1011 lines
28 KiB
C
1011 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Routines to identify caches on Intel CPU.
|
|
*
|
|
* Changes:
|
|
* Venkatesh Pallipadi : Adding cache identification through cpuid(4)
|
|
* Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
|
|
* Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/cacheinfo.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/amd_nb.h>
|
|
#include <asm/smp.h>
|
|
|
|
#include "cpu.h"
|
|
|
|
#define LVL_1_INST 1
|
|
#define LVL_1_DATA 2
|
|
#define LVL_2 3
|
|
#define LVL_3 4
|
|
#define LVL_TRACE 5
|
|
|
|
struct _cache_table {
|
|
unsigned char descriptor;
|
|
char cache_type;
|
|
short size;
|
|
};
|
|
|
|
#define MB(x) ((x) * 1024)
|
|
|
|
/* All the cache descriptor types we care about (no TLB or
|
|
trace cache entries) */
|
|
|
|
static const struct _cache_table cache_table[] =
|
|
{
|
|
{ 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
|
|
{ 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */
|
|
{ 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
|
|
{ 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */
|
|
{ 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */
|
|
{ 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
|
|
{ 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */
|
|
{ 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
|
|
{ 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */
|
|
{ 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */
|
|
{ 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */
|
|
{ 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
|
|
{ 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
|
|
{ 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
|
|
{ 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
|
|
{ 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
|
|
{ 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
|
|
{ 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
|
|
{ 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
|
|
{ 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */
|
|
{ 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */
|
|
{ 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */
|
|
{ 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */
|
|
{ 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
|
|
{ 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */
|
|
{ 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
|
|
{ 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */
|
|
{ 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */
|
|
{ 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
|
|
{ 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
|
|
{ 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */
|
|
{ 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */
|
|
{ 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */
|
|
{ 0x00, 0, 0}
|
|
};
|
|
|
|
|
|
enum _cache_type {
|
|
CTYPE_NULL = 0,
|
|
CTYPE_DATA = 1,
|
|
CTYPE_INST = 2,
|
|
CTYPE_UNIFIED = 3
|
|
};
|
|
|
|
union _cpuid4_leaf_eax {
|
|
struct {
|
|
enum _cache_type type:5;
|
|
unsigned int level:3;
|
|
unsigned int is_self_initializing:1;
|
|
unsigned int is_fully_associative:1;
|
|
unsigned int reserved:4;
|
|
unsigned int num_threads_sharing:12;
|
|
unsigned int num_cores_on_die:6;
|
|
} split;
|
|
u32 full;
|
|
};
|
|
|
|
union _cpuid4_leaf_ebx {
|
|
struct {
|
|
unsigned int coherency_line_size:12;
|
|
unsigned int physical_line_partition:10;
|
|
unsigned int ways_of_associativity:10;
|
|
} split;
|
|
u32 full;
|
|
};
|
|
|
|
union _cpuid4_leaf_ecx {
|
|
struct {
|
|
unsigned int number_of_sets:32;
|
|
} split;
|
|
u32 full;
|
|
};
|
|
|
|
struct _cpuid4_info_regs {
|
|
union _cpuid4_leaf_eax eax;
|
|
union _cpuid4_leaf_ebx ebx;
|
|
union _cpuid4_leaf_ecx ecx;
|
|
unsigned int id;
|
|
unsigned long size;
|
|
struct amd_northbridge *nb;
|
|
};
|
|
|
|
static unsigned short num_cache_leaves;
|
|
|
|
/* AMD doesn't have CPUID4. Emulate it here to report the same
|
|
information to the user. This makes some assumptions about the machine:
|
|
L2 not shared, no SMT etc. that is currently true on AMD CPUs.
|
|
|
|
In theory the TLBs could be reported as fake type (they are in "dummy").
