696 lines
19 KiB
C
696 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010 Red Hat, Inc.
|
|
* Copyright (c) 2016-2021 Christoph Hellwig.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/fscrypt.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/iomap.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include "trace.h"
|
|
|
|
#include "../internal.h"
|
|
|
|
/*
|
|
* Private flags for iomap_dio, must not overlap with the public ones in
|
|
* iomap.h:
|
|
*/
|
|
#define IOMAP_DIO_WRITE_FUA (1 << 28)
|
|
#define IOMAP_DIO_NEED_SYNC (1 << 29)
|
|
#define IOMAP_DIO_WRITE (1 << 30)
|
|
#define IOMAP_DIO_DIRTY (1 << 31)
|
|
|
|
struct iomap_dio {
|
|
struct kiocb *iocb;
|
|
const struct iomap_dio_ops *dops;
|
|
loff_t i_size;
|
|
loff_t size;
|
|
atomic_t ref;
|
|
unsigned flags;
|
|
int error;
|
|
size_t done_before;
|
|
bool wait_for_completion;
|
|
|
|
union {
|
|
/* used during submission and for synchronous completion: */
|
|
struct {
|
|
struct iov_iter *iter;
|
|
struct task_struct *waiter;
|
|
struct bio *poll_bio;
|
|
} submit;
|
|
|
|
/* used for aio completion: */
|
|
struct {
|
|
struct work_struct work;
|
|
} aio;
|
|
};
|
|
};
|
|
|
|
static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
|
|
struct iomap_dio *dio, unsigned short nr_vecs, unsigned int opf)
|
|
{
|
|
if (dio->dops && dio->dops->bio_set)
|
|
return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
|
|
GFP_KERNEL, dio->dops->bio_set);
|
|
return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
|
|
}
|
|
|
|
static void iomap_dio_submit_bio(const struct iomap_iter *iter,
|
|
struct iomap_dio *dio, struct bio *bio, loff_t pos)
|
|
{
|
|
atomic_inc(&dio->ref);
|
|
|
|
/* Sync dio can't be polled reliably */
|
|
if ((dio->iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(dio->iocb)) {
|
|
bio_set_polled(bio, dio->iocb);
|
|
dio->submit.poll_bio = bio;
|
|
}
|
|
|
|
if (dio->dops && dio->dops->submit_io)
|
|
dio->dops->submit_io(iter, bio, pos);
|
|
else
|
|
submit_bio(bio);
|
|
}
|
|
|
|
ssize_t iomap_dio_complete(struct iomap_dio *dio)
|
|
{
|
|
const struct iomap_dio_ops *dops = dio->dops;
|
|
struct kiocb *iocb = dio->iocb;
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
loff_t offset = iocb->ki_pos;
|
|
ssize_t ret = dio->error;
|
|
|
|
if (dops && dops->end_io)
|
|
ret = dops->end_io(iocb, dio->size, ret, dio->flags);
|
|
|
|
if (likely(!ret)) {
|
|
ret = dio->size;
|
|
/* check for short read */
|
|
if (offset + ret > dio->i_size &&
|
|
!(dio->flags & IOMAP_DIO_WRITE))
|
|
ret = dio->i_size - offset;
|
|
iocb->ki_pos += ret;
|
|
}
|
|
|
|
/*
|
|
* Try again to invalidate clean pages which might have been cached by
|
|
* non-direct readahead, or faulted in by get_user_pages() if the source
|
|
* of the write was an mmap'ed region of the file we're writing. Either
|
|
* one is a pretty crazy thing to do, so we don't support it 100%. If
|
|
* this invalidation fails, tough, the write still worked...
|
|
*
|
|
* And this page cache invalidation has to be after ->end_io(), as some
|
|
* filesystems convert unwritten extents to real allocations in
|
|
* ->end_io() when necessary, otherwise a racing buffer read would cache
|
|
* zeros from unwritten extents.
|
|
*/
|
|
if (!dio->error && dio->size &&
|
|
(dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
|
|
int err;
|
|
err = invalidate_inode_pages2_range(inode->i_mapping,
|
|
offset >> PAGE_SHIFT,
|
|
(offset + dio->size - 1) >> PAGE_SHIFT);
|
|
if (err)
|
|
dio_warn_stale_pagecache(iocb->ki_filp);
|
|
}
|
|
|
|
inode_dio_end(file_inode(iocb->ki_filp));
|
|
/*
|
|
* If this is a DSYNC write, make sure we push it to stable storage now
|
|
* that we've written data.
