923 lines
26 KiB
C
923 lines
26 KiB
C
/*
|
|
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Zhiyuan Lv <zhiyuan.lv@intel.com>
|
|
* Zhi Wang <zhi.a.wang@intel.com>
|
|
*
|
|
* Contributors:
|
|
* Min He <min.he@intel.com>
|
|
* Bing Niu <bing.niu@intel.com>
|
|
* Ping Gao <ping.a.gao@intel.com>
|
|
* Tina Zhang <tina.zhang@intel.com>
|
|
*
|
|
*/
|
|
|
|
#include "i915_drv.h"
|
|
#include "gvt.h"
|
|
|
|
#define _EL_OFFSET_STATUS 0x234
|
|
#define _EL_OFFSET_STATUS_BUF 0x370
|
|
#define _EL_OFFSET_STATUS_PTR 0x3A0
|
|
|
|
#define execlist_ring_mmio(gvt, ring_id, offset) \
|
|
(gvt->dev_priv->engine[ring_id]->mmio_base + (offset))
|
|
|
|
#define valid_context(ctx) ((ctx)->valid)
|
|
#define same_context(a, b) (((a)->context_id == (b)->context_id) && \
|
|
((a)->lrca == (b)->lrca))
|
|
|
|
static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask);
|
|
|
|
static int context_switch_events[] = {
|
|
[RCS] = RCS_AS_CONTEXT_SWITCH,
|
|
[BCS] = BCS_AS_CONTEXT_SWITCH,
|
|
[VCS] = VCS_AS_CONTEXT_SWITCH,
|
|
[VCS2] = VCS2_AS_CONTEXT_SWITCH,
|
|
[VECS] = VECS_AS_CONTEXT_SWITCH,
|
|
};
|
|
|
|
static int ring_id_to_context_switch_event(int ring_id)
|
|
{
|
|
if (WARN_ON(ring_id < RCS ||
|
|
ring_id >= ARRAY_SIZE(context_switch_events)))
|
|
return -EINVAL;
|
|
|
|
return context_switch_events[ring_id];
|
|
}
|
|
|
|
static void switch_virtual_execlist_slot(struct intel_vgpu_execlist *execlist)
|
|
{
|
|
gvt_dbg_el("[before] running slot %d/context %x pending slot %d\n",
|
|
execlist->running_slot ?
|
|
execlist->running_slot->index : -1,
|
|
execlist->running_context ?
|
|
execlist->running_context->context_id : 0,
|
|
execlist->pending_slot ?
|
|
execlist->pending_slot->index : -1);
|
|
|
|
execlist->running_slot = execlist->pending_slot;
|
|
execlist->pending_slot = NULL;
|
|
execlist->running_context = execlist->running_context ?
|
|
&execlist->running_slot->ctx[0] : NULL;
|
|
|
|
gvt_dbg_el("[after] running slot %d/context %x pending slot %d\n",
|
|
execlist->running_slot ?
|
|
execlist->running_slot->index : -1,
|
|
execlist->running_context ?
|
|
execlist->running_context->context_id : 0,
|
|
execlist->pending_slot ?