|
|
Maybe later */
|
|
union l1_cache {
|
|
struct {
|
|
unsigned line_size:8;
|
|
unsigned lines_per_tag:8;
|
|
unsigned assoc:8;
|
|
unsigned size_in_kb:8;
|
|
};
|
|
unsigned val;
|
|
};
|
|
|
|
union l2_cache {
|
|
struct {
|
|
unsigned line_size:8;
|
|
unsigned lines_per_tag:4;
|
|
unsigned assoc:4;
|
|
unsigned size_in_kb:16;
|
|
};
|
|
unsigned val;
|
|
};
|
|
|
|
union l3_cache {
|
|
struct {
|
|
unsigned line_size:8;
|
|
unsigned lines_per_tag:4;
|
|
unsigned assoc:4;
|
|
unsigned res:2;
|
|
unsigned size_encoded:14;
|
|
};
|
|
unsigned val;
|
|
};
|
|
|
|
static const unsigned short assocs[] = {
|
|
[1] = 1,
|
|
[2] = 2,
|
|
[4] = 4,
|
|
[6] = 8,
|
|
[8] = 16,
|
|
[0xa] = 32,
|
|
[0xb] = 48,
|
|
[0xc] = 64,
|
|
[0xd] = 96,
|
|
[0xe] = 128,
|
|
[0xf] = 0xffff /* fully associative - no way to show this currently */
|
|
};
|
|
|
|
static const unsigned char levels[] = { 1, 1, 2, 3 };
|
|
static const unsigned char types[] = { 1, 2, 3, 3 };
|
|
|
|
static const enum cache_type cache_type_map[] = {
|
|
[CTYPE_NULL] = CACHE_TYPE_NOCACHE,
|
|
[CTYPE_DATA] = CACHE_TYPE_DATA,
|
|
[CTYPE_INST] = CACHE_TYPE_INST,
|
|
[CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
|
|
};
|
|
|
|
static void
|
|
amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
|
|
union _cpuid4_leaf_ebx *ebx,
|
|
union _cpuid4_leaf_ecx *ecx)
|
|
{
|
|
unsigned dummy;
|
|
unsigned line_size, lines_per_tag, assoc, size_in_kb;
|
|
union l1_cache l1i, l1d;
|
|
union l2_cache l2;
|
|
union l3_cache l3;
|
|
union l1_cache *l1 = &l1d;
|
|
|
|
eax->full = 0;
|
|
ebx->full = 0;
|
|
ecx->full = 0;
|
|
|
|
cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
|
|
cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
|
|
|
|
switch (leaf) {
|
|
case 1:
|
|
l1 = &l1i;
|
|
case 0:
|
|
if (!l1->val)
|
|
return;
|
|
assoc = assocs[l1->assoc];
|
|
line_size = l1->line_size;
|
|
lines_per_tag = l1->lines_per_tag;
|
|
size_in_kb = l1->size_in_kb;
|
|
break;
|
|
case 2:
|
|
if (!l2.val)
|
|
return;
|
|
assoc = assocs[l2.assoc];
|
|
line_size = l2.line_size;
|
|
lines_per_tag = l2.lines_per_tag;
|
|
/* cpu_data has errata corrections for K7 applied */
|
|
size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
|
|
break;
|
|
case 3:
|
|
if (!l3.val)
|
|
return;
|
|
assoc = assocs[l3.assoc];
|
|
line_size = l3.line_size;
|
|
lines_per_tag = l3.lines_per_tag;
|
|
size_in_kb = l3.size_encoded * 512;
|
|
if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
|
|
size_in_kb = size_in_kb >> 1;
|
|
assoc = assoc >> 1;
|
|
}
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
eax->split.is_self_initializing = 1;
|
|
eax->split.type = types[leaf];
|
|
eax->split.level = levels[leaf];
|
|
eax->split.num_threads_sharing = 0;
|
|
eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1;
|
|
|
|
|
|
if (assoc == 0xffff)