|
|
*/
|
|
if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
|
|
ret = generic_write_sync(iocb, ret);
|
|
|
|
if (ret > 0)
|
|
ret += dio->done_before;
|
|
|
|
kfree(dio);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_dio_complete);
|
|
|
|
static void iomap_dio_complete_work(struct work_struct *work)
|
|
{
|
|
struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
|
|
struct kiocb *iocb = dio->iocb;
|
|
|
|
iocb->ki_complete(iocb, iomap_dio_complete(dio));
|
|
}
|
|
|
|
/*
|
|
* Set an error in the dio if none is set yet. We have to use cmpxchg
|
|
* as the submission context and the completion context(s) can race to
|
|
* update the error.
|
|
*/
|
|
static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
|
|
{
|
|
cmpxchg(&dio->error, 0, ret);
|
|
}
|
|
|
|
void iomap_dio_bio_end_io(struct bio *bio)
|
|
{
|
|
struct iomap_dio *dio = bio->bi_private;
|
|
bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
|
|
|
|
if (bio->bi_status)
|
|
iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
|
|
|
|
if (atomic_dec_and_test(&dio->ref)) {
|
|
if (dio->wait_for_completion) {
|
|
struct task_struct *waiter = dio->submit.waiter;
|
|
WRITE_ONCE(dio->submit.waiter, NULL);
|
|
blk_wake_io_task(waiter);
|
|
} else if (dio->flags & IOMAP_DIO_WRITE) {
|
|
struct inode *inode = file_inode(dio->iocb->ki_filp);
|
|
|
|
WRITE_ONCE(dio->iocb->private, NULL);
|
|
INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
|
|
queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
|
|
} else {
|
|
WRITE_ONCE(dio->iocb->private, NULL);
|
|
iomap_dio_complete_work(&dio->aio.work);
|
|
}
|
|
}
|
|
|
|
if (should_dirty) {
|
|
bio_check_pages_dirty(bio);
|
|
} else {
|
|
bio_release_pages(bio, false);
|
|
bio_put(bio);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
|
|
|
|
static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
|
|
loff_t pos, unsigned len)
|
|
{
|
|
struct inode *inode = file_inode(dio->iocb->ki_filp);
|
|
struct page *page = ZERO_PAGE(0);
|
|
struct bio *bio;
|
|
|
|
bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
|
|
fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
|
|
GFP_KERNEL);
|
|
bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
|
|
bio->bi_private = dio;
|
|
bio->bi_end_io = iomap_dio_bio_end_io;
|
|
|
|
get_page(page);
|
|
__bio_add_page(bio, page, len, 0);
|
|
iomap_dio_submit_bio(iter, dio, bio, pos);
|
|
}
|
|
|
|
/*
|
|
* Figure out the bio's operation flags from the dio request, the
|
|
* mapping, and whether or not we want FUA. Note that we can end up
|
|
* clearing the WRITE_FUA flag in the dio request.