|
|
execlist->pending_slot->index : -1);
|
|
}
|
|
|
|
static void emulate_execlist_status(struct intel_vgpu_execlist *execlist)
|
|
{
|
|
struct intel_vgpu_execlist_slot *running = execlist->running_slot;
|
|
struct intel_vgpu_execlist_slot *pending = execlist->pending_slot;
|
|
struct execlist_ctx_descriptor_format *desc = execlist->running_context;
|
|
struct intel_vgpu *vgpu = execlist->vgpu;
|
|
struct execlist_status_format status;
|
|
int ring_id = execlist->ring_id;
|
|
u32 status_reg = execlist_ring_mmio(vgpu->gvt,
|
|
ring_id, _EL_OFFSET_STATUS);
|
|
|
|
status.ldw = vgpu_vreg(vgpu, status_reg);
|
|
status.udw = vgpu_vreg(vgpu, status_reg + 4);
|
|
|
|
if (running) {
|
|
status.current_execlist_pointer = !!running->index;
|
|
status.execlist_write_pointer = !!!running->index;
|
|
status.execlist_0_active = status.execlist_0_valid =
|
|
!!!(running->index);
|
|
status.execlist_1_active = status.execlist_1_valid =
|
|
!!(running->index);
|
|
} else {
|
|
status.context_id = 0;
|
|
status.execlist_0_active = status.execlist_0_valid = 0;
|
|
status.execlist_1_active = status.execlist_1_valid = 0;
|
|
}
|
|
|
|
status.context_id = desc ? desc->context_id : 0;
|
|
status.execlist_queue_full = !!(pending);
|
|
|
|
vgpu_vreg(vgpu, status_reg) = status.ldw;
|
|
vgpu_vreg(vgpu, status_reg + 4) = status.udw;
|
|
|
|
gvt_dbg_el("vgpu%d: status reg offset %x ldw %x udw %x\n",
|
|
vgpu->id, status_reg, status.ldw, status.udw);
|
|
}
|
|
|
|
static void emulate_csb_update(struct intel_vgpu_execlist *execlist,
|
|
struct execlist_context_status_format *status,
|
|
bool trigger_interrupt_later)
|
|
{
|
|
struct intel_vgpu *vgpu = execlist->vgpu;
|
|
int ring_id = execlist->ring_id;
|
|
struct execlist_context_status_pointer_format ctx_status_ptr;
|
|
u32 write_pointer;
|
|
u32 ctx_status_ptr_reg, ctx_status_buf_reg, offset;
|
|
|
|
ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
|
|
_EL_OFFSET_STATUS_PTR);
|
|
ctx_status_buf_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
|
|
_EL_OFFSET_STATUS_BUF);
|
|
|
|
ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg);
|
|
|
|
write_pointer = ctx_status_ptr.write_ptr;
|
|
|
|
if (write_pointer == 0x7)
|
|
write_pointer = 0;
|
|
else {
|
|
++write_pointer;
|
|
write_pointer %= 0x6;
|
|
}
|
|
|
|
offset = ctx_status_buf_reg + write_pointer * 8;
|
|
|
|
vgpu_vreg(vgpu, offset) = status->ldw;
|
|
vgpu_vreg(vgpu, offset + 4) = status->udw;
|
|
|
|
ctx_status_ptr.write_ptr = write_pointer;
|
|
vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw;
|
|
|
|
gvt_dbg_el("vgpu%d: w pointer %u reg %x csb l %x csb h %x\n",
|
|
vgpu->id, write_pointer, offset, status->ldw, status->udw);
|
|
|
|
if (trigger_interrupt_later)
|
|
return;
|
|
|
|
intel_vgpu_trigger_virtual_event(vgpu,
|
|
ring_id_to_context_switch_event(execlist->ring_id));
|
|
}
|
|
|
|
static int emulate_execlist_ctx_schedule_out(
|
|
struct intel_vgpu_execlist *execlist,
|
|
struct execlist_ctx_descriptor_format *ctx)
|
|
{
|
|
struct intel_vgpu *vgpu = execlist->vgpu;
|
|
struct intel_vgpu_execlist_slot *running = execlist->running_slot;
|
|
struct intel_vgpu_execlist_slot *pending = execlist->pending_slot;
|
|
struct execlist_ctx_descriptor_format *ctx0 = &running->ctx[0];
|
|
struct execlist_ctx_descriptor_format *ctx1 = &running->ctx[1];
|
|
struct execlist_context_status_format status;
|
|
|
|
memset(&status, 0, sizeof(status));
|
|
|
|
gvt_dbg_el("schedule out context id %x\n", ctx->context_id);
|
|
|
|
if (WARN_ON(!same_context(ctx, execlist->running_context))) {
|
|
gvt_vgpu_err("schedule out context is not running context,"
|
|
"ctx id %x running ctx id %x\n",
|
|
ctx->context_id,
|
|