|
|
eax->split.is_fully_associative = 1;
|
|
ebx->split.coherency_line_size = line_size - 1;
|
|
ebx->split.ways_of_associativity = assoc - 1;
|
|
ebx->split.physical_line_partition = lines_per_tag - 1;
|
|
ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
|
|
(ebx->split.ways_of_associativity + 1) - 1;
|
|
}
|
|
|
|
#if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)
|
|
|
|
/*
|
|
* L3 cache descriptors
|
|
*/
|
|
static void amd_calc_l3_indices(struct amd_northbridge *nb)
|
|
{
|
|
struct amd_l3_cache *l3 = &nb->l3_cache;
|
|
unsigned int sc0, sc1, sc2, sc3;
|
|
u32 val = 0;
|
|
|
|
pci_read_config_dword(nb->misc, 0x1C4, &val);
|
|
|
|
/* calculate subcache sizes */
|
|
l3->subcaches[0] = sc0 = !(val & BIT(0));
|
|
l3->subcaches[1] = sc1 = !(val & BIT(4));
|
|
|
|
if (boot_cpu_data.x86 == 0x15) {
|
|
l3->subcaches[0] = sc0 += !(val & BIT(1));
|
|
l3->subcaches[1] = sc1 += !(val & BIT(5));
|
|
}
|
|
|
|
l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9));
|
|
l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));
|
|
|
|
l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
|
|
}
|
|
|
|
/*
|
|
* check whether a slot used for disabling an L3 index is occupied.
|
|
* @l3: L3 cache descriptor
|
|
* @slot: slot number (0..1)
|
|
*
|
|
* @returns: the disabled index if used or negative value if slot free.
|
|
*/
|
|
static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
|
|
{
|
|
unsigned int reg = 0;
|
|
|
|
pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®);
|
|
|
|
/* check whether this slot is activated already */
|
|
if (reg & (3UL << 30))
|
|
return reg & 0xfff;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf,
|
|
unsigned int slot)
|
|
{
|
|
int index;
|
|
struct amd_northbridge *nb = this_leaf->priv;
|
|
|
|
index = amd_get_l3_disable_slot(nb, slot);
|
|
if (index >= 0)
|
|
return sprintf(buf, "%d\n", index);
|
|
|
|
return sprintf(buf, "FREE\n");
|
|
}
|
|
|
|
#define SHOW_CACHE_DISABLE(slot) \
|
|
static ssize_t \
|
|
cache_disable_##slot##_show(struct device *dev, \
|
|
struct device_attribute *attr, char *buf) \
|
|
{ \
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
|
|
return show_cache_disable(this_leaf, buf, slot); \
|
|
}
|
|
SHOW_CACHE_DISABLE(0)
|
|
SHOW_CACHE_DISABLE(1)
|
|
|
|
static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu,
|
|
unsigned slot, unsigned long idx)
|
|
{
|
|
int i;
|
|
|
|
idx |= BIT(30);
|
|
|
|
/*
|
|
* disable index in all 4 subcaches
|
|
*/
|
|
for (i = 0; i < 4; i++) {
|
|
u32 reg = idx | (i << 20);
|
|
|
|
if (!nb->l3_cache.subcaches[i])
|
|
continue;
|
|
|
|
pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
|
|
|
|
/*
|
|
* We need to WBINVD on a core on the node containing the L3
|
|
* cache which indices we disable therefore a simple wbinvd()
|
|
* is not sufficient.
