1189 lines
30 KiB
C
1189 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* IOMMU API for Renesas VMSA-compatible IPMMU
|
|
* Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
|
|
*
|
|
* Copyright (C) 2014-2020 Renesas Electronics Corporation
|
|
*/
|
|
|
|
#include <linux/bitmap.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-iommu.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/io-pgtable.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_iommu.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sys_soc.h>
|
|
|
|
#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
|
|
#include <asm/dma-iommu.h>
|
|
#else
|
|
#define arm_iommu_create_mapping(...) NULL
|
|
#define arm_iommu_attach_device(...) -ENODEV
|
|
#define arm_iommu_release_mapping(...) do {} while (0)
|
|
#define arm_iommu_detach_device(...) do {} while (0)
|
|
#endif
|
|
|
|
#define IPMMU_CTX_MAX 8U
|
|
#define IPMMU_CTX_INVALID -1
|
|
|
|
#define IPMMU_UTLB_MAX 48U
|
|
|
|
struct ipmmu_features {
|
|
bool use_ns_alias_offset;
|
|
bool has_cache_leaf_nodes;
|
|
unsigned int number_of_contexts;
|
|
unsigned int num_utlbs;
|
|
bool setup_imbuscr;
|
|
bool twobit_imttbcr_sl0;
|
|
bool reserved_context;
|
|
bool cache_snoop;
|
|
unsigned int ctx_offset_base;
|
|
unsigned int ctx_offset_stride;
|
|
unsigned int utlb_offset_base;
|
|
};
|
|
|
|
struct ipmmu_vmsa_device {
|
|
struct device *dev;
|
|
void __iomem *base;
|
|
struct iommu_device iommu;
|
|
struct ipmmu_vmsa_device *root;
|
|
const struct ipmmu_features *features;
|
|
unsigned int num_ctx;
|
|
spinlock_t lock; /* Protects ctx and domains[] */
|
|
DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
|
|
struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
|
|
s8 utlb_ctx[IPMMU_UTLB_MAX];
|
|
|
|
struct iommu_group *group;
|
|
struct dma_iommu_mapping *mapping;
|
|
};
|
|
|
|
struct ipmmu_vmsa_domain {
|
|
struct ipmmu_vmsa_device *mmu;
|
|
struct iommu_domain io_domain;
|
|
|
|
struct io_pgtable_cfg cfg;
|
|
struct io_pgtable_ops *iop;
|
|
|
|
unsigned int context_id;
|
|
struct mutex mutex; /* Protects mappings */
|
|
};
|
|
|
|
static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
|
|
{
|
|
return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
|
|
}
|
|
|
|
static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
|
|
{
|
|
return dev_iommu_priv_get(dev);
|
|
}
|
|
|
|
#define TLB_LOOP_TIMEOUT 100 /* 100us */
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Registers Definition
|
|
*/
|
|
|
|
#define IM_NS_ALIAS_OFFSET 0x800
|
|
|
|
/* MMU "context" registers */
|
|
#define IMCTR 0x0000 /* R-Car Gen2/3 */
|
|
#define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */
|
|
#define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
|
|
#define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
|
|
|
|
#define IMTTBCR 0x0008 /* R-Car Gen2/3 */
|
|
#define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */
|
|
#define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */
|
|
#define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */
|
|
#define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */
|
|
#define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */
|
|
#define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */
|
|
|
|
#define IMBUSCR 0x000c /* R-Car Gen2 only */
|
|
#define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */
|
|
#define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */
|
|
|
|
#define IMTTLBR0 0x0010 /* R-Car Gen2/3 */
|
|
#define IMTTUBR0 0x0014 /* R-Car Gen2/3 */
|
|
|
|
#define IMSTR 0x0020 /* R-Car Gen2/3 */
|
|
#define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */
|
|
#define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */
|
|
#define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */
|
|
#define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */
|
|
|
|
#define IMMAIR0 0x0028 /* R-Car Gen2/3 */
|
|
|
|
#define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
|
|
#define IMEUAR 0x0034 /* R-Car Gen3 only */
|
|
|
|
/* uTLB registers */
|
|
#define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
|
|
#define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */
|
|
#define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */
|
|
#define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */
|
|
