755 lines
25 KiB
C
755 lines
25 KiB
C
#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
|
|
#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
|
|
/*
|
|
* PowerPC64 memory management structures
|
|
*
|
|
* Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
|
|
* PPC64 rework.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <asm/asm-compat.h>
|
|
#include <asm/page.h>
|
|
#include <asm/bug.h>
|
|
|
|
/*
|
|
* This is necessary to get the definition of PGTABLE_RANGE which we
|
|
* need for various slices related matters. Note that this isn't the
|
|
* complete pgtable.h but only a portion of it.
|
|
*/
|
|
#include <asm/book3s/64/pgtable.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cpu_has_feature.h>
|
|
|
|
/*
|
|
* SLB
|
|
*/
|
|
|
|
#define SLB_NUM_BOLTED 3
|
|
#define SLB_CACHE_ENTRIES 8
|
|
#define SLB_MIN_SIZE 32
|
|
|
|
/* Bits in the SLB ESID word */
|
|
#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
|
|
|
|
/* Bits in the SLB VSID word */
|
|
#define SLB_VSID_SHIFT 12
|
|
#define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT
|
|
#define SLB_VSID_SHIFT_1T 24
|
|
#define SLB_VSID_SSIZE_SHIFT 62
|
|
#define SLB_VSID_B ASM_CONST(0xc000000000000000)
|
|
#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
|
|
#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
|
|
#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
|
|
#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
|
|
#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
|
|
#define SLB_VSID_L ASM_CONST(0x0000000000000100)
|
|
#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
|
|
#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
|
|
#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
|
|
#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
|
|
#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
|
|
#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
|
|
#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
|
|
|
|
#define SLB_VSID_KERNEL (SLB_VSID_KP)
|
|
#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
|
|
|
|
#define SLBIE_C (0x08000000)
|
|
#define SLBIE_SSIZE_SHIFT 25
|
|
|
|
/*
|
|
* Hash table
|
|
*/
|
|
|
|
#define HPTES_PER_GROUP 8
|
|
|
|
#define HPTE_V_SSIZE_SHIFT 62
|
|
#define HPTE_V_AVPN_SHIFT 7
|
|
#define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
|
|
#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
|
|
#define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
|
|
#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
|
|
#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
|
|
#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
|
|
#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
|
|
#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
|
|
#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
|
|
#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
|
|
|
|
/*
|
|
* ISA 3.0 has a different HPTE format.
|
|
*/
|
|
#define HPTE_R_3_0_SSIZE_SHIFT 58
|
|
#define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
|
|
#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
|
|
#define HPTE_R_TS ASM_CONST(0x4000000000000000)
|
|
#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
|
|
#define HPTE_R_KEY_BIT0 ASM_CONST(0x2000000000000000)
|
|
#define HPTE_R_KEY_BIT1 ASM_CONST(0x1000000000000000)
|
|
#define HPTE_R_RPN_SHIFT 12
|
|
#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
|
|
#define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
|
|
#define HPTE_R_PP ASM_CONST(0x0000000000000003)
|
|
#define HPTE_R_PPP ASM_CONST(0x8000000000000003)
|
|
#define HPTE_R_N ASM_CONST(0x0000000000000004)
|
|
#define HPTE_R_G ASM_CONST(0x0000000000000008)
|
|
#define HPTE_R_M ASM_CONST(0x0000000000000010)
|
|
#define HPTE_R_I ASM_CONST(0x0000000000000020)
|
|
#define HPTE_R_W ASM_CONST(0x0000000000000040)
|
|
#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
|
|
#define HPTE_R_C ASM_CONST(0x0000000000000080)
|
|
#define HPTE_R_R ASM_CONST(0x0000000000000100)
