && dev_priv->opregion.vbt) {
struct vbt_header *vbt = dev_priv->opregion.vbt;
if (memcmp(vbt->signature, "$VBT", 4) == 0) {
DRM_DEBUG_KMS("Using VBT from OpRegion: %20s\n",
vbt->signature);
bdb = (struct bdb_header *)((char *)vbt + vbt->bdb_offset);
} else
dev_priv->opregion.vbt = NULL;
}
if (bdb == NULL) {
struct vbt_header *vbt = NULL;
size_t size;
int i;
bios = pci_map_rom(pdev, &size);
if (!bios)
return -1;
/* Scour memory looking for the VBT signature */
for (i = 0; i + 4 < size; i++) {
if (!memcmp(bios + i, "$VBT", 4)) {
vbt = (struct vbt_header *)(bios + i);
break;
}
}
if (!vbt) {
DRM_DEBUG_DRIVER("VBT signature missing\n");
pci_unmap_rom(pdev, bios);
return -1;
}
bdb = (struct bdb_header *)(bios + i + vbt->bdb_offset);
}
/* Grab useful general definitions */
parse_general_features(dev_priv, bdb);
parse_general_definitions(dev_priv, bdb);
parse_lfp_panel_data(dev_priv, bdb);
parse_sdvo_panel_data(dev_priv, bdb);
parse_sdvo_device_mapping(dev_priv, bdb);
parse_device_mapping(dev_priv, bdb);
parse_driver_features(dev_priv, bdb);
parse_edp(dev_priv, bdb);
if (bios)
pci_unmap_rom(pdev, bios);
return 0;
}
/* Ensure that vital registers have been initialised, even if the BIOS
* is absent or just failing to do its job.
*/
void intel_setup_bios(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Set the Panel Power On/Off timings if uninitialized. */
if ((I915_READ(PP_ON_DELAYS) == 0) && (I915_READ(PP_OFF_DELAYS) == 0)) {
/* Set T2 to 40ms and T5 to 200ms */
I915_WRITE(PP_ON_DELAYS, 0x019007d0);
/* Set T3 to 35ms and Tx to 200ms */
I915_WRITE(PP_OFF_DELAYS, 0x015e07d0);
}
}