#define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
|
|
#define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
|
|
|
|
#define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
|
|
#define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */
|
|
#define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Root device handling
|
|
*/
|
|
|
|
static struct platform_driver ipmmu_driver;
|
|
|
|
static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
|
|
{
|
|
return mmu->root == mmu;
|
|
}
|
|
|
|
static int __ipmmu_check_device(struct device *dev, void *data)
|
|
{
|
|
struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
|
|
struct ipmmu_vmsa_device **rootp = data;
|
|
|
|
if (ipmmu_is_root(mmu))
|
|
*rootp = mmu;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct ipmmu_vmsa_device *ipmmu_find_root(void)
|
|
{
|
|
struct ipmmu_vmsa_device *root = NULL;
|
|
|
|
return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
|
|
__ipmmu_check_device) == 0 ? root : NULL;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Read/Write Access
|
|
*/
|
|
|
|
static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
|
|
{
|
|
return ioread32(mmu->base + offset);
|
|
}
|
|
|
|
static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
|
|
u32 data)
|
|
{
|
|
iowrite32(data, mmu->base + offset);
|
|
}
|
|
|
|
static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
|
|
unsigned int context_id, unsigned int reg)
|
|
{
|
|
return mmu->features->ctx_offset_base +
|
|
context_id * mmu->features->ctx_offset_stride + reg;
|
|
}
|
|
|
|
static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
|
|
unsigned int context_id, unsigned int reg)
|
|
{
|
|
return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
|
|
}
|
|
|
|
static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
|
|
unsigned int context_id, unsigned int reg, u32 data)
|
|
{
|
|
ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
|
|
}
|
|
|
|
static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
|
|
unsigned int reg)
|
|
{
|
|
return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
|
|
}
|
|
|
|
static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
|
|
unsigned int reg, u32 data)
|
|
{
|
|
ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
|
|
}
|
|
|
|
static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
|
|
unsigned int reg, u32 data)
|
|
{
|
|
if (domain->mmu != domain->mmu->root)
|
|
ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
|
|
|
|
ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
|
|
}
|
|
|
|
static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
|
|
{
|
|
return mmu->features->utlb_offset_base + reg;
|
|
}
|
|
|
|
static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
|
|
unsigned int utlb, u32 data)
|
|
{
|
|
ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
|
|
}
|
|
|
|
static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
|
|
unsigned int utlb, u32 data)
|
|
{
|
|
ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* TLB and microTLB Management
|
|
*/
|
|
|
|
/* Wait for any pending TLB invalidations to complete */
|
|
static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
|
|
{
|
|
unsigned int count = 0;
|
|
|
|
while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
|
|
cpu_relax();
|
|
if (++count == TLB_LOOP_TIMEOUT) {
|
|
dev_err_ratelimited(domain->mmu->dev,
|
|
"TLB sync timed out -- MMU may be deadlocked\n");
|
|
return;
|
|
}
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = ipmmu_ctx_read_root(domain, IMCTR);
|
|
reg |= IMCTR_FLUSH;
|
|
ipmmu_ctx_write_all(domain, IMCTR, reg);
|
|
|
|
ipmmu_tlb_sync(domain);
|
|
}
|
|
|
|
/*
|
|
* Enable MMU translation for the microTLB.
|
|
*/
|
|
static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
|
|
unsigned int utlb)
|
|
{
|
|
struct ipmmu_vmsa_device *mmu = domain->mmu;
|
|
|
|
/*
|
|
* TODO: Reference-count the microTLB as several bus masters can be
|
|
* connected to the same microTLB.
|
|
*/
|
|
|
|
/* TODO: What should we set the ASID to ? */
|
|
ipmmu_imuasid_write(mmu, utlb, 0);
|
|
/* TODO: Do we need to flush the microTLB ? */
|
|
ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
|
|
IMUCTR_FLUSH | IMUCTR_MMUEN);
|
|
mmu->utlb_ctx[utlb] = domain->context_id;
|
|
}
|
|
|
|
/*
|
|
* Disable MMU translation for the microTLB.