|
|
*/
|
|
wbinvd_on_cpu(cpu);
|
|
|
|
reg |= BIT(31);
|
|
pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* disable a L3 cache index by using a disable-slot
|
|
*
|
|
* @l3: L3 cache descriptor
|
|
* @cpu: A CPU on the node containing the L3 cache
|
|
* @slot: slot number (0..1)
|
|
* @index: index to disable
|
|
*
|
|
* @return: 0 on success, error status on failure
|
|
*/
|
|
static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu,
|
|
unsigned slot, unsigned long index)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* check if @slot is already used or the index is already disabled */
|
|
ret = amd_get_l3_disable_slot(nb, slot);
|
|
if (ret >= 0)
|
|
return -EEXIST;
|
|
|
|
if (index > nb->l3_cache.indices)
|
|
return -EINVAL;
|
|
|
|
/* check whether the other slot has disabled the same index already */
|
|
if (index == amd_get_l3_disable_slot(nb, !slot))
|
|
return -EEXIST;
|
|
|
|
amd_l3_disable_index(nb, cpu, slot, index);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t store_cache_disable(struct cacheinfo *this_leaf,
|
|
const char *buf, size_t count,
|
|
unsigned int slot)
|
|
{
|
|
unsigned long val = 0;
|
|
int cpu, err = 0;
|
|
struct amd_northbridge *nb = this_leaf->priv;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
cpu = cpumask_first(&this_leaf->shared_cpu_map);
|
|
|
|
if (kstrtoul(buf, 10, &val) < 0)
|
|
return -EINVAL;
|
|
|
|
err = amd_set_l3_disable_slot(nb, cpu, slot, val);
|
|
if (err) {
|
|
if (err == -EEXIST)
|
|
pr_warn("L3 slot %d in use/index already disabled!\n",
|
|
slot);
|
|
return err;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#define STORE_CACHE_DISABLE(slot) \
|
|
static ssize_t \
|
|
cache_disable_##slot##_store(struct device *dev, \
|
|
struct device_attribute *attr, \
|
|
const char *buf, size_t count) \
|
|
{ \
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
|
|
return store_cache_disable(this_leaf, buf, count, slot); \
|
|
}
|
|
STORE_CACHE_DISABLE(0)
|
|
STORE_CACHE_DISABLE(1)
|
|
|
|
static ssize_t subcaches_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
|
|
int cpu = cpumask_first(&this_leaf->shared_cpu_map);
|
|
|
|
return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
|
|
}
|
|
|
|
static ssize_t subcaches_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
|
|
int cpu = cpumask_first(&this_leaf->shared_cpu_map);
|
|
unsigned long val;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (kstrtoul(buf, 16, &val) < 0)
|
|
return -EINVAL;
|
|
|
|
if (amd_set_subcaches(cpu, val))
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
|
|
static DEVICE_ATTR_RW(cache_disable_0);
|
|
static DEVICE_ATTR_RW(cache_disable_1);
|
|
static DEVICE_ATTR_RW(subcaches);
|
|
|
|
static umode_t
|
|
cache_private_attrs_is_visible(struct kobject *kobj,
|
|
struct attribute *attr, int unused)
|
|
{
|
|
struct device *dev = kobj_to_dev(kobj);
|
|
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
|
|
umode_t mode = attr->mode;
|
|
|
|
if (!this_leaf->priv)
|
|
return 0;
|
|
|
|
if ((attr == &dev_attr_subcaches.attr) &&
|
|
amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
|
|
return mode;
|
|
|
|
if ((attr == &dev_attr_cache_disable_0.attr ||
|
|
attr == &dev_attr_cache_disable_1.attr) &&
|
|
amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
|
|
return mode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct attribute_group cache_private_group = {
|
|
.is_visible = cache_private_attrs_is_visible,
|
|
};
|
|
|
|
static void init_amd_l3_attrs(void)