|
|
*/
|
|
static inline unsigned int iomap_dio_bio_opflags(struct iomap_dio *dio,
|
|
const struct iomap *iomap, bool use_fua)
|
|
{
|
|
unsigned int opflags = REQ_SYNC | REQ_IDLE;
|
|
|
|
if (!(dio->flags & IOMAP_DIO_WRITE)) {
|
|
WARN_ON_ONCE(iomap->flags & IOMAP_F_ZONE_APPEND);
|
|
return REQ_OP_READ;
|
|
}
|
|
|
|
if (iomap->flags & IOMAP_F_ZONE_APPEND)
|
|
opflags |= REQ_OP_ZONE_APPEND;
|
|
else
|
|
opflags |= REQ_OP_WRITE;
|
|
|
|
if (use_fua)
|
|
opflags |= REQ_FUA;
|
|
else
|
|
dio->flags &= ~IOMAP_DIO_WRITE_FUA;
|
|
|
|
return opflags;
|
|
}
|
|
|
|
static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
|
|
struct iomap_dio *dio)
|
|
{
|
|
const struct iomap *iomap = &iter->iomap;
|
|
struct inode *inode = iter->inode;
|
|
unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
|
|
unsigned int fs_block_size = i_blocksize(inode), pad;
|
|
unsigned int align = iov_iter_alignment(dio->submit.iter);
|
|
loff_t length = iomap_length(iter);
|
|
loff_t pos = iter->pos;
|
|
unsigned int bio_opf;
|
|
struct bio *bio;
|
|
bool need_zeroout = false;
|
|
bool use_fua = false;
|
|
int nr_pages, ret = 0;
|
|
size_t copied = 0;
|
|
size_t orig_count;
|
|
|
|
if ((pos | length | align) & ((1 << blkbits) - 1))
|
|
return -EINVAL;
|
|
|
|
if (iomap->type == IOMAP_UNWRITTEN) {
|
|
dio->flags |= IOMAP_DIO_UNWRITTEN;
|
|
need_zeroout = true;
|
|
}
|
|
|
|
if (iomap->flags & IOMAP_F_SHARED)
|
|
dio->flags |= IOMAP_DIO_COW;
|
|
|
|
if (iomap->flags & IOMAP_F_NEW) {
|
|
need_zeroout = true;
|
|
} else if (iomap->type == IOMAP_MAPPED) {
|
|
/*
|
|
* Use a FUA write if we need datasync semantics, this is a pure
|
|
* data IO that doesn't require any metadata updates (including
|
|
* after IO completion such as unwritten extent conversion) and
|
|
* the underlying device supports FUA. This allows us to avoid
|
|
* cache flushes on IO completion.
|
|
*/
|
|
if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
|
|
(dio->flags & IOMAP_DIO_WRITE_FUA) && bdev_fua(iomap->bdev))
|
|
use_fua = true;
|
|
}
|
|
|
|
/*
|
|
* Save the original count and trim the iter to just the extent we
|
|
* are operating on right now. The iter will be re-expanded once
|
|
* we are done.
|
|
*/
|
|
orig_count = iov_iter_count(dio->submit.iter);
|
|
iov_iter_truncate(dio->submit.iter, length);
|
|
|
|
if (!iov_iter_count(dio->submit.iter))
|
|
goto out;
|
|
|
|
/*
|
|
* We can only poll for single bio I/Os.
|
|
*/
|
|
if (need_zeroout ||
|
|
((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
|
|
dio->iocb->ki_flags &= ~IOCB_HIPRI;
|
|
|
|
if (need_zeroout) {
|
|
/* zero out from the start of the block to the write offset */
|
|
pad = pos & (fs_block_size - 1);
|
|
if (pad)
|
|
iomap_dio_zero(iter, dio, pos - pad, pad);
|
|
}
|
|
|
|
/*
|
|
* Set the operation flags early so that bio_iov_iter_get_pages
|
|
* can set up the page vector appropriately for a ZONE_APPEND
|
|
* operation.
|
|
*/
|
|
bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
|
|
|
|
nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
|
|
do {
|
|
size_t n;
|
|
if (dio->error) {
|
|
iov_iter_revert(dio->submit.iter, copied);
|
|
copied = ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
|
|
fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
|
|
GFP_KERNEL);
|
|
bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
|
|
bio->bi_ioprio = dio->iocb->ki_ioprio;
|
|
bio->bi_private = dio;
|
|
bio->bi_end_io = iomap_dio_bio_end_io;
|
|
|
|
ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
|
|
if (unlikely(ret)) {
|
|
/*
|
|
* We have to stop part way through an IO. We must fall
|
|
* through to the sub-block tail zeroing here, otherwise
|
|
* this short IO may expose stale data in the tail of
|
|
* the block we haven't written data to.
|
|
*/
|
|
bio_put(bio);
|
|
goto zero_tail;
|
|
}
|
|
|
|
n = bio->bi_iter.bi_size;
|
|
if (dio->flags & IOMAP_DIO_WRITE) {
|
|
task_io_account_write(n);
|
|
} else {
|
|
if (dio->flags & IOMAP_DIO_DIRTY)
|
|
bio_set_pages_dirty(bio);
|
|
}
|
|
|
|
dio->size += n;
|
|
copied += n;
|
|
|
|
nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
|
|
BIO_MAX_VECS);
|
|
/*
|
|
* We can only poll for single bio I/Os.