execlist->running_context->context_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* ctx1 is valid, ctx0/ctx is scheduled-out -> element switch */
|
|
if (valid_context(ctx1) && same_context(ctx0, ctx)) {
|
|
gvt_dbg_el("ctx 1 valid, ctx/ctx 0 is scheduled-out\n");
|
|
|
|
execlist->running_context = ctx1;
|
|
|
|
emulate_execlist_status(execlist);
|
|
|
|
status.context_complete = status.element_switch = 1;
|
|
status.context_id = ctx->context_id;
|
|
|
|
emulate_csb_update(execlist, &status, false);
|
|
/*
|
|
* ctx1 is not valid, ctx == ctx0
|
|
* ctx1 is valid, ctx1 == ctx
|
|
* --> last element is finished
|
|
* emulate:
|
|
* active-to-idle if there is *no* pending execlist
|
|
* context-complete if there *is* pending execlist
|
|
*/
|
|
} else if ((!valid_context(ctx1) && same_context(ctx0, ctx))
|
|
|| (valid_context(ctx1) && same_context(ctx1, ctx))) {
|
|
gvt_dbg_el("need to switch virtual execlist slot\n");
|
|
|
|
switch_virtual_execlist_slot(execlist);
|
|
|
|
emulate_execlist_status(execlist);
|
|
|
|
status.context_complete = status.active_to_idle = 1;
|
|
status.context_id = ctx->context_id;
|
|
|
|
if (!pending) {
|
|
emulate_csb_update(execlist, &status, false);
|
|
} else {
|
|
emulate_csb_update(execlist, &status, true);
|
|
|
|
memset(&status, 0, sizeof(status));
|
|
|
|
status.idle_to_active = 1;
|
|
status.context_id = 0;
|
|
|
|
emulate_csb_update(execlist, &status, false);
|
|
}
|
|
} else {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct intel_vgpu_execlist_slot *get_next_execlist_slot(
|
|
struct intel_vgpu_execlist *execlist)
|
|
{
|
|
struct intel_vgpu *vgpu = execlist->vgpu;
|
|
int ring_id = execlist->ring_id;
|
|
u32 status_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
|
|
_EL_OFFSET_STATUS);
|
|
struct execlist_status_format status;
|
|
|
|
status.ldw = vgpu_vreg(vgpu, status_reg);
|
|
status.udw = vgpu_vreg(vgpu, status_reg + 4);
|
|
|
|
if (status.execlist_queue_full) {
|
|
gvt_vgpu_err("virtual execlist slots are full\n");
|
|
return NULL;
|
|
}
|
|
|
|
return &execlist->slot[status.execlist_write_pointer];
|
|
}
|
|
|
|
static int emulate_execlist_schedule_in(struct intel_vgpu_execlist *execlist,
|
|
struct execlist_ctx_descriptor_format ctx[2])
|
|
{
|
|
struct intel_vgpu_execlist_slot *running = execlist->running_slot;
|
|
struct intel_vgpu_execlist_slot *slot =
|
|
get_next_execlist_slot(execlist);
|
|
|
|
struct execlist_ctx_descriptor_format *ctx0, *ctx1;
|
|
struct execlist_context_status_format status;
|
|
struct intel_vgpu *vgpu = execlist->vgpu;
|
|
|
|
gvt_dbg_el("emulate schedule-in\n");
|
|
|
|
if (!slot) {
|
|
gvt_vgpu_err("no available execlist slot\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
memset(&status, 0, sizeof(status));
|
|
memset(slot->ctx, 0, sizeof(slot->ctx));
|
|
|
|
slot->ctx[0] = ctx[0];
|
|
slot->ctx[1] = ctx[1];
|
|
|
|
gvt_dbg_el("alloc slot index %d ctx 0 %x ctx 1 %x\n",
|
|
slot->index, ctx[0].context_id,
|
|
ctx[1].context_id);
|
|
|
|
/*
|
|
* no running execlist, make this write bundle as running execlist
|
|
* -> idle-to-active
|
|
*/
|
|
if (!running) {
|
|
gvt_dbg_el("no current running execlist\n");
|
|
|
|
execlist->running_slot = slot;
|
|
execlist->pending_slot = NULL;
|
|
execlist->running_context = &slot->ctx[0];
|
|
|
|
gvt_dbg_el("running slot index %d running context %x\n",
|
|
execlist->running_slot->index,
|
|
execlist->running_context->context_id);
|
|
|
|
emulate_execlist_status(execlist);
|
|
|
|
status.idle_to_active = 1;
|
|
status.context_id = 0;
|
|
|
|
emulate_csb_update(execlist, &status, false);
|
|
return 0;
|
|
}
|
|
|
|
ctx0 = &running->ctx[0];
|
|
ctx1 = &running->ctx[1];
|
|
|
|
gvt_dbg_el("current running slot index %d ctx 0 %x ctx 1 %x\n",
|
|
running->index, ctx0->context_id, ctx1->context_id);
