OpenCloudOS-Kernel/drivers/gpu/drm/i915/intel_guc_log.c

633 lines
17 KiB
C

/*
* Copyright © 2014-2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/debugfs.h>
#include "intel_guc_log.h"
#include "i915_drv.h"
static void guc_log_capture_logs(struct intel_guc_log *log);
/**
* DOC: GuC firmware log
*
* Firmware log is enabled by setting i915.guc_log_level to the positive level.
* Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
* i915_guc_load_status will print out firmware loading status and scratch
* registers value.
*/
static int guc_action_flush_log_complete(struct intel_guc *guc)
{
u32 action[] = {
INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
static int guc_action_flush_log(struct intel_guc *guc)
{
u32 action[] = {
INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
0
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
static int guc_action_control_log(struct intel_guc *guc, bool enable,
bool default_logging, u32 verbosity)
{
u32 action[] = {
INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
(enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
(verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
(default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
};
GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
{
return container_of(log, struct intel_guc, log);
}
static void guc_log_enable_flush_events(struct intel_guc_log *log)
{
intel_guc_enable_msg(log_to_guc(log),
INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
}
static void guc_log_disable_flush_events(struct intel_guc_log *log)
{
intel_guc_disable_msg(log_to_guc(log),
INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
}
/*
* Sub buffer switch callback. Called whenever relay has to switch to a new
* sub buffer, relay stays on the same sub buffer if 0 is returned.
*/
static int subbuf_start_callback(struct rchan_buf *buf,
void *subbuf,
void *prev_subbuf,
size_t prev_padding)
{
/*
* Use no-overwrite mode by default, where relay will stop accepting
* new data if there are no empty sub buffers left.
* There is no strict synchronization enforced by relay between Consumer
* and Producer. In overwrite mode, there is a possibility of getting
* inconsistent/garbled data, the producer could be writing on to the
* same sub buffer from which Consumer is reading. This can't be avoided
* unless Consumer is fast enough and can always run in tandem with
* Producer.
*/
if (relay_buf_full(buf))
return 0;
return 1;
}
/*
* file_create() callback. Creates relay file in debugfs.
*/
static struct dentry *create_buf_file_callback(const char *filename,
struct dentry *parent,
umode_t mode,
struct rchan_buf *buf,
int *is_global)
{
struct dentry *buf_file;
/*
* This to enable the use of a single buffer for the relay channel and
* correspondingly have a single file exposed to User, through which
* it can collect the logs in order without any post-processing.
* Need to set 'is_global' even if parent is NULL for early logging.
*/
*is_global = 1;
if (!parent)
return NULL;
buf_file = debugfs_create_file(filename, mode,
parent, buf, &relay_file_operations);
if (IS_ERR(buf_file))
return NULL;
return buf_file;
}
/*
* file_remove() default callback. Removes relay file in debugfs.
*/
static int remove_buf_file_callback(struct dentry *dentry)
{
debugfs_remove(dentry);
return 0;
}
/* relay channel callbacks */
static struct rchan_callbacks relay_callbacks = {
.subbuf_start = subbuf_start_callback,
.create_buf_file = create_buf_file_callback,
.remove_buf_file = remove_buf_file_callback,
};
static void guc_move_to_next_buf(struct intel_guc_log *log)
{
/*
* Make sure the updates made in the sub buffer are visible when
* Consumer sees the following update to offset inside the sub buffer.
*/
smp_wmb();
/* All data has been written, so now move the offset of sub buffer. */
relay_reserve(log->relay.channel, log->vma->obj->base.size);
/* Switch to the next sub buffer */
relay_flush(log->relay.channel);
}
static void *guc_get_write_buffer(struct intel_guc_log *log)
{
/*
* Just get the base address of a new sub buffer and copy data into it
* ourselves. NULL will be returned in no-overwrite mode, if all sub
* buffers are full. Could have used the relay_write() to indirectly
* copy the data, but that would have been bit convoluted, as we need to
* write to only certain locations inside a sub buffer which cannot be
* done without using relay_reserve() along with relay_write(). So its
* better to use relay_reserve() alone.
*/
return relay_reserve(log->relay.channel, 0);
}
static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
enum guc_log_buffer_type type,
unsigned int full_cnt)
{
unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
bool overflow = false;
if (full_cnt != prev_full_cnt) {
overflow = true;
log->stats[type].overflow = full_cnt;
log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
if (full_cnt < prev_full_cnt) {
/* buffer_full_cnt is a 4 bit counter */
log->stats[type].sampled_overflow += 16;
}
dev_notice_ratelimited(guc_to_i915(log_to_guc(log))->drm.dev,
"GuC log buffer overflow\n");
}
return overflow;
}
static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
{
switch (type) {
case GUC_ISR_LOG_BUFFER:
return ISR_BUFFER_SIZE;
case GUC_DPC_LOG_BUFFER:
return DPC_BUFFER_SIZE;
case GUC_CRASH_DUMP_LOG_BUFFER:
return CRASH_BUFFER_SIZE;
default:
MISSING_CASE(type);
}
return 0;
}
static void guc_read_update_log_buffer(struct intel_guc_log *log)
{
unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
struct guc_log_buffer_state log_buf_state_local;
enum guc_log_buffer_type type;
void *src_data, *dst_data;
bool new_overflow;
mutex_lock(&log->relay.lock);
if (WARN_ON(!intel_guc_log_relay_enabled(log)))
goto out_unlock;
/* Get the pointer to shared GuC log buffer */
log_buf_state = src_data = log->relay.buf_addr;
/* Get the pointer to local buffer to store the logs */
log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
if (unlikely(!log_buf_snapshot_state)) {
/*
* Used rate limited to avoid deluge of messages, logs might be
* getting consumed by User at a slow rate.