|
|
{
|
|
int n = 1;
|
|
static struct attribute **amd_l3_attrs;
|
|
|
|
if (amd_l3_attrs) /* already initialized */
|
|
return;
|
|
|
|
if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
|
|
n += 2;
|
|
if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
|
|
n += 1;
|
|
|
|
amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL);
|
|
if (!amd_l3_attrs)
|
|
return;
|
|
|
|
n = 0;
|
|
if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
|
|
amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr;
|
|
amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr;
|
|
}
|
|
if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
|
|
amd_l3_attrs[n++] = &dev_attr_subcaches.attr;
|
|
|
|
cache_private_group.attrs = amd_l3_attrs;
|
|
}
|
|
|
|
const struct attribute_group *
|
|
cache_get_priv_group(struct cacheinfo *this_leaf)
|
|
{
|
|
struct amd_northbridge *nb = this_leaf->priv;
|
|
|
|
if (this_leaf->level < 3 || !nb)
|
|
return NULL;
|
|
|
|
if (nb && nb->l3_cache.indices)
|
|
init_amd_l3_attrs();
|
|
|
|
return &cache_private_group;
|
|
}
|
|
|
|
static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
|
|
{
|
|
int node;
|
|
|
|
/* only for L3, and not in virtualized environments */
|
|
if (index < 3)
|
|
return;
|
|
|
|
node = amd_get_nb_id(smp_processor_id());
|
|
this_leaf->nb = node_to_amd_nb(node);
|
|
if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
|
|
amd_calc_l3_indices(this_leaf->nb);
|
|
}
|
|
#else
|
|
#define amd_init_l3_cache(x, y)
|
|
#endif /* CONFIG_AMD_NB && CONFIG_SYSFS */
|
|
|
|
static int
|
|
cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf)
|
|
{
|
|
union _cpuid4_leaf_eax eax;
|
|
union _cpuid4_leaf_ebx ebx;
|
|
union _cpuid4_leaf_ecx ecx;
|
|
unsigned edx;
|
|
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
|
|
if (boot_cpu_has(X86_FEATURE_TOPOEXT))
|
|
cpuid_count(0x8000001d, index, &eax.full,
|
|
&ebx.full, &ecx.full, &edx);
|
|
else
|
|
amd_cpuid4(index, &eax, &ebx, &ecx);
|
|
amd_init_l3_cache(this_leaf, index);
|
|
} else {
|
|
cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
|
|
}
|
|
|
|
if (eax.split.type == CTYPE_NULL)
|
|
return -EIO; /* better error ? */
|
|
|
|
this_leaf->eax = eax;
|
|
this_leaf->ebx = ebx;
|
|
this_leaf->ecx = ecx;
|
|
this_leaf->size = (ecx.split.number_of_sets + 1) *
|
|
(ebx.split.coherency_line_size + 1) *
|
|
(ebx.split.physical_line_partition + 1) *
|
|
(ebx.split.ways_of_associativity + 1);
|
|
return 0;
|
|
}
|
|
|
|
static int find_num_cache_leaves(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx, op;
|
|
union _cpuid4_leaf_eax cache_eax;
|
|
int i = -1;
|
|
|
|
if (c->x86_vendor == X86_VENDOR_AMD)
|
|
op = 0x8000001d;
|
|
else
|
|
op = 4;
|
|
|
|
do {
|
|
++i;
|
|
/* Do cpuid(op) loop to find out num_cache_leaves */
|
|
cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
|
|
cache_eax.full = eax;
|
|
} while (cache_eax.split.type != CTYPE_NULL);
|
|
return i;
|
|
}
|
|
|
|
void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, int cpu, u8 node_id)
|
|
{
|
|
/*
|
|
* We may have multiple LLCs if L3 caches exist, so check if we
|
|
* have an L3 cache by looking at the L3 cache CPUID leaf.
|
|
*/
|
|
if (!cpuid_edx(0x80000006))
|
|
return;
|
|
|
|
if (c->x86 < 0x17) {
|
|
/* LLC is at the node level. */
|
|
per_cpu(cpu_llc_id, cpu) = node_id;
|
|
} else if (c->x86 == 0x17 &&
|
|
c->x86_model >= 0 && c->x86_model <= 0x1F) {
|
|
/*
|
|
* LLC is at the core complex level.
|
|
* Core complex ID is ApicId[3] for these processors.