|
|
|
|
/*
|
|
* already has an running execlist
|
|
* a. running ctx1 is valid,
|
|
* ctx0 is finished, and running ctx1 == new execlist ctx[0]
|
|
* b. running ctx1 is not valid,
|
|
* ctx0 == new execlist ctx[0]
|
|
* ----> lite-restore + preempted
|
|
*/
|
|
if ((valid_context(ctx1) && same_context(ctx1, &slot->ctx[0]) &&
|
|
/* condition a */
|
|
(!same_context(ctx0, execlist->running_context))) ||
|
|
(!valid_context(ctx1) &&
|
|
same_context(ctx0, &slot->ctx[0]))) { /* condition b */
|
|
gvt_dbg_el("need to switch virtual execlist slot\n");
|
|
|
|
execlist->pending_slot = slot;
|
|
switch_virtual_execlist_slot(execlist);
|
|
|
|
emulate_execlist_status(execlist);
|
|
|
|
status.lite_restore = status.preempted = 1;
|
|
status.context_id = ctx[0].context_id;
|
|
|
|
emulate_csb_update(execlist, &status, false);
|
|
} else {
|
|
gvt_dbg_el("emulate as pending slot\n");
|
|
/*
|
|
* otherwise
|
|
* --> emulate pending execlist exist + but no preemption case
|
|
*/
|
|
execlist->pending_slot = slot;
|
|
emulate_execlist_status(execlist);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void free_workload(struct intel_vgpu_workload *workload)
|
|
{
|
|
intel_vgpu_unpin_mm(workload->shadow_mm);
|
|
intel_gvt_mm_unreference(workload->shadow_mm);
|
|
kmem_cache_free(workload->vgpu->workloads, workload);
|
|
}
|
|
|
|
#define get_desc_from_elsp_dwords(ed, i) \
|
|
((struct execlist_ctx_descriptor_format *)&((ed)->data[i * 2]))
|
|
|
|
static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
|
|
{
|
|
const int gmadr_bytes = workload->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
|
|
struct intel_shadow_bb_entry *entry_obj;
|
|
|
|
/* pin the gem object to ggtt */
|
|
list_for_each_entry(entry_obj, &workload->shadow_bb, list) {
|
|
struct i915_vma *vma;
|
|
|
|
vma = i915_gem_object_ggtt_pin(entry_obj->obj, NULL, 0, 4, 0);
|
|
if (IS_ERR(vma)) {
|
|
return PTR_ERR(vma);
|
|
}
|
|
|
|
/* FIXME: we are not tracking our pinned VMA leaving it
|
|
* up to the core to fix up the stray pin_count upon
|
|
* free.
|
|
*/
|
|
|
|
/* update the relocate gma with shadow batch buffer*/
|
|
entry_obj->bb_start_cmd_va[1] = i915_ggtt_offset(vma);
|
|
if (gmadr_bytes == 8)
|
|
entry_obj->bb_start_cmd_va[2] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
|
|
{
|
|
struct intel_vgpu_workload *workload = container_of(wa_ctx,
|
|
struct intel_vgpu_workload,
|
|
wa_ctx);
|
|
int ring_id = workload->ring_id;
|
|
struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
|
|
struct drm_i915_gem_object *ctx_obj =
|
|
shadow_ctx->engine[ring_id].state->obj;
|
|
struct execlist_ring_context *shadow_ring_context;
|
|
struct page *page;
|
|
|
|
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
|
|
shadow_ring_context = kmap_atomic(page);
|
|
|
|
shadow_ring_context->bb_per_ctx_ptr.val =
|
|
(shadow_ring_context->bb_per_ctx_ptr.val &
|
|
(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
|
|
shadow_ring_context->rcs_indirect_ctx.val =
|
|
(shadow_ring_context->rcs_indirect_ctx.val &
|
|
(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
|
|
|
|
kunmap_atomic(shadow_ring_context);
|
|
return 0;
|
|
}
|
|
|
|
static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
|
|
{
|
|
struct i915_vma *vma;
|
|
unsigned char *per_ctx_va =
|
|
(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
|
|
wa_ctx->indirect_ctx.size;
|
|
|
|
if (wa_ctx->indirect_ctx.size == 0)
|
|
return 0;
|
|
|
|
vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
|
|
0, CACHELINE_BYTES, 0);
|
|
if (IS_ERR(vma)) {
|
|
return PTR_ERR(vma);
|
|
}
|
|
|
|
/* FIXME: we are not tracking our pinned VMA leaving it
|
|
* up to the core to fix up the stray pin_count upon
|
|
* free.