*/
DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
log->relay.full_count++;
goto out_unlock;
}
/* Actual logs are present from the 2nd page */
src_data += PAGE_SIZE;
dst_data += PAGE_SIZE;
for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
/*
* Make a copy of the state structure, inside GuC log buffer
* (which is uncached mapped), on the stack to avoid reading
* from it multiple times.
*/
memcpy(&log_buf_state_local, log_buf_state,
sizeof(struct guc_log_buffer_state));
buffer_size = guc_get_log_buffer_size(type);
read_offset = log_buf_state_local.read_ptr;
write_offset = log_buf_state_local.sampled_write_ptr;
full_cnt = log_buf_state_local.buffer_full_cnt;
/* Bookkeeping stuff */
log->stats[type].flush += log_buf_state_local.flush_to_file;
new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
/* Update the state of shared log buffer */
log_buf_state->read_ptr = write_offset;
log_buf_state->flush_to_file = 0;
log_buf_state++;
/* First copy the state structure in snapshot buffer */
memcpy(log_buf_snapshot_state, &log_buf_state_local,
sizeof(struct guc_log_buffer_state));
/*
* The write pointer could have been updated by GuC firmware,
* after sending the flush interrupt to Host, for consistency
* set write pointer value to same value of sampled_write_ptr
* in the snapshot buffer.
*/
log_buf_snapshot_state->write_ptr = write_offset;
log_buf_snapshot_state++;
/* Now copy the actual logs. */
if (unlikely(new_overflow)) {
/* copy the whole buffer in case of overflow */
read_offset = 0;
write_offset = buffer_size;
} else if (unlikely((read_offset > buffer_size) ||
(write_offset > buffer_size))) {
DRM_ERROR("invalid log buffer state\n");
/* copy whole buffer as offsets are unreliable */
read_offset = 0;
write_offset = buffer_size;
}
/* Just copy the newly written data */
if (read_offset > write_offset) {
i915_memcpy_from_wc(dst_data, src_data, write_offset);
bytes_to_copy = buffer_size - read_offset;
} else {
bytes_to_copy = write_offset - read_offset;
}
i915_memcpy_from_wc(dst_data + read_offset,
src_data + read_offset, bytes_to_copy);
src_data += buffer_size;
dst_data += buffer_size;
}
guc_move_to_next_buf(log);
out_unlock:
mutex_unlock(&log->relay.lock);
}
static void capture_logs_work(struct work_struct *work)
{
struct intel_guc_log *log =
container_of(work, struct intel_guc_log, relay.flush_work);
guc_log_capture_logs(log);
}
static int guc_log_map(struct intel_guc_log *log)
{
void *vaddr;
lockdep_assert_held(&log->relay.lock);
if (!log->vma)
return -ENODEV;
/*
* Create a WC (Uncached for read) vmalloc mapping of log
* buffer pages, so that we can directly get the data
* (up-to-date) from memory.
*/
vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
log->relay.buf_addr = vaddr;
return 0;
}
static void guc_log_unmap(struct intel_guc_log *log)
{
lockdep_assert_held(&log->relay.lock);
i915_gem_object_unpin_map(log->vma->obj);
log->relay.buf_addr = NULL;
}
void intel_guc_log_init_early(struct intel_guc_log *log)
{
mutex_init(&log->relay.lock);
INIT_WORK(&log->relay.flush_work, capture_logs_work);
}
static int guc_log_relay_create(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct rchan *guc_log_relay_chan;
size_t n_subbufs, subbuf_size;
int ret;
lockdep_assert_held(&log->relay.lock);
/* Keep the size of sub buffers same as shared log buffer */
subbuf_size = log->vma->size;
/*
* Store up to 8 snapshots, which is large enough to buffer sufficient
* boot time logs and provides enough leeway to User, in terms of
* latency, for consuming the logs from relay. Also doesn't take
* up too much memory.