|
|
*/
|
|
static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
|
|
unsigned int utlb)
|
|
{
|
|
struct ipmmu_vmsa_device *mmu = domain->mmu;
|
|
|
|
ipmmu_imuctr_write(mmu, utlb, 0);
|
|
mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
|
|
}
|
|
|
|
static void ipmmu_tlb_flush_all(void *cookie)
|
|
{
|
|
struct ipmmu_vmsa_domain *domain = cookie;
|
|
|
|
ipmmu_tlb_invalidate(domain);
|
|
}
|
|
|
|
static void ipmmu_tlb_flush(unsigned long iova, size_t size,
|
|
size_t granule, void *cookie)
|
|
{
|
|
ipmmu_tlb_flush_all(cookie);
|
|
}
|
|
|
|
static const struct iommu_flush_ops ipmmu_flush_ops = {
|
|
.tlb_flush_all = ipmmu_tlb_flush_all,
|
|
.tlb_flush_walk = ipmmu_tlb_flush,
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Domain/Context Management
|
|
*/
|
|
|
|
static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
|
|
struct ipmmu_vmsa_domain *domain)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&mmu->lock, flags);
|
|
|
|
ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
|
|
if (ret != mmu->num_ctx) {
|
|
mmu->domains[ret] = domain;
|
|
set_bit(ret, mmu->ctx);
|
|
} else
|
|
ret = -EBUSY;
|
|
|
|
spin_unlock_irqrestore(&mmu->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
|
|
unsigned int context_id)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mmu->lock, flags);
|
|
|
|
clear_bit(context_id, mmu->ctx);
|
|
mmu->domains[context_id] = NULL;
|
|
|
|
spin_unlock_irqrestore(&mmu->lock, flags);
|
|
}
|
|
|
|
static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
|
|
{
|
|
u64 ttbr;
|
|
u32 tmp;
|
|
|
|
/* TTBR0 */
|
|
ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
|
|
ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
|
|
ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
|
|
|
|
/*
|
|
* TTBCR
|
|
* We use long descriptors and allocate the whole 32-bit VA space to
|
|
* TTBR0.
|
|
*/
|
|
if (domain->mmu->features->twobit_imttbcr_sl0)
|
|
tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
|
|
else
|
|
tmp = IMTTBCR_SL0_LVL_1;
|
|
|
|
if (domain->mmu->features->cache_snoop)
|
|
tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
|
|
IMTTBCR_IRGN0_WB_WA;
|
|
|
|
ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
|
|
|
|
/* MAIR0 */
|
|
ipmmu_ctx_write_root(domain, IMMAIR0,
|
|
domain->cfg.arm_lpae_s1_cfg.mair);
|
|
|
|
/* IMBUSCR */
|
|
if (domain->mmu->features->setup_imbuscr)
|
|
ipmmu_ctx_write_root(domain, IMBUSCR,
|
|
ipmmu_ctx_read_root(domain, IMBUSCR) &
|
|
~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
|
|
|
|
/*
|
|
* IMSTR
|
|
* Clear all interrupt flags.
|
|
*/
|
|
ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
|
|
|
|
/*
|
|
* IMCTR
|
|
* Enable the MMU and interrupt generation. The long-descriptor
|
|
* translation table format doesn't use TEX remapping. Don't enable AF
|
|
* software management as we have no use for it. Flush the TLB as
|
|
* required when modifying the context registers.
|
|
*/
|
|
ipmmu_ctx_write_all(domain, IMCTR,
|
|
IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
|
|
}
|
|
|
|
static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Allocate the page table operations.
|
|
*
|
|
* VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
|
|
* access, Long-descriptor format" that the NStable bit being set in a
|
|
* table descriptor will result in the NStable and NS bits of all child
|
|
* entries being ignored and considered as being set. The IPMMU seems
|
|
* not to comply with this, as it generates a secure access page fault
|
|
* if any of the NStable and NS bits isn't set when running in
|
|
* non-secure mode.
|
|
*/
|
|
domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
|
|
domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
|
|
domain->cfg.ias = 32;
|
|
domain->cfg.oas = 40;
|
|
domain->cfg.tlb = &ipmmu_flush_ops;
|
|
domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
|
|
domain->io_domain.geometry.force_aperture = true;
|
|
/*
|
|
* TODO: Add support for coherent walk through CCI with DVM and remove
|
|
* cache handling. For now, delegate it to the io-pgtable code.