|
|
*/
|
|
if (nr_pages)
|
|
dio->iocb->ki_flags &= ~IOCB_HIPRI;
|
|
iomap_dio_submit_bio(iter, dio, bio, pos);
|
|
pos += n;
|
|
} while (nr_pages);
|
|
|
|
/*
|
|
* We need to zeroout the tail of a sub-block write if the extent type
|
|
* requires zeroing or the write extends beyond EOF. If we don't zero
|
|
* the block tail in the latter case, we can expose stale data via mmap
|
|
* reads of the EOF block.
|
|
*/
|
|
zero_tail:
|
|
if (need_zeroout ||
|
|
((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
|
|
/* zero out from the end of the write to the end of the block */
|
|
pad = pos & (fs_block_size - 1);
|
|
if (pad)
|
|
iomap_dio_zero(iter, dio, pos, fs_block_size - pad);
|
|
}
|
|
out:
|
|
/* Undo iter limitation to current extent */
|
|
iov_iter_reexpand(dio->submit.iter, orig_count - copied);
|
|
if (copied)
|
|
return copied;
|
|
return ret;
|
|
}
|
|
|
|
static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
|
|
struct iomap_dio *dio)
|
|
{
|
|
loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
|
|
|
|
dio->size += length;
|
|
if (!length)
|
|
return -EFAULT;
|
|
return length;
|
|
}
|
|
|
|
static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
|
|
struct iomap_dio *dio)
|
|
{
|
|
const struct iomap *iomap = &iomi->iomap;
|
|
struct iov_iter *iter = dio->submit.iter;
|
|
void *inline_data = iomap_inline_data(iomap, iomi->pos);
|
|
loff_t length = iomap_length(iomi);
|
|
loff_t pos = iomi->pos;
|
|
size_t copied;
|
|
|
|
if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
|
|
return -EIO;
|
|
|
|
if (dio->flags & IOMAP_DIO_WRITE) {
|
|
loff_t size = iomi->inode->i_size;
|
|
|
|
if (pos > size)
|
|
memset(iomap_inline_data(iomap, size), 0, pos - size);
|
|
copied = copy_from_iter(inline_data, length, iter);
|
|
if (copied) {
|
|
if (pos + copied > size)
|
|
i_size_write(iomi->inode, pos + copied);
|
|
mark_inode_dirty(iomi->inode);
|
|
}
|
|
} else {
|
|
copied = copy_to_iter(inline_data, length, iter);
|
|
}
|
|
dio->size += copied;
|
|
if (!copied)
|
|
return -EFAULT;
|
|
return copied;
|
|
}
|
|
|
|
static loff_t iomap_dio_iter(const struct iomap_iter *iter,
|
|
struct iomap_dio *dio)
|
|
{
|
|
switch (iter->iomap.type) {
|
|
case IOMAP_HOLE:
|
|
if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
|
|
return -EIO;
|
|
return iomap_dio_hole_iter(iter, dio);
|
|
case IOMAP_UNWRITTEN:
|
|
if (!(dio->flags & IOMAP_DIO_WRITE))
|
|
return iomap_dio_hole_iter(iter, dio);
|
|
return iomap_dio_bio_iter(iter, dio);
|
|
case IOMAP_MAPPED:
|
|
return iomap_dio_bio_iter(iter, dio);
|
|
case IOMAP_INLINE:
|
|
return iomap_dio_inline_iter(iter, dio);
|
|
case IOMAP_DELALLOC:
|
|
/*
|
|
* DIO is not serialised against mmap() access at all, and so
|
|
* if the page_mkwrite occurs between the writeback and the
|
|
* iomap_iter() call in the DIO path, then it will see the
|
|
* DELALLOC block that the page-mkwrite allocated.
|
|
*/
|
|
pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
|
|
dio->iocb->ki_filp, current->comm);
|
|
return -EIO;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
|
|
* is being issued as AIO or not. This allows us to optimise pure data writes
|
|
* to use REQ_FUA rather than requiring generic_write_sync() to issue a
|
|
* REQ_FLUSH post write. This is slightly tricky because a single request here
|
|
* can be mapped into multiple disjoint IOs and only a subset of the IOs issued
|
|
* may be pure data writes. In that case, we still need to do a full data sync
|
|
* completion.