|
|
#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
|
|
#define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800)
|
|
#define HPTE_R_KEY_BIT3 ASM_CONST(0x0000000000000400)
|
|
#define HPTE_R_KEY_BIT4 ASM_CONST(0x0000000000000200)
|
|
#define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI)
|
|
|
|
#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
|
|
#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
|
|
|
|
/* Values for PP (assumes Ks=0, Kp=1) */
|
|
#define PP_RWXX 0 /* Supervisor read/write, User none */
|
|
#define PP_RWRX 1 /* Supervisor read/write, User read */
|
|
#define PP_RWRW 2 /* Supervisor read/write, User read/write */
|
|
#define PP_RXRX 3 /* Supervisor read, User read */
|
|
#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
|
|
|
|
/* Fields for tlbiel instruction in architecture 2.06 */
|
|
#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
|
|
#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
|
|
#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
|
|
#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
|
|
#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
|
|
#define TLBIEL_INVAL_SET_SHIFT 12
|
|
|
|
#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
|
|
#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
|
|
#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
|
|
#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
struct mmu_hash_ops {
|
|
void (*hpte_invalidate)(unsigned long slot,
|
|
unsigned long vpn,
|
|
int bpsize, int apsize,
|
|
int ssize, int local);
|
|
long (*hpte_updatepp)(unsigned long slot,
|
|
unsigned long newpp,
|
|
unsigned long vpn,
|
|
int bpsize, int apsize,
|
|
int ssize, unsigned long flags);
|
|
void (*hpte_updateboltedpp)(unsigned long newpp,
|
|
unsigned long ea,
|
|
int psize, int ssize);
|
|
long (*hpte_insert)(unsigned long hpte_group,
|
|
unsigned long vpn,
|
|
unsigned long prpn,
|
|
unsigned long rflags,
|
|
unsigned long vflags,
|
|
int psize, int apsize,
|
|
int ssize);
|
|
long (*hpte_remove)(unsigned long hpte_group);
|
|
int (*hpte_removebolted)(unsigned long ea,
|
|
int psize, int ssize);
|
|
void (*flush_hash_range)(unsigned long number, int local);
|
|
void (*hugepage_invalidate)(unsigned long vsid,
|
|
unsigned long addr,
|
|
unsigned char *hpte_slot_array,
|
|
int psize, int ssize, int local);
|
|
int (*resize_hpt)(unsigned long shift);
|
|
/*
|
|
* Special for kexec.
|
|
* To be called in real mode with interrupts disabled. No locks are
|
|
* taken as such, concurrent access on pre POWER5 hardware could result
|
|
* in a deadlock.
|
|
* The linear mapping is destroyed as well.
|
|
*/
|
|
void (*hpte_clear_all)(void);
|
|
};
|
|
extern struct mmu_hash_ops mmu_hash_ops;
|
|
|
|
struct hash_pte {
|
|
__be64 v;
|
|
__be64 r;
|
|
};
|
|
|
|
extern struct hash_pte *htab_address;
|
|
extern unsigned long htab_size_bytes;
|
|
extern unsigned long htab_hash_mask;
|
|
|
|
|
|
static inline int shift_to_mmu_psize(unsigned int shift)
|
|
{
|
|
int psize;
|
|
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
|
|
if (mmu_psize_defs[psize].shift == shift)
|
|
return psize;
|
|
return -1;
|
|
}
|
|
|
|
static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
|
|
{
|
|
if (mmu_psize_defs[mmu_psize].shift)
|
|
return mmu_psize_defs[mmu_psize].shift;
|
|
BUG();
|
|
}
|
|
|
|
static inline unsigned long get_sllp_encoding(int psize)
|
|
{
|
|
unsigned long sllp;
|
|
|
|
sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
|
|
((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
|
|
return sllp;
|
|
}
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
/*
|
|
* Segment sizes.
|
|
* These are the values used by hardware in the B field of
|
|
* SLB entries and the first dword of MMU hashtable entries.
|
|
* The B field is 2 bits; the values 2 and 3 are unused and reserved.
|
|
*/
|
|
#define MMU_SEGSIZE_256M 0
|
|
#define MMU_SEGSIZE_1T 1
|
|
|
|
/*
|
|
* encode page number shift.