|
|
*/
|
|
domain->cfg.coherent_walk = false;
|
|
domain->cfg.iommu_dev = domain->mmu->root->dev;
|
|
|
|
/*
|
|
* Find an unused context.
|
|
*/
|
|
ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
domain->context_id = ret;
|
|
|
|
domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
|
|
domain);
|
|
if (!domain->iop) {
|
|
ipmmu_domain_free_context(domain->mmu->root,
|
|
domain->context_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ipmmu_domain_setup_context(domain);
|
|
return 0;
|
|
}
|
|
|
|
static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
|
|
{
|
|
if (!domain->mmu)
|
|
return;
|
|
|
|
/*
|
|
* Disable the context. Flush the TLB as required when modifying the
|
|
* context registers.
|
|
*
|
|
* TODO: Is TLB flush really needed ?
|
|
*/
|
|
ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
|
|
ipmmu_tlb_sync(domain);
|
|
ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Fault Handling
|
|
*/
|
|
|
|
static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
|
|
{
|
|
const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
|
|
struct ipmmu_vmsa_device *mmu = domain->mmu;
|
|
unsigned long iova;
|
|
u32 status;
|
|
|
|
status = ipmmu_ctx_read_root(domain, IMSTR);
|
|
if (!(status & err_mask))
|
|
return IRQ_NONE;
|
|
|
|
iova = ipmmu_ctx_read_root(domain, IMELAR);
|
|
if (IS_ENABLED(CONFIG_64BIT))
|
|
iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
|
|
|
|
/*
|
|
* Clear the error status flags. Unlike traditional interrupt flag
|
|
* registers that must be cleared by writing 1, this status register
|
|
* seems to require 0. The error address register must be read before,
|
|
* otherwise its value will be 0.
|
|
*/
|
|
ipmmu_ctx_write_root(domain, IMSTR, 0);
|
|
|
|
/* Log fatal errors. */
|
|
if (status & IMSTR_MHIT)
|
|
dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
|
|
iova);
|
|
if (status & IMSTR_ABORT)
|
|
dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
|
|
iova);
|
|
|
|
if (!(status & (IMSTR_PF | IMSTR_TF)))
|
|
return IRQ_NONE;
|
|
|
|
/*
|
|
* Try to handle page faults and translation faults.
|
|
*
|
|
* TODO: We need to look up the faulty device based on the I/O VA. Use
|
|
* the IOMMU device for now.
|
|
*/
|
|
if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
|
|
return IRQ_HANDLED;
|
|
|
|
dev_err_ratelimited(mmu->dev,
|
|
"Unhandled fault: status 0x%08x iova 0x%lx\n",
|
|
status, iova);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t ipmmu_irq(int irq, void *dev)
|
|
{
|
|
struct ipmmu_vmsa_device *mmu = dev;
|
|
irqreturn_t status = IRQ_NONE;
|
|
unsigned int i;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mmu->lock, flags);
|
|
|
|
/*
|
|
* Check interrupts for all active contexts.
|
|
*/
|
|
for (i = 0; i < mmu->num_ctx; i++) {
|
|
if (!mmu->domains[i])
|
|
continue;
|
|
if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
|
|
status = IRQ_HANDLED;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&mmu->lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* IOMMU Operations
|
|
*/
|
|
|
|
static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
|
|
{
|
|
struct ipmmu_vmsa_domain *domain;
|
|
|
|
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
mutex_init(&domain->mutex);
|
|
|
|
return &domain->io_domain;
|
|
}
|
|
|
|
static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
|
|
{
|
|
struct iommu_domain *io_domain = NULL;
|
|
|
|
switch (type) {
|
|
case IOMMU_DOMAIN_UNMANAGED:
|
|
io_domain = __ipmmu_domain_alloc(type);
|
|
break;
|
|
|
|
case IOMMU_DOMAIN_DMA:
|
|
io_domain = __ipmmu_domain_alloc(type);
|
|
if (io_domain && iommu_get_dma_cookie(io_domain)) {
|
|
kfree(io_domain);
|
|
io_domain = NULL;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return io_domain;
|
|
}
|
|
|
|
static void ipmmu_domain_free(struct iommu_domain *io_domain)
|
|
{
|
|
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
|
|
|
|
/*
|
|
* Free the domain resources. We assume that all devices have already
|
|
* been detached.
