OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdgpu/amdgpu_fru_eeprom.c

187 lines
5.7 KiB
C

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/pci.h>
#include "amdgpu.h"
#include "amdgpu_i2c.h"
#include "smu_v11_0_i2c.h"
#include "atom.h"
#include "amdgpu_fru_eeprom.h"
#define I2C_PRODUCT_INFO_ADDR 0xAC
#define I2C_PRODUCT_INFO_ADDR_SIZE 0x2
#define I2C_PRODUCT_INFO_OFFSET 0xC0
bool is_fru_eeprom_supported(struct amdgpu_device *adev)
{
/* TODO: Gaming SKUs don't have the FRU EEPROM.
* Use this hack to address hangs on modprobe on gaming SKUs
* until a proper solution can be implemented by only supporting
* the explicit chip IDs for VG20 Server cards
*
* TODO: Add list of supported Arcturus DIDs once confirmed
*/
if ((adev->asic_type == CHIP_VEGA20 && adev->pdev->device == 0x66a0) ||
(adev->asic_type == CHIP_VEGA20 && adev->pdev->device == 0x66a1) ||
(adev->asic_type == CHIP_VEGA20 && adev->pdev->device == 0x66a4))
return true;
return false;
}
int amdgpu_fru_read_eeprom(struct amdgpu_device *adev, uint32_t addrptr,
unsigned char *buff)
{
int ret, size;
struct i2c_msg msg = {
.addr = I2C_PRODUCT_INFO_ADDR,
.flags = I2C_M_RD,
.buf = buff,
};
buff[0] = 0;
buff[1] = addrptr;
msg.len = I2C_PRODUCT_INFO_ADDR_SIZE + 1;
ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1);
if (ret < 1) {
DRM_WARN("FRU: Failed to get size field");
return ret;
}
/* The size returned by the i2c requires subtraction of 0xC0 since the
* size apparently always reports as 0xC0+actual size.
*/
size = buff[2] - I2C_PRODUCT_INFO_OFFSET;
/* Add 1 since address field was 1 byte */
buff[1] = addrptr + 1;
msg.len = I2C_PRODUCT_INFO_ADDR_SIZE + size;
ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1);
if (ret < 1) {
DRM_WARN("FRU: Failed to get data field");
return ret;
}
return size;
}
int amdgpu_fru_get_product_info(struct amdgpu_device *adev)
{
unsigned char buff[34];
int addrptr = 0, size = 0;
if (!is_fru_eeprom_supported(adev))
return 0;
/* If algo exists, it means that the i2c_adapter's initialized */
if (!adev->pm.smu_i2c.algo) {
DRM_WARN("Cannot access FRU, EEPROM accessor not initialized");
return 0;
}
/* There's a lot of repetition here. This is due to the FRU having
* variable-length fields. To get the information, we have to find the
* size of each field, and then keep reading along and reading along
* until we get all of the data that we want. We use addrptr to track
* the address as we go
*/
/* The first fields are all of size 1-byte, from 0-7 are offsets that
* contain information that isn't useful to us.
* Bytes 8-a are all 1-byte and refer to the size of the entire struct,
* and the language field, so just start from 0xb, manufacturer size
*/
addrptr = 0xb;
size = amdgpu_fru_read_eeprom(adev, addrptr, buff);
if (size < 1) {
DRM_ERROR("Failed to read FRU Manufacturer, ret:%d", size);
return size;
}
/* Increment the addrptr by the size of the field, and 1 due to the
* size field being 1 byte. This pattern continues below.
*/
addrptr += size + 1;
size = amdgpu_fru_read_eeprom(adev, addrptr, buff);
if (size < 1) {
DRM_ERROR("Failed to read FRU product name, ret:%d", size);
return size;
}
/* Product name should only be 32 characters. Any more,
* and something could be wrong. Cap it at 32 to be safe
*/
if (size > 32) {
DRM_WARN("FRU Product Number is larger than 32 characters. This is likely a mistake");
size = 32;
}
/* Start at 2 due to buff using fields 0 and 1 for the address */
memcpy(adev->product_name, &buff[2], size);
adev->product_name[size] = '\0';
addrptr += size + 1;
size = amdgpu_fru_read_eeprom(adev, addrptr, buff);
if (size < 1) {
DRM_ERROR("Failed to read FRU product number, ret:%d", size);
return size;
}
/* Product number should only be 16 characters. Any more,
* and something could be wrong. Cap it at 16 to be safe
*/
if (size > 16) {
DRM_WARN("FRU Product Number is larger than 16 characters. This is likely a mistake");
size = 16;
}
memcpy(adev->product_number, &buff[2], size);
adev->product_number[size] = '\0';
addrptr += size + 1;
size = amdgpu_fru_read_eeprom(adev, addrptr, buff);
if (size < 1) {
DRM_ERROR("Failed to read FRU product version, ret:%d", size);
return size;
}
addrptr += size + 1;
size = amdgpu_fru_read_eeprom(adev, addrptr, buff);
if (size < 1) {
DRM_ERROR("Failed to read FRU serial number, ret:%d", size);
return size;
}
/* Serial number should only be 16 characters. Any more,
* and something could be wrong. Cap it at 16 to be safe
*/
if (size > 16) {
DRM_WARN("FRU Serial Number is larger than 16 characters. This is likely a mistake");
size = 16;
}
memcpy(adev->serial, &buff[2], size);
adev->serial[size] = '\0';
return 0;
}