|
|
* in order to fit the 78 bit va in a 64 bit variable we shift the va by
|
|
* 12 bits. This enable us to address upto 76 bit va.
|
|
* For hpt hash from a va we can ignore the page size bits of va and for
|
|
* hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
|
|
* we work in all cases including 4k page size.
|
|
*/
|
|
#define VPN_SHIFT 12
|
|
|
|
/*
|
|
* HPTE Large Page (LP) details
|
|
*/
|
|
#define LP_SHIFT 12
|
|
#define LP_BITS 8
|
|
#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
static inline int slb_vsid_shift(int ssize)
|
|
{
|
|
if (ssize == MMU_SEGSIZE_256M)
|
|
return SLB_VSID_SHIFT;
|
|
return SLB_VSID_SHIFT_1T;
|
|
}
|
|
|
|
static inline int segment_shift(int ssize)
|
|
{
|
|
if (ssize == MMU_SEGSIZE_256M)
|
|
return SID_SHIFT;
|
|
return SID_SHIFT_1T;
|
|
}
|
|
|
|
/*
|
|
* This array is indexed by the LP field of the HPTE second dword.
|
|
* Since this field may contain some RPN bits, some entries are
|
|
* replicated so that we get the same value irrespective of RPN.
|
|
* The top 4 bits are the page size index (MMU_PAGE_*) for the
|
|
* actual page size, the bottom 4 bits are the base page size.
|
|
*/
|
|
extern u8 hpte_page_sizes[1 << LP_BITS];
|
|
|
|
static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
|
|
bool is_base_size)
|
|
{
|
|
unsigned int i, lp;
|
|
|
|
if (!(h & HPTE_V_LARGE))
|
|
return 1ul << 12;
|
|
|
|
/* Look at the 8 bit LP value */
|
|
lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
|
|
i = hpte_page_sizes[lp];
|
|
if (!i)
|
|
return 0;
|
|
if (!is_base_size)
|
|
i >>= 4;
|
|
return 1ul << mmu_psize_defs[i & 0xf].shift;
|
|
}
|
|
|
|
static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
|
|
{
|
|
return __hpte_page_size(h, l, 0);
|
|
}
|
|
|
|
static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
|
|
{
|
|
return __hpte_page_size(h, l, 1);
|
|
}
|
|
|
|
/*
|
|
* The current system page and segment sizes
|
|
*/
|
|
extern int mmu_kernel_ssize;
|
|
extern int mmu_highuser_ssize;
|
|
extern u16 mmu_slb_size;
|
|
extern unsigned long tce_alloc_start, tce_alloc_end;
|
|
|
|
/*
|
|
* If the processor supports 64k normal pages but not 64k cache
|
|
* inhibited pages, we have to be prepared to switch processes
|
|
* to use 4k pages when they create cache-inhibited mappings.
|
|
* If this is the case, mmu_ci_restrictions will be set to 1.
|
|
*/
|
|
extern int mmu_ci_restrictions;
|
|
|
|
/*
|
|
* This computes the AVPN and B fields of the first dword of a HPTE,
|
|
* for use when we want to match an existing PTE. The bottom 7 bits
|
|
* of the returned value are zero.
|
|
*/
|
|
static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
|
|
int ssize)
|
|
{
|
|
unsigned long v;
|
|
/*
|
|
* The AVA field omits the low-order 23 bits of the 78 bits VA.
|
|
* These bits are not needed in the PTE, because the
|
|
* low-order b of these bits are part of the byte offset
|
|
* into the virtual page and, if b < 23, the high-order
|
|
* 23-b of these bits are always used in selecting the
|
|
* PTEGs to be searched
|
|
*/
|
|
v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
|
|
v <<= HPTE_V_AVPN_SHIFT;
|
|
v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* ISA v3.0 defines a new HPTE format, which differs from the old
|
|
* format in having smaller AVPN and ARPN fields, and the B field
|
|
* in the second dword instead of the first.