|
|
*/
|
|
per_cpu(cpu_llc_id, cpu) = c->apicid >> 3;
|
|
} else {
|
|
/*
|
|
* LLC ID is calculated from the number of threads sharing the
|
|
* cache.
|
|
* */
|
|
u32 eax, ebx, ecx, edx, num_sharing_cache = 0;
|
|
u32 llc_index = find_num_cache_leaves(c) - 1;
|
|
|
|
cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx);
|
|
if (eax)
|
|
num_sharing_cache = ((eax >> 14) & 0xfff) + 1;
|
|
|
|
if (num_sharing_cache) {
|
|
int bits = get_count_order(num_sharing_cache);
|
|
|
|
per_cpu(cpu_llc_id, cpu) = c->apicid >> bits;
|
|
}
|
|
}
|
|
}
|
|
|
|
void init_amd_cacheinfo(struct cpuinfo_x86 *c)
|
|
{
|
|
|
|
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
|
|
num_cache_leaves = find_num_cache_leaves(c);
|
|
} else if (c->extended_cpuid_level >= 0x80000006) {
|
|
if (cpuid_edx(0x80000006) & 0xf000)
|
|
num_cache_leaves = 4;
|
|
else
|
|
num_cache_leaves = 3;
|
|
}
|
|
}
|
|
|
|
void init_intel_cacheinfo(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Cache sizes */
|
|
unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
|
|
unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
|
|
unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
|
|
unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
|
|
#ifdef CONFIG_SMP
|
|
unsigned int cpu = c->cpu_index;
|
|
#endif
|
|
|
|
if (c->cpuid_level > 3) {
|
|
static int is_initialized;
|
|
|
|
if (is_initialized == 0) {
|
|
/* Init num_cache_leaves from boot CPU */
|
|
num_cache_leaves = find_num_cache_leaves(c);
|
|
is_initialized++;
|
|
}
|
|
|
|
/*
|
|
* Whenever possible use cpuid(4), deterministic cache
|
|
* parameters cpuid leaf to find the cache details
|
|
*/
|
|
for (i = 0; i < num_cache_leaves; i++) {
|
|
struct _cpuid4_info_regs this_leaf = {};
|
|
int retval;
|
|
|
|
retval = cpuid4_cache_lookup_regs(i, &this_leaf);
|
|
if (retval < 0)
|
|
continue;
|
|
|
|
switch (this_leaf.eax.split.level) {
|
|
case 1:
|
|
if (this_leaf.eax.split.type == CTYPE_DATA)
|
|
new_l1d = this_leaf.size/1024;
|
|
else if (this_leaf.eax.split.type == CTYPE_INST)
|
|
new_l1i = this_leaf.size/1024;
|
|
break;
|
|
case 2:
|
|
new_l2 = this_leaf.size/1024;
|
|
num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
|
|
index_msb = get_count_order(num_threads_sharing);
|
|
l2_id = c->apicid & ~((1 << index_msb) - 1);
|
|
break;
|
|
case 3:
|
|
new_l3 = this_leaf.size/1024;
|
|
num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
|
|
index_msb = get_count_order(num_threads_sharing);
|
|
l3_id = c->apicid & ~((1 << index_msb) - 1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
|
|
* trace cache
|
|
*/
|
|
if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
|
|
/* supports eax=2 call */
|
|
int j, n;
|
|
unsigned int regs[4];
|
|
unsigned char *dp = (unsigned char *)regs;
|
|
int only_trace = 0;
|
|
|
|
if (num_cache_leaves != 0 && c->x86 == 15)
|
|
only_trace = 1;
|
|
|
|
/* Number of times to iterate */
|
|
n = cpuid_eax(2) & 0xFF;
|
|
|
|
for (i = 0 ; i < n ; i++) {
|
|
cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
|
|
|
|
/* If bit 31 is set, this is an unknown format */
|
|
for (j = 0 ; j < 3 ; j++)
|
|
if (regs[j] & (1 << 31))
|
|
regs[j] = 0;
|
|
|
|
/* Byte 0 is level count, not a descriptor */
|
|
for (j = 1 ; j < 16 ; j++) {