|
|
*/
|
|
|
|
wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
|
|
|
|
wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
|
|
memset(per_ctx_va, 0, CACHELINE_BYTES);
|
|
|
|
update_wa_ctx_2_shadow_ctx(wa_ctx);
|
|
return 0;
|
|
}
|
|
|
|
static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
|
|
{
|
|
/* release all the shadow batch buffer */
|
|
if (!list_empty(&workload->shadow_bb)) {
|
|
struct intel_shadow_bb_entry *entry_obj =
|
|
list_first_entry(&workload->shadow_bb,
|
|
struct intel_shadow_bb_entry,
|
|
list);
|
|
struct intel_shadow_bb_entry *temp;
|
|
|
|
list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb,
|
|
list) {
|
|
i915_gem_object_unpin_map(entry_obj->obj);
|
|
i915_gem_object_put(entry_obj->obj);
|
|
list_del(&entry_obj->list);
|
|
kfree(entry_obj);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int prepare_execlist_workload(struct intel_vgpu_workload *workload)
|
|
{
|
|
struct intel_vgpu *vgpu = workload->vgpu;
|
|
struct execlist_ctx_descriptor_format ctx[2];
|
|
int ring_id = workload->ring_id;
|
|
int ret;
|
|
|
|
ret = intel_vgpu_pin_mm(workload->shadow_mm);
|
|
if (ret) {
|
|
gvt_vgpu_err("fail to vgpu pin mm\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = intel_vgpu_sync_oos_pages(workload->vgpu);
|
|
if (ret) {
|
|
gvt_vgpu_err("fail to vgpu sync oos pages\n");
|
|
goto err_unpin_mm;
|
|
}
|
|
|
|
ret = intel_vgpu_flush_post_shadow(workload->vgpu);
|
|
if (ret) {
|
|
gvt_vgpu_err("fail to flush post shadow\n");
|
|
goto err_unpin_mm;
|
|
}
|
|
|
|
ret = prepare_shadow_batch_buffer(workload);
|
|
if (ret) {
|
|
gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
|
|
goto err_unpin_mm;
|
|
}
|
|
|
|
ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
|
|
if (ret) {
|
|
gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
|
|
goto err_shadow_batch;
|
|
}
|
|
|
|
if (!workload->emulate_schedule_in)
|
|
return 0;
|
|
|
|
ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1);
|
|
ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0);
|
|
|
|
ret = emulate_execlist_schedule_in(&vgpu->execlist[ring_id], ctx);
|
|
if (!ret)
|
|
goto out;
|
|
else
|
|
gvt_vgpu_err("fail to emulate execlist schedule in\n");
|
|
|
|
release_shadow_wa_ctx(&workload->wa_ctx);
|
|
err_shadow_batch:
|
|
release_shadow_batch_buffer(workload);
|
|
err_unpin_mm:
|
|
intel_vgpu_unpin_mm(workload->shadow_mm);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int complete_execlist_workload(struct intel_vgpu_workload *workload)
|
|
{
|
|
struct intel_vgpu *vgpu = workload->vgpu;
|
|
int ring_id = workload->ring_id;
|
|
struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id];
|
|
struct intel_vgpu_workload *next_workload;
|
|
struct list_head *next = workload_q_head(vgpu, ring_id)->next;
|
|
bool lite_restore = false;
|
|
int ret;
|
|
|
|
gvt_dbg_el("complete workload %p status %d\n", workload,
|
|
workload->status);
|
|
|
|
if (!workload->status) {
|
|
release_shadow_batch_buffer(workload);
|
|
release_shadow_wa_ctx(&workload->wa_ctx);
|
|
}
|
|
|
|
if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
|
|
/* if workload->status is not successful means HW GPU
|
|
* has occurred GPU hang or something wrong with i915/GVT,
|
|
* and GVT won't inject context switch interrupt to guest.
|
|
* So this error is a vGPU hang actually to the guest.
|
|
* According to this we should emunlate a vGPU hang. If
|
|
* there are pending workloads which are already submitted
|
|
* from guest, we should clean them up like HW GPU does.
|
|
*
|
|
* if it is in middle of engine resetting, the pending
|
|
* workloads won't be submitted to HW GPU and will be
|
|
* cleaned up during the resetting process later, so doing
|
|
* the workload clean up here doesn't have any impact.