|
|
*/
|
|
iommu_put_dma_cookie(io_domain);
|
|
ipmmu_domain_destroy_context(domain);
|
|
free_io_pgtable_ops(domain->iop);
|
|
kfree(domain);
|
|
}
|
|
|
|
static int ipmmu_attach_device(struct iommu_domain *io_domain,
|
|
struct device *dev)
|
|
{
|
|
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
|
|
struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
|
|
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
|
|
unsigned int i;
|
|
int ret = 0;
|
|
|
|
if (!mmu) {
|
|
dev_err(dev, "Cannot attach to IPMMU\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
mutex_lock(&domain->mutex);
|
|
|
|
if (!domain->mmu) {
|
|
/* The domain hasn't been used yet, initialize it. */
|
|
domain->mmu = mmu;
|
|
ret = ipmmu_domain_init_context(domain);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Unable to initialize IPMMU context\n");
|
|
domain->mmu = NULL;
|
|
} else {
|
|
dev_info(dev, "Using IPMMU context %u\n",
|
|
domain->context_id);
|
|
}
|
|
} else if (domain->mmu != mmu) {
|
|
/*
|
|
* Something is wrong, we can't attach two devices using
|
|
* different IOMMUs to the same domain.
|
|
*/
|
|
dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
|
|
dev_name(mmu->dev), dev_name(domain->mmu->dev));
|
|
ret = -EINVAL;
|
|
} else
|
|
dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
|
|
|
|
mutex_unlock(&domain->mutex);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (i = 0; i < fwspec->num_ids; ++i)
|
|
ipmmu_utlb_enable(domain, fwspec->ids[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ipmmu_detach_device(struct iommu_domain *io_domain,
|
|
struct device *dev)
|
|
{
|
|
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
|
|
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < fwspec->num_ids; ++i)
|
|
ipmmu_utlb_disable(domain, fwspec->ids[i]);
|
|
|
|
/*
|
|
* TODO: Optimize by disabling the context when no device is attached.
|
|
*/
|
|
}
|
|
|
|
static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
|
|
phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
|
|
{
|
|
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
|
|
|
|
if (!domain)
|
|
return -ENODEV;
|
|
|
|
return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp);
|
|
}
|
|
|
|
static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
|
|
size_t size, struct iommu_iotlb_gather *gather)
|
|
{
|
|
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
|
|
|
|
return domain->iop->unmap(domain->iop, iova, size, gather);
|
|
}
|
|
|
|
static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
|
|
{
|
|
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
|
|
|
|
if (domain->mmu)
|
|
ipmmu_tlb_flush_all(domain);
|
|
}
|
|
|
|
static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
|
|
struct iommu_iotlb_gather *gather)
|
|
{
|
|
ipmmu_flush_iotlb_all(io_domain);
|
|
}
|
|
|
|
static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
|
|
dma_addr_t iova)
|
|
{
|
|
struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
|
|
|
|
/* TODO: Is locking needed ? */
|
|
|
|
return domain->iop->iova_to_phys(domain->iop, iova);
|
|
}
|
|
|
|
static int ipmmu_init_platform_device(struct device *dev,
|
|
struct of_phandle_args *args)
|
|
{
|
|
struct platform_device *ipmmu_pdev;
|
|
|
|
ipmmu_pdev = of_find_device_by_node(args->np);
|
|
if (!ipmmu_pdev)
|
|
return -ENODEV;
|
|
|
|
dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct soc_device_attribute soc_needs_opt_in[] = {
|
|
{ .family = "R-Car Gen3", },
|
|
{ .family = "RZ/G2", },
|
|
{ /* sentinel */ }
|
|
};
|
|
|
|
static const struct soc_device_attribute soc_denylist[] = {
|
|
{ .soc_id = "r8a774a1", },
|
|
{ .soc_id = "r8a7795", .revision = "ES1.*" },
|
|
{ .soc_id = "r8a7795", .revision = "ES2.*" },
|
|
{ .soc_id = "r8a7796", },
|
|
{ /* sentinel */ }
|
|
};
|
|
|
|
static const char * const devices_allowlist[] = {
|
|
"ee100000.mmc",
|
|
"ee120000.mmc",
|
|
"ee140000.mmc",
|
|
"ee160000.mmc"
|
|
};
|
|
|
|
static bool ipmmu_device_is_allowed(struct device *dev)
|
|
{
|
|
unsigned int i;
|
|
|
|
/*
|
|
* R-Car Gen3 and RZ/G2 use the allow list to opt-in devices.