|
|
unsigned char des = dp[j];
|
|
unsigned char k = 0;
|
|
|
|
/* look up this descriptor in the table */
|
|
while (cache_table[k].descriptor != 0) {
|
|
if (cache_table[k].descriptor == des) {
|
|
if (only_trace && cache_table[k].cache_type != LVL_TRACE)
|
|
break;
|
|
switch (cache_table[k].cache_type) {
|
|
case LVL_1_INST:
|
|
l1i += cache_table[k].size;
|
|
break;
|
|
case LVL_1_DATA:
|
|
l1d += cache_table[k].size;
|
|
break;
|
|
case LVL_2:
|
|
l2 += cache_table[k].size;
|
|
break;
|
|
case LVL_3:
|
|
l3 += cache_table[k].size;
|
|
break;
|
|
case LVL_TRACE:
|
|
trace += cache_table[k].size;
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
k++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (new_l1d)
|
|
l1d = new_l1d;
|
|
|
|
if (new_l1i)
|
|
l1i = new_l1i;
|
|
|
|
if (new_l2) {
|
|
l2 = new_l2;
|
|
#ifdef CONFIG_SMP
|
|
per_cpu(cpu_llc_id, cpu) = l2_id;
|
|
#endif
|
|
}
|
|
|
|
if (new_l3) {
|
|
l3 = new_l3;
|
|
#ifdef CONFIG_SMP
|
|
per_cpu(cpu_llc_id, cpu) = l3_id;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* If cpu_llc_id is not yet set, this means cpuid_level < 4 which in
|
|
* turns means that the only possibility is SMT (as indicated in
|
|
* cpuid1). Since cpuid2 doesn't specify shared caches, and we know
|
|
* that SMT shares all caches, we can unconditionally set cpu_llc_id to
|
|
* c->phys_proc_id.
|
|
*/
|
|
if (per_cpu(cpu_llc_id, cpu) == BAD_APICID)
|
|
per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
|
|
#endif
|
|
|
|
c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
|
|
|
|
if (!l2)
|
|
cpu_detect_cache_sizes(c);
|
|
}
|
|
|
|
static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
|
|
struct _cpuid4_info_regs *base)
|
|
{
|
|
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
|
|
struct cacheinfo *this_leaf;
|
|
int i, sibling;
|
|
|
|
/*
|
|
* For L3, always use the pre-calculated cpu_llc_shared_mask
|
|
* to derive shared_cpu_map.
|
|
*/
|
|
if (index == 3) {
|
|
for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
|
|
this_cpu_ci = get_cpu_cacheinfo(i);
|
|
if (!this_cpu_ci->info_list)
|
|
continue;
|
|
this_leaf = this_cpu_ci->info_list + index;
|
|
for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
|
|
if (!cpu_online(sibling))
|
|
continue;
|
|
cpumask_set_cpu(sibling,
|
|
&this_leaf->shared_cpu_map);
|
|
}
|
|
}
|
|
} else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
|
|
unsigned int apicid, nshared, first, last;
|
|
|
|
nshared = base->eax.split.num_threads_sharing + 1;
|
|
apicid = cpu_data(cpu).apicid;
|
|
first = apicid - (apicid % nshared);
|
|
last = first + nshared - 1;
|
|
|
|
for_each_online_cpu(i) {
|
|
this_cpu_ci = get_cpu_cacheinfo(i);
|
|
if (!this_cpu_ci->info_list)
|
|
continue;
|
|
|
|
apicid = cpu_data(i).apicid;
|
|
if ((apicid < first) || (apicid > last))
|
|
continue;
|
|
|
|
this_leaf = this_cpu_ci->info_list + index;
|
|
|
|
for_each_online_cpu(sibling) {
|
|
apicid = cpu_data(sibling).apicid;
|
|
if ((apicid < first) || (apicid > last))
|
|
continue;
|
|
cpumask_set_cpu(sibling,
|
|
&this_leaf->shared_cpu_map);
|
|
}
|
|
}
|
|
} else
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void __cache_cpumap_setup(unsigned int cpu, int index,
|
|
struct _cpuid4_info_regs *base)
|