|
|
*/
|
|
static inline unsigned long hpte_old_to_new_v(unsigned long v)
|
|
{
|
|
/* trim AVPN, drop B */
|
|
return v & HPTE_V_COMMON_BITS;
|
|
}
|
|
|
|
static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
|
|
{
|
|
/* move B field from 1st to 2nd dword, trim ARPN */
|
|
return (r & ~HPTE_R_3_0_SSIZE_MASK) |
|
|
(((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
|
|
}
|
|
|
|
static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
|
|
{
|
|
/* insert B field */
|
|
return (v & HPTE_V_COMMON_BITS) |
|
|
((r & HPTE_R_3_0_SSIZE_MASK) <<
|
|
(HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
|
|
}
|
|
|
|
static inline unsigned long hpte_new_to_old_r(unsigned long r)
|
|
{
|
|
/* clear out B field */
|
|
return r & ~HPTE_R_3_0_SSIZE_MASK;
|
|
}
|
|
|
|
/*
|
|
* This function sets the AVPN and L fields of the HPTE appropriately
|
|
* using the base page size and actual page size.
|
|
*/
|
|
static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
|
|
int actual_psize, int ssize)
|
|
{
|
|
unsigned long v;
|
|
v = hpte_encode_avpn(vpn, base_psize, ssize);
|
|
if (actual_psize != MMU_PAGE_4K)
|
|
v |= HPTE_V_LARGE;
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* This function sets the ARPN, and LP fields of the HPTE appropriately
|
|
* for the page size. We assume the pa is already "clean" that is properly
|
|
* aligned for the requested page size
|
|
*/
|
|
static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
|
|
int actual_psize)
|
|
{
|
|
/* A 4K page needs no special encoding */
|
|
if (actual_psize == MMU_PAGE_4K)
|
|
return pa & HPTE_R_RPN;
|
|
else {
|
|
unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
|
|
unsigned int shift = mmu_psize_defs[actual_psize].shift;
|
|
return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
|
|
*/
|
|
static inline unsigned long hpt_vpn(unsigned long ea,
|
|
unsigned long vsid, int ssize)
|
|
{
|
|
unsigned long mask;
|
|
int s_shift = segment_shift(ssize);
|
|
|
|
mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
|
|
return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
|
|
}
|
|
|
|
/*
|
|
* This hashes a virtual address
|
|
*/
|
|
static inline unsigned long hpt_hash(unsigned long vpn,
|
|
unsigned int shift, int ssize)
|
|
{
|
|
unsigned long mask;
|
|
unsigned long hash, vsid;
|
|
|
|
/* VPN_SHIFT can be atmost 12 */
|
|
if (ssize == MMU_SEGSIZE_256M) {
|
|
mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
|
|
hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
|
|
((vpn & mask) >> (shift - VPN_SHIFT));
|
|
} else {
|
|
mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
|
|
vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
|
|
hash = vsid ^ (vsid << 25) ^
|
|
((vpn & mask) >> (shift - VPN_SHIFT)) ;
|
|
}
|
|
return hash & 0x7fffffffffUL;
|
|
}
|
|
|
|
#define HPTE_LOCAL_UPDATE 0x1
|
|
#define HPTE_NOHPTE_UPDATE 0x2
|
|
|
|
extern int __hash_page_4K(unsigned long ea, unsigned long access,
|
|
unsigned long vsid, pte_t *ptep, unsigned long trap,
|
|
unsigned long flags, int ssize, int subpage_prot);
|
|
extern int __hash_page_64K(unsigned long ea, unsigned long access,
|
|
unsigned long vsid, pte_t *ptep, unsigned long trap,
|
|
unsigned long flags, int ssize);
|
|
struct mm_struct;
|
|
unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
|
|
extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
|
|
unsigned long access, unsigned long trap,
|
|
unsigned long flags);
|
|
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
|
|
unsigned long dsisr);
|
|
int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
|
|
pte_t *ptep, unsigned long trap, unsigned long flags,
|
|
int ssize, unsigned int shift, unsigned int mmu_psize);
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