|
|
*
|
|
* When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
|
|
* __iomap_dio_rw can return a partial result if it encounters a non-resident
|
|
* page in @iter after preparing a transfer. In that case, the non-resident
|
|
* pages can be faulted in and the request resumed with @done_before set to the
|
|
* number of bytes previously transferred. The request will then complete with
|
|
* the correct total number of bytes transferred; this is essential for
|
|
* completing partial requests asynchronously.
|
|
*
|
|
* Returns -ENOTBLK In case of a page invalidation invalidation failure for
|
|
* writes. The callers needs to fall back to buffered I/O in this case.
|
|
*/
|
|
struct iomap_dio *
|
|
__iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
|
|
const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
|
|
unsigned int dio_flags, void *private, size_t done_before)
|
|
{
|
|
struct address_space *mapping = iocb->ki_filp->f_mapping;
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
struct iomap_iter iomi = {
|
|
.inode = inode,
|
|
.pos = iocb->ki_pos,
|
|
.len = iov_iter_count(iter),
|
|
.flags = IOMAP_DIRECT,
|
|
.private = private,
|
|
};
|
|
loff_t end = iomi.pos + iomi.len - 1, ret = 0;
|
|
bool wait_for_completion =
|
|
is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
|
|
struct blk_plug plug;
|
|
struct iomap_dio *dio;
|
|
|
|
if (!iomi.len)
|
|
return NULL;
|
|
|
|
dio = kmalloc(sizeof(*dio), GFP_KERNEL);
|
|
if (!dio)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
dio->iocb = iocb;
|
|
atomic_set(&dio->ref, 1);
|
|
dio->size = 0;
|
|
dio->i_size = i_size_read(inode);
|
|
dio->dops = dops;
|
|
dio->error = 0;
|
|
dio->flags = 0;
|
|
dio->done_before = done_before;
|
|
|
|
dio->submit.iter = iter;
|
|
dio->submit.waiter = current;
|
|
dio->submit.poll_bio = NULL;
|
|
|
|
if (iov_iter_rw(iter) == READ) {
|
|
if (iomi.pos >= dio->i_size)
|
|
goto out_free_dio;
|
|
|
|
if (iocb->ki_flags & IOCB_NOWAIT) {
|
|
if (filemap_range_needs_writeback(mapping, iomi.pos,
|
|
end)) {
|
|
ret = -EAGAIN;
|
|
goto out_free_dio;
|
|
}
|
|
iomi.flags |= IOMAP_NOWAIT;
|
|
}
|
|
|
|
if (iter_is_iovec(iter))
|
|
dio->flags |= IOMAP_DIO_DIRTY;
|
|
} else {
|
|
iomi.flags |= IOMAP_WRITE;
|
|
dio->flags |= IOMAP_DIO_WRITE;
|
|
|
|
if (iocb->ki_flags & IOCB_NOWAIT) {
|
|
if (filemap_range_has_page(mapping, iomi.pos, end)) {
|
|
ret = -EAGAIN;
|
|
goto out_free_dio;
|
|
}
|
|
iomi.flags |= IOMAP_NOWAIT;
|
|
}
|
|
|
|
/* for data sync or sync, we need sync completion processing */
|
|
if (iocb->ki_flags & IOCB_DSYNC)
|
|
dio->flags |= IOMAP_DIO_NEED_SYNC;
|
|
|
|
/*
|
|
* For datasync only writes, we optimistically try using FUA for
|
|
* this IO. Any non-FUA write that occurs will clear this flag,
|
|
* hence we know before completion whether a cache flush is
|
|
* necessary.
|
|
*/
|
|
if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
|
|
dio->flags |= IOMAP_DIO_WRITE_FUA;
|
|
}
|
|
|
|
if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
|
|
ret = -EAGAIN;
|
|
if (iomi.pos >= dio->i_size ||
|
|
iomi.pos + iomi.len > dio->i_size)
|
|
goto out_free_dio;
|
|
iomi.flags |= IOMAP_OVERWRITE_ONLY;
|
|
}
|
|
|
|
ret = filemap_write_and_wait_range(mapping, iomi.pos, end);
|
|
if (ret)
|
|
goto out_free_dio;
|
|
|
|
if (iov_iter_rw(iter) == WRITE) {
|
|
/*
|
|
* Try to invalidate cache pages for the range we are writing.