|
{
|
|
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
|
|
struct cacheinfo *this_leaf, *sibling_leaf;
|
|
unsigned long num_threads_sharing;
|
|
int index_msb, i;
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
|
|
if (c->x86_vendor == X86_VENDOR_AMD) {
|
|
if (__cache_amd_cpumap_setup(cpu, index, base))
|
|
return;
|
|
}
|
|
|
|
this_leaf = this_cpu_ci->info_list + index;
|
|
num_threads_sharing = 1 + base->eax.split.num_threads_sharing;
|
|
|
|
cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
|
|
if (num_threads_sharing == 1)
|
|
return;
|
|
|
|
index_msb = get_count_order(num_threads_sharing);
|
|
|
|
for_each_online_cpu(i)
|
|
if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) {
|
|
struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
|
|
|
|
if (i == cpu || !sib_cpu_ci->info_list)
|
|
continue;/* skip if itself or no cacheinfo */
|
|
sibling_leaf = sib_cpu_ci->info_list + index;
|
|
cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
|
|
cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map);
|
|
}
|
|
}
|
|
|
|
static void ci_leaf_init(struct cacheinfo *this_leaf,
|
|
struct _cpuid4_info_regs *base)
|
|
{
|
|
this_leaf->id = base->id;
|
|
this_leaf->attributes = CACHE_ID;
|
|
this_leaf->level = base->eax.split.level;
|
|
this_leaf->type = cache_type_map[base->eax.split.type];
|
|
this_leaf->coherency_line_size =
|
|
base->ebx.split.coherency_line_size + 1;
|
|
this_leaf->ways_of_associativity =
|
|
base->ebx.split.ways_of_associativity + 1;
|
|
this_leaf->size = base->size;
|
|
this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1;
|
|
this_leaf->physical_line_partition =
|
|
base->ebx.split.physical_line_partition + 1;
|
|
this_leaf->priv = base->nb;
|
|
}
|
|
|
|
static int __init_cache_level(unsigned int cpu)
|
|
{
|
|
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
|
|
|
|
if (!num_cache_leaves)
|
|
return -ENOENT;
|
|
if (!this_cpu_ci)
|
|
return -EINVAL;
|
|
this_cpu_ci->num_levels = 3;
|
|
this_cpu_ci->num_leaves = num_cache_leaves;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The max shared threads number comes from CPUID.4:EAX[25-14] with input
|
|
* ECX as cache index. Then right shift apicid by the number's order to get
|
|
* cache id for this cache node.
|
|
*/
|
|
static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
unsigned long num_threads_sharing;
|
|
int index_msb;
|
|
|
|
num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing;
|
|
index_msb = get_count_order(num_threads_sharing);
|
|
id4_regs->id = c->apicid >> index_msb;
|
|
}
|
|
|
|
static int __populate_cache_leaves(unsigned int cpu)
|
|
{
|
|
unsigned int idx, ret;
|
|
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
|
|
struct cacheinfo *this_leaf = this_cpu_ci->info_list;
|
|
struct _cpuid4_info_regs id4_regs = {};
|
|
|
|
for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
|
|
ret = cpuid4_cache_lookup_regs(idx, &id4_regs);
|
|
if (ret)
|
|
return ret;
|
|
get_cache_id(cpu, &id4_regs);
|
|
ci_leaf_init(this_leaf++, &id4_regs);
|
|
__cache_cpumap_setup(cpu, idx, &id4_regs);
|
|
}
|
|
this_cpu_ci->cpu_map_populated = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level)
|
|
DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves)
|