|
|
**/
|
|
clean_workloads(vgpu, ENGINE_MASK(ring_id));
|
|
goto out;
|
|
}
|
|
|
|
if (!list_empty(workload_q_head(vgpu, ring_id))) {
|
|
struct execlist_ctx_descriptor_format *this_desc, *next_desc;
|
|
|
|
next_workload = container_of(next,
|
|
struct intel_vgpu_workload, list);
|
|
this_desc = &workload->ctx_desc;
|
|
next_desc = &next_workload->ctx_desc;
|
|
|
|
lite_restore = same_context(this_desc, next_desc);
|
|
}
|
|
|
|
if (lite_restore) {
|
|
gvt_dbg_el("next context == current - no schedule-out\n");
|
|
free_workload(workload);
|
|
return 0;
|
|
}
|
|
|
|
ret = emulate_execlist_ctx_schedule_out(execlist, &workload->ctx_desc);
|
|
if (ret)
|
|
goto err;
|
|
out:
|
|
free_workload(workload);
|
|
return 0;
|
|
err:
|
|
free_workload(workload);
|
|
return ret;
|
|
}
|
|
|
|
#define RING_CTX_OFF(x) \
|
|
offsetof(struct execlist_ring_context, x)
|
|
|
|
static void read_guest_pdps(struct intel_vgpu *vgpu,
|
|
u64 ring_context_gpa, u32 pdp[8])
|
|
{
|
|
u64 gpa;
|
|
int i;
|
|
|
|
gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
intel_gvt_hypervisor_read_gpa(vgpu,
|
|
gpa + i * 8, &pdp[7 - i], 4);
|
|
}
|
|
|
|
static int prepare_mm(struct intel_vgpu_workload *workload)
|
|
{
|
|
struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
|
|
struct intel_vgpu_mm *mm;
|
|
struct intel_vgpu *vgpu = workload->vgpu;
|
|
int page_table_level;
|
|
u32 pdp[8];
|
|
|
|
if (desc->addressing_mode == 1) { /* legacy 32-bit */
|
|
page_table_level = 3;
|
|
} else if (desc->addressing_mode == 3) { /* legacy 64 bit */
|
|
page_table_level = 4;
|
|
} else {
|
|
gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
read_guest_pdps(workload->vgpu, workload->ring_context_gpa, pdp);
|
|
|
|
mm = intel_vgpu_find_ppgtt_mm(workload->vgpu, page_table_level, pdp);
|
|
if (mm) {
|
|
intel_gvt_mm_reference(mm);
|
|
} else {
|
|
|
|
mm = intel_vgpu_create_mm(workload->vgpu, INTEL_GVT_MM_PPGTT,
|
|
pdp, page_table_level, 0);
|
|
if (IS_ERR(mm)) {
|
|
gvt_vgpu_err("fail to create mm object.\n");
|
|
return PTR_ERR(mm);
|
|
}
|
|
}
|
|
workload->shadow_mm = mm;
|
|
return 0;
|
|
}
|
|
|
|
#define get_last_workload(q) \
|
|
(list_empty(q) ? NULL : container_of(q->prev, \
|
|
struct intel_vgpu_workload, list))
|
|
|
|
static int submit_context(struct intel_vgpu *vgpu, int ring_id,
|
|
struct execlist_ctx_descriptor_format *desc,
|
|
bool emulate_schedule_in)
|
|
{
|
|
struct list_head *q = workload_q_head(vgpu, ring_id);
|
|
struct intel_vgpu_workload *last_workload = get_last_workload(q);
|
|
struct intel_vgpu_workload *workload = NULL;
|
|
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
|
|
u64 ring_context_gpa;
|
|
u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
|
|
int ret;
|
|
|
|
ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
|
|
(u32)((desc->lrca + 1) << GTT_PAGE_SHIFT));
|
|
if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
|
|
gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
|
|
return -EINVAL;
|
|
}
|
|
|
|
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
|
|
RING_CTX_OFF(ring_header.val), &head, 4);
|
|
|
|
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
|
|
RING_CTX_OFF(ring_tail.val), &tail, 4);
|
|
|
|
head &= RB_HEAD_OFF_MASK;
|
|
tail &= RB_TAIL_OFF_MASK;
|
|
|
|
if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
|
|
gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
|
|
gvt_dbg_el("ctx head %x real head %lx\n", head,
|
|
last_workload->rb_tail);
|
|
/*
|
|
* cannot use guest context head pointer here,
|
|
* as it might not be updated at this time
|
|
*/
|
|
head = last_workload->rb_tail;
|
|
}
|
|
|
|
gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