extern int __hash_page_thp(unsigned long ea, unsigned long access,
|
|
unsigned long vsid, pmd_t *pmdp, unsigned long trap,
|
|
unsigned long flags, int ssize, unsigned int psize);
|
|
#else
|
|
static inline int __hash_page_thp(unsigned long ea, unsigned long access,
|
|
unsigned long vsid, pmd_t *pmdp,
|
|
unsigned long trap, unsigned long flags,
|
|
int ssize, unsigned int psize)
|
|
{
|
|
BUG();
|
|
return -1;
|
|
}
|
|
#endif
|
|
extern void hash_failure_debug(unsigned long ea, unsigned long access,
|
|
unsigned long vsid, unsigned long trap,
|
|
int ssize, int psize, int lpsize,
|
|
unsigned long pte);
|
|
extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
|
|
unsigned long pstart, unsigned long prot,
|
|
int psize, int ssize);
|
|
int htab_remove_mapping(unsigned long vstart, unsigned long vend,
|
|
int psize, int ssize);
|
|
extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
|
|
extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
void hpte_init_pseries(void);
|
|
#else
|
|
static inline void hpte_init_pseries(void) { }
|
|
#endif
|
|
|
|
extern void hpte_init_native(void);
|
|
|
|
extern void slb_initialize(void);
|
|
extern void slb_flush_and_rebolt(void);
|
|
|
|
extern void slb_vmalloc_update(void);
|
|
extern void slb_set_size(u16 size);
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
/*
|
|
* VSID allocation (256MB segment)
|
|
*
|
|
* We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
|
|
* from mmu context id and effective segment id of the address.
|
|
*
|
|
* For user processes max context id is limited to MAX_USER_CONTEXT.
|
|
|
|
* For kernel space, we use context ids 1-4 to map addresses as below:
|
|
* NOTE: each context only support 64TB now.
|
|
* 0x00001 - [ 0xc000000000000000 - 0xc0003fffffffffff ]
|
|
* 0x00002 - [ 0xd000000000000000 - 0xd0003fffffffffff ]
|
|
* 0x00003 - [ 0xe000000000000000 - 0xe0003fffffffffff ]
|
|
* 0x00004 - [ 0xf000000000000000 - 0xf0003fffffffffff ]
|
|
*
|
|
* The proto-VSIDs are then scrambled into real VSIDs with the
|
|
* multiplicative hash:
|
|
*
|
|
* VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
|
|
*
|
|
* VSID_MULTIPLIER is prime, so in particular it is
|
|
* co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
|
|
* Because the modulus is 2^n-1 we can compute it efficiently without
|
|
* a divide or extra multiply (see below). The scramble function gives
|
|
* robust scattering in the hash table (at least based on some initial
|
|
* results).
|
|
*
|
|
* We use VSID 0 to indicate an invalid VSID. The means we can't use context id
|
|
* 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
|
|
* will produce a VSID of 0.
|
|
*
|
|
* We also need to avoid the last segment of the last context, because that
|
|
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
|
|
* because of the modulo operation in vsid scramble.
|
|
*/
|
|
|
|
/*
|
|
* Max Va bits we support as of now is 68 bits. We want 19 bit
|
|
* context ID.
|
|
* Restrictions:
|
|
* GPU has restrictions of not able to access beyond 128TB
|
|
* (47 bit effective address). We also cannot do more than 20bit PID.
|
|
* For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
|
|
* to 16 bits (ie, we can only have 2^16 pids at the same time).
|
|
*/
|
|
#define VA_BITS 68
|
|
#define CONTEXT_BITS 19
|
|
#define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
|
|
#define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
|
|
|
|
#define ESID_BITS_MASK ((1 << ESID_BITS) - 1)
|
|
#define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)
|
|
|
|
/*
|
|
* 256MB segment
|
|
* The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
|
|
* available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
|
|
* 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
|
|
* context maps 2^49 bytes (512TB).