|
|
* For Other SoCs, this returns true anyway.
|
|
*/
|
|
if (!soc_device_match(soc_needs_opt_in))
|
|
return true;
|
|
|
|
/* Check whether this SoC can use the IPMMU correctly or not */
|
|
if (soc_device_match(soc_denylist))
|
|
return false;
|
|
|
|
/* Check whether this device can work with the IPMMU */
|
|
for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
|
|
if (!strcmp(dev_name(dev), devices_allowlist[i]))
|
|
return true;
|
|
}
|
|
|
|
/* Otherwise, do not allow use of IPMMU */
|
|
return false;
|
|
}
|
|
|
|
static int ipmmu_of_xlate(struct device *dev,
|
|
struct of_phandle_args *spec)
|
|
{
|
|
if (!ipmmu_device_is_allowed(dev))
|
|
return -ENODEV;
|
|
|
|
iommu_fwspec_add_ids(dev, spec->args, 1);
|
|
|
|
/* Initialize once - xlate() will call multiple times */
|
|
if (to_ipmmu(dev))
|
|
return 0;
|
|
|
|
return ipmmu_init_platform_device(dev, spec);
|
|
}
|
|
|
|
static int ipmmu_init_arm_mapping(struct device *dev)
|
|
{
|
|
struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
|
|
int ret;
|
|
|
|
/*
|
|
* Create the ARM mapping, used by the ARM DMA mapping core to allocate
|
|
* VAs. This will allocate a corresponding IOMMU domain.
|
|
*
|
|
* TODO:
|
|
* - Create one mapping per context (TLB).
|
|
* - Make the mapping size configurable ? We currently use a 2GB mapping
|
|
* at a 1GB offset to ensure that NULL VAs will fault.
|
|
*/
|
|
if (!mmu->mapping) {
|
|
struct dma_iommu_mapping *mapping;
|
|
|
|
mapping = arm_iommu_create_mapping(&platform_bus_type,
|
|
SZ_1G, SZ_2G);
|
|
if (IS_ERR(mapping)) {
|
|
dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
|
|
ret = PTR_ERR(mapping);
|
|
goto error;
|
|
}
|
|
|
|
mmu->mapping = mapping;
|
|
}
|
|
|
|
/* Attach the ARM VA mapping to the device. */
|
|
ret = arm_iommu_attach_device(dev, mmu->mapping);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Failed to attach device to VA mapping\n");
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
if (mmu->mapping)
|
|
arm_iommu_release_mapping(mmu->mapping);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct iommu_device *ipmmu_probe_device(struct device *dev)
|
|
{
|
|
struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
|
|
|
|
/*
|
|
* Only let through devices that have been verified in xlate()
|
|
*/
|
|
if (!mmu)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
return &mmu->iommu;
|
|
}
|
|
|
|
static void ipmmu_probe_finalize(struct device *dev)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
|
|
ret = ipmmu_init_arm_mapping(dev);
|
|
|
|
if (ret)
|
|
dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
|
|
}
|
|
|
|
static void ipmmu_release_device(struct device *dev)
|
|
{
|
|
arm_iommu_detach_device(dev);
|
|
}
|
|
|
|
static struct iommu_group *ipmmu_find_group(struct device *dev)
|
|
{
|
|
struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
|
|
struct iommu_group *group;
|
|
|
|
if (mmu->group)
|
|
return iommu_group_ref_get(mmu->group);
|
|
|
|
group = iommu_group_alloc();
|
|
if (!IS_ERR(group))
|
|
mmu->group = group;
|
|
|
|
return group;
|
|
}
|
|
|
|
static const struct iommu_ops ipmmu_ops = {
|
|
.domain_alloc = ipmmu_domain_alloc,
|
|
.domain_free = ipmmu_domain_free,
|
|
.attach_dev = ipmmu_attach_device,
|
|
.detach_dev = ipmmu_detach_device,
|
|
.map = ipmmu_map,
|
|
.unmap = ipmmu_unmap,
|
|
.flush_iotlb_all = ipmmu_flush_iotlb_all,
|
|
.iotlb_sync = ipmmu_iotlb_sync,
|
|
.iova_to_phys = ipmmu_iova_to_phys,
|
|
.probe_device = ipmmu_probe_device,
|
|
.release_device = ipmmu_release_device,
|
|
.probe_finalize = ipmmu_probe_finalize,
|
|
.device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
|
|