|
|
|
|
workload = kmem_cache_zalloc(vgpu->workloads, GFP_KERNEL);
|
|
if (!workload)
|
|
return -ENOMEM;
|
|
|
|
/* record some ring buffer register values for scan and shadow */
|
|
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
|
|
RING_CTX_OFF(rb_start.val), &start, 4);
|
|
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
|
|
RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
|
|
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
|
|
RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
|
|
|
|
INIT_LIST_HEAD(&workload->list);
|
|
INIT_LIST_HEAD(&workload->shadow_bb);
|
|
|
|
init_waitqueue_head(&workload->shadow_ctx_status_wq);
|
|
atomic_set(&workload->shadow_ctx_active, 0);
|
|
|
|
workload->vgpu = vgpu;
|
|
workload->ring_id = ring_id;
|
|
workload->ctx_desc = *desc;
|
|
workload->ring_context_gpa = ring_context_gpa;
|
|
workload->rb_head = head;
|
|
workload->rb_tail = tail;
|
|
workload->rb_start = start;
|
|
workload->rb_ctl = ctl;
|
|
workload->prepare = prepare_execlist_workload;
|
|
workload->complete = complete_execlist_workload;
|
|
workload->status = -EINPROGRESS;
|
|
workload->emulate_schedule_in = emulate_schedule_in;
|
|
workload->shadowed = false;
|
|
|
|
if (ring_id == RCS) {
|
|
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
|
|
RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
|
|
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
|
|
RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
|
|
|
|
workload->wa_ctx.indirect_ctx.guest_gma =
|
|
indirect_ctx & INDIRECT_CTX_ADDR_MASK;
|
|
workload->wa_ctx.indirect_ctx.size =
|
|
(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
|
|
CACHELINE_BYTES;
|
|
workload->wa_ctx.per_ctx.guest_gma =
|
|
per_ctx & PER_CTX_ADDR_MASK;
|
|
|
|
WARN_ON(workload->wa_ctx.indirect_ctx.size && !(per_ctx & 0x1));
|
|
}
|
|
|
|
if (emulate_schedule_in)
|
|
workload->elsp_dwords = vgpu->execlist[ring_id].elsp_dwords;
|
|
|
|
gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
|
|
workload, ring_id, head, tail, start, ctl);
|
|
|
|
gvt_dbg_el("workload %p emulate schedule_in %d\n", workload,
|
|
emulate_schedule_in);
|
|
|
|
ret = prepare_mm(workload);
|
|
if (ret) {
|
|
kmem_cache_free(vgpu->workloads, workload);
|
|
return ret;
|
|
}
|
|
|
|
/* Only scan and shadow the first workload in the queue
|
|
* as there is only one pre-allocated buf-obj for shadow.
|
|
*/
|
|
if (list_empty(workload_q_head(vgpu, ring_id))) {
|
|
intel_runtime_pm_get(dev_priv);
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
intel_gvt_scan_and_shadow_workload(workload);
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
intel_runtime_pm_put(dev_priv);
|
|
}
|
|
|
|
queue_workload(workload);
|
|
return 0;
|
|
}
|
|
|
|
int intel_vgpu_submit_execlist(struct intel_vgpu *vgpu, int ring_id)
|
|
{
|
|
struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id];
|
|
struct execlist_ctx_descriptor_format desc[2];
|
|
int i, ret;
|
|
|
|
desc[0] = *get_desc_from_elsp_dwords(&execlist->elsp_dwords, 1);
|
|
desc[1] = *get_desc_from_elsp_dwords(&execlist->elsp_dwords, 0);
|
|
|
|
if (!desc[0].valid) {
|
|
gvt_vgpu_err("invalid elsp submission, desc0 is invalid\n");
|
|
goto inv_desc;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(desc); i++) {
|
|
if (!desc[i].valid)
|
|
continue;
|
|
if (!desc[i].privilege_access) {
|
|
gvt_vgpu_err("unexpected GGTT elsp submission\n");
|
|
goto inv_desc;
|
|
}
|
|
}
|
|
|
|
/* submit workload */
|
|
for (i = 0; i < ARRAY_SIZE(desc); i++) {
|
|
if (!desc[i].valid)
|
|
continue;
|
|
ret = submit_context(vgpu, ring_id, &desc[i], i == 0);
|
|
if (ret) {
|
|