|
|
*
|
|
* We also need to avoid the last segment of the last context, because that
|
|
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
|
|
* because of the modulo operation in vsid scramble.
|
|
*/
|
|
#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2)
|
|
#define MIN_USER_CONTEXT (5)
|
|
|
|
/* Would be nice to use KERNEL_REGION_ID here */
|
|
#define KERNEL_REGION_CONTEXT_OFFSET (0xc - 1)
|
|
|
|
/*
|
|
* For platforms that support on 65bit VA we limit the context bits
|
|
*/
|
|
#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
|
|
|
|
/*
|
|
* This should be computed such that protovosid * vsid_mulitplier
|
|
* doesn't overflow 64 bits. The vsid_mutliplier should also be
|
|
* co-prime to vsid_modulus. We also need to make sure that number
|
|
* of bits in multiplied result (dividend) is less than twice the number of
|
|
* protovsid bits for our modulus optmization to work.
|
|
*
|
|
* The below table shows the current values used.
|
|
* |-------+------------+----------------------+------------+-------------------|
|
|
* | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
|
|
* |-------+------------+----------------------+------------+-------------------|
|
|
* | 1T | 24 | 25 | 49 | 50 |
|
|
* |-------+------------+----------------------+------------+-------------------|
|
|
* | 256MB | 24 | 37 | 61 | 74 |
|
|
* |-------+------------+----------------------+------------+-------------------|
|
|
*
|
|
* |-------+------------+----------------------+------------+--------------------|
|
|
* | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
|
|
* |-------+------------+----------------------+------------+--------------------|
|
|
* | 1T | 24 | 28 | 52 | 56 |
|
|
* |-------+------------+----------------------+------------+--------------------|
|
|
* | 256MB | 24 | 40 | 64 | 80 |
|
|
* |-------+------------+----------------------+------------+--------------------|
|
|
*
|
|
*/
|
|
#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
|
|
#define VSID_BITS_256M (VA_BITS - SID_SHIFT)
|
|
#define VSID_BITS_65_256M (65 - SID_SHIFT)
|
|
/*
|
|
* Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
|
|
*/
|
|
#define VSID_MULINV_256M ASM_CONST(665548017062)
|
|
|
|
#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
|
|
#define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)
|
|
#define VSID_BITS_65_1T (65 - SID_SHIFT_1T)
|
|
#define VSID_MULINV_1T ASM_CONST(209034062)
|
|
|
|
/* 1TB VSID reserved for VRMA */
|
|
#define VRMA_VSID 0x1ffffffUL
|
|
#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
|
|
|
|
/* 4 bits per slice and we have one slice per 1TB */
|
|
#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
|
|
#define TASK_SLICE_ARRAY_SZ(x) ((x)->context.slb_addr_limit >> 41)
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#ifdef CONFIG_PPC_SUBPAGE_PROT
|
|
/*
|
|
* For the sub-page protection option, we extend the PGD with one of
|
|
* these. Basically we have a 3-level tree, with the top level being
|
|
* the protptrs array. To optimize speed and memory consumption when
|
|
* only addresses < 4GB are being protected, pointers to the first
|
|
* four pages of sub-page protection words are stored in the low_prot
|
|
* array.
|
|
* Each page of sub-page protection words protects 1GB (4 bytes
|
|
* protects 64k). For the 3-level tree, each page of pointers then
|
|
* protects 8TB.
|
|
*/
|
|
struct subpage_prot_table {
|
|
unsigned long maxaddr; /* only addresses < this are protected */
|
|
unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
|
|
unsigned int *low_prot[4];
|
|
};
|
|
|
|
#define SBP_L1_BITS (PAGE_SHIFT - 2)
|
|
#define SBP_L2_BITS (PAGE_SHIFT - 3)
|
|
#define SBP_L1_COUNT (1 << SBP_L1_BITS)
|
|
#define SBP_L2_COUNT (1 << SBP_L2_BITS)
|
|
#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
|
|
#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
|
|
|
|
extern void subpage_prot_free(struct mm_struct *mm);
|
|
extern void subpage_prot_init_new_context(struct mm_struct *mm);
|
|
#else
|
|
static inline void subpage_prot_free(struct mm_struct *mm) {}
|
|
static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
|
|
#endif /* CONFIG_PPC_SUBPAGE_PROT */
|
|
|
|
#if 0
|
|
/*
|
|
* The code below is equivalent to this function for arguments
|
|
* < 2^VSID_BITS, which is all this should ever be called
|
|
* with. However gcc is not clever enough to compute the
|
|
* modulus (2^n-1) without a second multiply.