? generic_device_group : ipmmu_find_group,
|
|
.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
|
|
.of_xlate = ipmmu_of_xlate,
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Probe/remove and init
|
|
*/
|
|
|
|
static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
|
|
{
|
|
unsigned int i;
|
|
|
|
/* Disable all contexts. */
|
|
for (i = 0; i < mmu->num_ctx; ++i)
|
|
ipmmu_ctx_write(mmu, i, IMCTR, 0);
|
|
}
|
|
|
|
static const struct ipmmu_features ipmmu_features_default = {
|
|
.use_ns_alias_offset = true,
|
|
.has_cache_leaf_nodes = false,
|
|
.number_of_contexts = 1, /* software only tested with one context */
|
|
.num_utlbs = 32,
|
|
.setup_imbuscr = true,
|
|
.twobit_imttbcr_sl0 = false,
|
|
.reserved_context = false,
|
|
.cache_snoop = true,
|
|
.ctx_offset_base = 0,
|
|
.ctx_offset_stride = 0x40,
|
|
.utlb_offset_base = 0,
|
|
};
|
|
|
|
static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
|
|
.use_ns_alias_offset = false,
|
|
.has_cache_leaf_nodes = true,
|
|
.number_of_contexts = 8,
|
|
.num_utlbs = 48,
|
|
.setup_imbuscr = false,
|
|
.twobit_imttbcr_sl0 = true,
|
|
.reserved_context = true,
|
|
.cache_snoop = false,
|
|
.ctx_offset_base = 0,
|
|
.ctx_offset_stride = 0x40,
|
|
.utlb_offset_base = 0,
|
|
};
|
|
|
|
static const struct of_device_id ipmmu_of_ids[] = {
|
|
{
|
|
.compatible = "renesas,ipmmu-vmsa",
|
|
.data = &ipmmu_features_default,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a774a1",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a774b1",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a774c0",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a774e1",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a7795",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a7796",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a77961",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a77965",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a77970",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a77990",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
.compatible = "renesas,ipmmu-r8a77995",
|
|
.data = &ipmmu_features_rcar_gen3,
|
|
}, {
|
|
/* Terminator */
|
|
},
|
|
};
|
|
|
|
static int ipmmu_probe(struct platform_device *pdev)
|
|
{
|
|
struct ipmmu_vmsa_device *mmu;
|
|
struct resource *res;
|
|
int irq;
|
|
int ret;
|
|
|
|
mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
|
|
if (!mmu) {
|
|
dev_err(&pdev->dev, "cannot allocate device data\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mmu->dev = &pdev->dev;
|
|
spin_lock_init(&mmu->lock);
|
|
bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
|
|
mmu->features = of_device_get_match_data(&pdev->dev);
|
|
memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
|
|
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
|
|
|
|
/* Map I/O memory and request IRQ. */
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
mmu->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(mmu->base))
|
|
return PTR_ERR(mmu->base);
|
|
|
|
/*
|
|
* The IPMMU has two register banks, for secure and non-secure modes.
|
|
* The bank mapped at the beginning of the IPMMU address space
|
|
* corresponds to the running mode of the CPU. When running in secure
|
|
* mode the non-secure register bank is also available at an offset.
|
|
*
|
|
* Secure mode operation isn't clearly documented and is thus currently
|
|
* not implemented in the driver. Furthermore, preliminary tests of
|
|
* non-secure operation with the main register bank were not successful.
|
|
* Offset the registers base unconditionally to point to the non-secure
|
|
* alias space for now.