|
|
* If this invalidation fails, let the caller fall back to
|
|
* buffered I/O.
|
|
*/
|
|
if (invalidate_inode_pages2_range(mapping,
|
|
iomi.pos >> PAGE_SHIFT, end >> PAGE_SHIFT)) {
|
|
trace_iomap_dio_invalidate_fail(inode, iomi.pos,
|
|
iomi.len);
|
|
ret = -ENOTBLK;
|
|
goto out_free_dio;
|
|
}
|
|
|
|
if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
|
|
ret = sb_init_dio_done_wq(inode->i_sb);
|
|
if (ret < 0)
|
|
goto out_free_dio;
|
|
}
|
|
}
|
|
|
|
inode_dio_begin(inode);
|
|
|
|
blk_start_plug(&plug);
|
|
while ((ret = iomap_iter(&iomi, ops)) > 0) {
|
|
iomi.processed = iomap_dio_iter(&iomi, dio);
|
|
|
|
/*
|
|
* We can only poll for single bio I/Os.
|
|
*/
|
|
iocb->ki_flags &= ~IOCB_HIPRI;
|
|
}
|
|
|
|
blk_finish_plug(&plug);
|
|
|
|
/*
|
|
* We only report that we've read data up to i_size.
|
|
* Revert iter to a state corresponding to that as some callers (such
|
|
* as the splice code) rely on it.
|
|
*/
|
|
if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
|
|
iov_iter_revert(iter, iomi.pos - dio->i_size);
|
|
|
|
if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
|
|
if (!(iocb->ki_flags & IOCB_NOWAIT))
|
|
wait_for_completion = true;
|
|
ret = 0;
|
|
}
|
|
|
|
/* magic error code to fall back to buffered I/O */
|
|
if (ret == -ENOTBLK) {
|
|
wait_for_completion = true;
|
|
ret = 0;
|
|
}
|
|
if (ret < 0)
|
|
iomap_dio_set_error(dio, ret);
|
|
|
|
/*
|
|
* If all the writes we issued were FUA, we don't need to flush the
|
|
* cache on IO completion. Clear the sync flag for this case.
|
|
*/
|
|
if (dio->flags & IOMAP_DIO_WRITE_FUA)
|
|
dio->flags &= ~IOMAP_DIO_NEED_SYNC;
|
|
|
|
WRITE_ONCE(iocb->private, dio->submit.poll_bio);
|
|
|
|
/*
|
|
* We are about to drop our additional submission reference, which
|
|
* might be the last reference to the dio. There are three different
|
|
* ways we can progress here:
|
|
*
|
|
* (a) If this is the last reference we will always complete and free
|
|
* the dio ourselves.
|
|
* (b) If this is not the last reference, and we serve an asynchronous
|
|
* iocb, we must never touch the dio after the decrement, the
|
|
* I/O completion handler will complete and free it.
|
|
* (c) If this is not the last reference, but we serve a synchronous
|
|
* iocb, the I/O completion handler will wake us up on the drop
|
|
* of the final reference, and we will complete and free it here
|
|
* after we got woken by the I/O completion handler.
|
|
*/
|
|
dio->wait_for_completion = wait_for_completion;
|
|
if (!atomic_dec_and_test(&dio->ref)) {
|
|
if (!wait_for_completion)
|
|
return ERR_PTR(-EIOCBQUEUED);
|
|
|
|
for (;;) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
if (!READ_ONCE(dio->submit.waiter))
|
|
break;
|
|
|
|
blk_io_schedule();
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
return dio;
|
|
|
|
out_free_dio:
|
|
kfree(dio);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__iomap_dio_rw);
|
|
|
|
ssize_t
|
|
iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
|
|
const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
|
|
unsigned int dio_flags, void *private, size_t done_before)
|
|
{
|
|
struct iomap_dio *dio;
|
|
|
|
dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
|
|
done_before);
|
|
if (IS_ERR_OR_NULL(dio))
|
|
return PTR_ERR_OR_ZERO(dio);
|
|
return iomap_dio_complete(dio);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_dio_rw);
|