|
|
*/
|
|
#define vsid_scramble(protovsid, size) \
|
|
((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
|
|
|
|
/* simplified form avoiding mod operation */
|
|
#define vsid_scramble(protovsid, size) \
|
|
({ \
|
|
unsigned long x; \
|
|
x = (protovsid) * VSID_MULTIPLIER_##size; \
|
|
x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
|
|
(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
|
|
})
|
|
|
|
#else /* 1 */
|
|
static inline unsigned long vsid_scramble(unsigned long protovsid,
|
|
unsigned long vsid_multiplier, int vsid_bits)
|
|
{
|
|
unsigned long vsid;
|
|
unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
|
|
/*
|
|
* We have same multipler for both 256 and 1T segements now
|
|
*/
|
|
vsid = protovsid * vsid_multiplier;
|
|
vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
|
|
return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
|
|
}
|
|
|
|
#endif /* 1 */
|
|
|
|
/* Returns the segment size indicator for a user address */
|
|
static inline int user_segment_size(unsigned long addr)
|
|
{
|
|
/* Use 1T segments if possible for addresses >= 1T */
|
|
if (addr >= (1UL << SID_SHIFT_1T))
|
|
return mmu_highuser_ssize;
|
|
return MMU_SEGSIZE_256M;
|
|
}
|
|
|
|
static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
|
|
int ssize)
|
|
{
|
|
unsigned long va_bits = VA_BITS;
|
|
unsigned long vsid_bits;
|
|
unsigned long protovsid;
|
|
|
|
/*
|
|
* Bad address. We return VSID 0 for that
|
|
*/
|
|
if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
|
|
return 0;
|
|
|
|
if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
|
|
va_bits = 65;
|
|
|
|
if (ssize == MMU_SEGSIZE_256M) {
|
|
vsid_bits = va_bits - SID_SHIFT;
|
|
protovsid = (context << ESID_BITS) |
|
|
((ea >> SID_SHIFT) & ESID_BITS_MASK);
|
|
return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
|
|
}
|
|
/* 1T segment */
|
|
vsid_bits = va_bits - SID_SHIFT_1T;
|
|
protovsid = (context << ESID_BITS_1T) |
|
|
((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
|
|
return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
|
|
}
|
|
|
|
/*
|
|
* This is only valid for addresses >= PAGE_OFFSET
|
|
*/
|
|
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
|
|
{
|
|
unsigned long context;
|
|
|
|
if (!is_kernel_addr(ea))
|
|
return 0;
|
|
|
|
/*
|
|
* For kernel space, we use context ids 1-4 to map the address space as
|
|
* below:
|
|
*
|
|
* 0x00001 - [ 0xc000000000000000 - 0xc0003fffffffffff ]
|
|
* 0x00002 - [ 0xd000000000000000 - 0xd0003fffffffffff ]
|
|
* 0x00003 - [ 0xe000000000000000 - 0xe0003fffffffffff ]
|
|
* 0x00004 - [ 0xf000000000000000 - 0xf0003fffffffffff ]
|
|
*
|
|
* So we can compute the context from the region (top nibble) by
|
|
* subtracting 11, or 0xc - 1.
|
|
*/
|
|
context = (ea >> 60) - KERNEL_REGION_CONTEXT_OFFSET;
|
|
|
|
return get_vsid(context, ea, ssize);
|
|
}
|
|
|
|
unsigned htab_shift_for_mem_size(unsigned long mem_size);
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
|