*/
n_subbufs = 8;
guc_log_relay_chan = relay_open("guc_log",
dev_priv->drm.primary->debugfs_root,
subbuf_size, n_subbufs,
&relay_callbacks, dev_priv);
if (!guc_log_relay_chan) {
DRM_ERROR("Couldn't create relay chan for GuC logging\n");
ret = -ENOMEM;
return ret;
}
GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
log->relay.channel = guc_log_relay_chan;
return 0;
}
static void guc_log_relay_destroy(struct intel_guc_log *log)
{
lockdep_assert_held(&log->relay.lock);
relay_close(log->relay.channel);
log->relay.channel = NULL;
}
static void guc_log_capture_logs(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
struct drm_i915_private *dev_priv = guc_to_i915(guc);
intel_wakeref_t wakeref;
guc_read_update_log_buffer(log);
/*
* Generally device is expected to be active only at this
* time, so get/put should be really quick.
*/
with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
guc_action_flush_log_complete(guc);
}
int intel_guc_log_create(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
struct i915_vma *vma;
u32 guc_log_size;
int ret;
GEM_BUG_ON(log->vma);
/*
* GuC Log buffer Layout
*
* +===============================+ 00B
* | Crash dump state header |
* +-------------------------------+ 32B
* | DPC state header |
* +-------------------------------+ 64B
* | ISR state header |
* +-------------------------------+ 96B
* | |
* +===============================+ PAGE_SIZE (4KB)
* | Crash Dump logs |
* +===============================+ + CRASH_SIZE
* | DPC logs |
* +===============================+ + DPC_SIZE
* | ISR logs |
* +===============================+ + ISR_SIZE
*/
guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE +
ISR_BUFFER_SIZE;
vma = intel_guc_allocate_vma(guc, guc_log_size);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
log->vma = vma;
log->level = i915_modparams.guc_log_level;
return 0;
err:
DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret);
return ret;
}
void intel_guc_log_destroy(struct intel_guc_log *log)
{
i915_vma_unpin_and_release(&log->vma, 0);
}
int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
{
struct intel_guc *guc = log_to_guc(log);
struct drm_i915_private *dev_priv = guc_to_i915(guc);
intel_wakeref_t wakeref;
int ret = 0;
BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
GEM_BUG_ON(!log->vma);
/*
* GuC is recognizing log levels starting from 0 to max, we're using 0
* as indication that logging should be disabled.
*/
if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
return -EINVAL;
mutex_lock(&dev_priv->drm.struct_mutex);
if (log->level == level)
goto out_unlock;
with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
ret = guc_action_control_log(guc,
GUC_LOG_LEVEL_IS_VERBOSE(level),
GUC_LOG_LEVEL_IS_ENABLED(level),
GUC_LOG_LEVEL_TO_VERBOSITY(level));
if (ret) {
DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
goto out_unlock;
}
log->level = level;
out_unlock:
mutex_unlock(&dev_priv->drm.struct_mutex);
return ret;
}
bool intel_guc_log_relay_enabled(const struct intel_guc_log *log)
{
return log->relay.buf_addr;
}
int intel_guc_log_relay_open(struct intel_guc_log *log)
{
int ret;
mutex_lock(&log->relay.lock);
if (intel_guc_log_relay_enabled(log)) {
ret = -EEXIST;
goto out_unlock;
}
/*
* We require SSE 4.1 for fast reads from the GuC log buffer and
* it should be present on the chipsets supporting GuC based
* submisssions.
*/
if (!i915_has_memcpy_from_wc()) {
ret = -ENXIO;
goto out_unlock;
}
ret = guc_log_relay_create(log);
if (ret)
goto out_unlock;
ret = guc_log_map(log);
if (ret)
goto out_relay;
mutex_unlock(&log->relay.lock);
guc_log_enable_flush_events(log);
/*
* When GuC is logging without us relaying to userspace, we're ignoring
* the flush notification. This means that we need to unconditionally
* flush on relay enabling, since GuC only notifies us once.
*/
queue_work(log->relay.flush_wq, &log->relay.flush_work);
return 0;
out_relay:
guc_log_relay_destroy(log);
out_unlock:
mutex_unlock(&log->relay.lock);
return ret;
}
void intel_guc_log_relay_flush(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
struct drm_i915_private *i915 = guc_to_i915(guc);
intel_wakeref_t wakeref;
/*
* Before initiating the forceful flush, wait for any pending/ongoing
* flush to complete otherwise forceful flush may not actually happen.
*/
flush_work(&log->relay.flush_work);
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
guc_action_flush_log(guc);
/* GuC would have updated log buffer by now, so capture it */
guc_log_capture_logs(log);
}
void intel_guc_log_relay_close(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
struct drm_i915_private *i915 = guc_to_i915(guc);
guc_log_disable_flush_events(log);
synchronize_irq(i915->drm.irq);
flush_work(&log->relay.flush_work);
mutex_lock(&log->relay.lock);
GEM_BUG_ON(!intel_guc_log_relay_enabled(log));
guc_log_unmap(log);
guc_log_relay_destroy(log);
mutex_unlock(&log->relay.lock);
}
void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
{
queue_work(log->relay.flush_wq, &log->relay.flush_work);
}