gvt_vgpu_err("failed to submit desc %d\n", i);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
inv_desc:
|
|
gvt_vgpu_err("descriptors content: desc0 %08x %08x desc1 %08x %08x\n",
|
|
desc[0].udw, desc[0].ldw, desc[1].udw, desc[1].ldw);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void init_vgpu_execlist(struct intel_vgpu *vgpu, int ring_id)
|
|
{
|
|
struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id];
|
|
struct execlist_context_status_pointer_format ctx_status_ptr;
|
|
u32 ctx_status_ptr_reg;
|
|
|
|
memset(execlist, 0, sizeof(*execlist));
|
|
|
|
execlist->vgpu = vgpu;
|
|
execlist->ring_id = ring_id;
|
|
execlist->slot[0].index = 0;
|
|
execlist->slot[1].index = 1;
|
|
|
|
ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
|
|
_EL_OFFSET_STATUS_PTR);
|
|
|
|
ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg);
|
|
ctx_status_ptr.read_ptr = 0;
|
|
ctx_status_ptr.write_ptr = 0x7;
|
|
vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw;
|
|
}
|
|
|
|
static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
|
|
{
|
|
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
|
|
struct intel_engine_cs *engine;
|
|
struct intel_vgpu_workload *pos, *n;
|
|
unsigned int tmp;
|
|
|
|
/* free the unsubmited workloads in the queues. */
|
|
for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
|
|
list_for_each_entry_safe(pos, n,
|
|
&vgpu->workload_q_head[engine->id], list) {
|
|
list_del_init(&pos->list);
|
|
free_workload(pos);
|
|
}
|
|
|
|
clear_bit(engine->id, vgpu->shadow_ctx_desc_updated);
|
|
}
|
|
}
|
|
|
|
void intel_vgpu_clean_execlist(struct intel_vgpu *vgpu)
|
|
{
|
|
enum intel_engine_id i;
|
|
struct intel_engine_cs *engine;
|
|
|
|
clean_workloads(vgpu, ALL_ENGINES);
|
|
kmem_cache_destroy(vgpu->workloads);
|
|
|
|
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
|
|
kfree(vgpu->reserve_ring_buffer_va[i]);
|
|
vgpu->reserve_ring_buffer_va[i] = NULL;
|
|
vgpu->reserve_ring_buffer_size[i] = 0;
|
|
}
|
|
|
|
}
|
|
|
|
#define RESERVE_RING_BUFFER_SIZE ((1 * PAGE_SIZE)/8)
|
|
int intel_vgpu_init_execlist(struct intel_vgpu *vgpu)
|
|
{
|
|
enum intel_engine_id i;
|
|
struct intel_engine_cs *engine;
|
|
|
|
/* each ring has a virtual execlist engine */
|
|
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
|
|
init_vgpu_execlist(vgpu, i);
|
|
INIT_LIST_HEAD(&vgpu->workload_q_head[i]);
|
|
}
|
|
|
|
vgpu->workloads = kmem_cache_create("gvt-g_vgpu_workload",
|
|
sizeof(struct intel_vgpu_workload), 0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
|
|
if (!vgpu->workloads)
|
|
return -ENOMEM;
|
|
|
|
/* each ring has a shadow ring buffer until vgpu destroyed */
|
|
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
|
|
vgpu->reserve_ring_buffer_va[i] =
|
|
kmalloc(RESERVE_RING_BUFFER_SIZE, GFP_KERNEL);
|
|
if (!vgpu->reserve_ring_buffer_va[i]) {
|
|
gvt_vgpu_err("fail to alloc reserve ring buffer\n");
|
|
goto out;
|
|
}
|
|
vgpu->reserve_ring_buffer_size[i] = RESERVE_RING_BUFFER_SIZE;
|
|
}
|
|
return 0;
|
|
out:
|
|
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
|
|
if (vgpu->reserve_ring_buffer_size[i]) {
|
|
kfree(vgpu->reserve_ring_buffer_va[i]);
|
|
vgpu->reserve_ring_buffer_va[i] = NULL;
|
|
vgpu->reserve_ring_buffer_size[i] = 0;
|
|
}
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void intel_vgpu_reset_execlist(struct intel_vgpu *vgpu,
|
|
unsigned long engine_mask)
|
|
{
|
|
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
|
|
struct intel_engine_cs *engine;
|
|
unsigned int tmp;
|
|
|
|
clean_workloads(vgpu, engine_mask);
|
|
for_each_engine_masked(engine, dev_priv, engine_mask, tmp)
|
|
init_vgpu_execlist(vgpu, engine->id);
|
|
}
|