|
|
*/
|
|
if (mmu->features->use_ns_alias_offset)
|
|
mmu->base += IM_NS_ALIAS_OFFSET;
|
|
|
|
mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
|
|
|
|
/*
|
|
* Determine if this IPMMU instance is a root device by checking for
|
|
* the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
|
|
*/
|
|
if (!mmu->features->has_cache_leaf_nodes ||
|
|
!of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
|
|
mmu->root = mmu;
|
|
else
|
|
mmu->root = ipmmu_find_root();
|
|
|
|
/*
|
|
* Wait until the root device has been registered for sure.
|
|
*/
|
|
if (!mmu->root)
|
|
return -EPROBE_DEFER;
|
|
|
|
/* Root devices have mandatory IRQs */
|
|
if (ipmmu_is_root(mmu)) {
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
|
|
dev_name(&pdev->dev), mmu);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
|
|
return ret;
|
|
}
|
|
|
|
ipmmu_device_reset(mmu);
|
|
|
|
if (mmu->features->reserved_context) {
|
|
dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
|
|
set_bit(0, mmu->ctx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Register the IPMMU to the IOMMU subsystem in the following cases:
|
|
* - R-Car Gen2 IPMMU (all devices registered)
|
|
* - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
|
|
*/
|
|
if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
|
|
ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
|
|
dev_name(&pdev->dev));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
#if defined(CONFIG_IOMMU_DMA)
|
|
if (!iommu_present(&platform_bus_type))
|
|
bus_set_iommu(&platform_bus_type, &ipmmu_ops);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* We can't create the ARM mapping here as it requires the bus to have
|
|
* an IOMMU, which only happens when bus_set_iommu() is called in
|
|
* ipmmu_init() after the probe function returns.
|
|
*/
|
|
|
|
platform_set_drvdata(pdev, mmu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ipmmu_remove(struct platform_device *pdev)
|
|
{
|
|
struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
|
|
|
|
iommu_device_sysfs_remove(&mmu->iommu);
|
|
iommu_device_unregister(&mmu->iommu);
|
|
|
|
arm_iommu_release_mapping(mmu->mapping);
|
|
|
|
ipmmu_device_reset(mmu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int ipmmu_resume_noirq(struct device *dev)
|
|
{
|
|
struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
|
|
unsigned int i;
|
|
|
|
/* Reset root MMU and restore contexts */
|
|
if (ipmmu_is_root(mmu)) {
|
|
ipmmu_device_reset(mmu);
|
|
|
|
for (i = 0; i < mmu->num_ctx; i++) {
|
|
if (!mmu->domains[i])
|
|
continue;
|
|
|
|
ipmmu_domain_setup_context(mmu->domains[i]);
|
|
}
|
|
}
|
|
|
|
/* Re-enable active micro-TLBs */
|
|
for (i = 0; i < mmu->features->num_utlbs; i++) {
|
|
if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
|
|
continue;
|
|
|
|
ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops ipmmu_pm = {
|
|
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
|
|
};
|
|
#define DEV_PM_OPS &ipmmu_pm
|
|
#else
|
|
#define DEV_PM_OPS NULL
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static struct platform_driver ipmmu_driver = {
|
|
.driver = {
|
|
.name = "ipmmu-vmsa",
|
|
.of_match_table = of_match_ptr(ipmmu_of_ids),
|
|
.pm = DEV_PM_OPS,
|
|
},
|
|
.probe = ipmmu_probe,
|
|
.remove = ipmmu_remove,
|
|
};
|
|
|
|
static int __init ipmmu_init(void)
|
|
{
|
|
struct device_node *np;
|
|
static bool setup_done;
|
|
int ret;
|
|
|
|
if (setup_done)
|
|
return 0;
|
|
|
|
np = of_find_matching_node(NULL, ipmmu_of_ids);
|
|
if (!np)
|
|
return 0;
|
|
|
|
of_node_put(np);
|
|
|
|
ret = platform_driver_register(&ipmmu_driver);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
|
|
if (!iommu_present(&platform_bus_type))
|
|
bus_set_iommu(&platform_bus_type, &ipmmu_ops);
|
|
#endif
|
|
|
|
setup_done = true;
|
|
return 0;
|
|
}
|
|
subsys_initcall(ipmmu_init);
|