2579 lines
76 KiB
C
2579 lines
76 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Main SSAM/SSH controller structure and functionality.
|
|
*
|
|
* Copyright (C) 2019-2020 Maximilian Luz <luzmaximilian@gmail.com>
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kref.h>
|
|
#include <linux/limits.h>
|
|
#include <linux/list.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/serdev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/types.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <linux/surface_aggregator/controller.h>
|
|
#include <linux/surface_aggregator/serial_hub.h>
|
|
|
|
#include "controller.h"
|
|
#include "ssh_msgb.h"
|
|
#include "ssh_request_layer.h"
|
|
|
|
#include "trace.h"
|
|
|
|
|
|
/* -- Safe counters. -------------------------------------------------------- */
|
|
|
|
/**
|
|
* ssh_seq_reset() - Reset/initialize sequence ID counter.
|
|
* @c: The counter to reset.
|
|
*/
|
|
static void ssh_seq_reset(struct ssh_seq_counter *c)
|
|
{
|
|
WRITE_ONCE(c->value, 0);
|
|
}
|
|
|
|
/**
|
|
* ssh_seq_next() - Get next sequence ID.
|
|
* @c: The counter providing the sequence IDs.
|
|
*
|
|
* Return: Returns the next sequence ID of the counter.
|
|
*/
|
|
static u8 ssh_seq_next(struct ssh_seq_counter *c)
|
|
{
|
|
u8 old = READ_ONCE(c->value);
|
|
u8 new = old + 1;
|
|
u8 ret;
|
|
|
|
while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) {
|
|
old = ret;
|
|
new = old + 1;
|
|
}
|
|
|
|
return old;
|
|
}
|
|
|
|
/**
|
|
* ssh_rqid_reset() - Reset/initialize request ID counter.
|
|
* @c: The counter to reset.
|
|
*/
|
|
static void ssh_rqid_reset(struct ssh_rqid_counter *c)
|
|
{
|
|
WRITE_ONCE(c->value, 0);
|
|
}
|
|
|
|
/**
|
|
* ssh_rqid_next() - Get next request ID.
|
|
* @c: The counter providing the request IDs.
|
|
*
|
|
* Return: Returns the next request ID of the counter, skipping any reserved
|
|
* request IDs.
|
|
*/
|
|
static u16 ssh_rqid_next(struct ssh_rqid_counter *c)
|
|
{
|
|
u16 old = READ_ONCE(c->value);
|
|
u16 new = ssh_rqid_next_valid(old);
|
|
u16 ret;
|
|
|
|
while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) {
|
|
old = ret;
|
|
new = ssh_rqid_next_valid(old);
|
|
}
|
|
|
|
return old;
|
|
}
|
|
|
|
|
|
/* -- Event notifier/callbacks. --------------------------------------------- */
|
|
/*
|
|
* The notifier system is based on linux/notifier.h, specifically the SRCU
|
|
* implementation. The difference to that is, that some bits of the notifier
|
|
* call return value can be tracked across multiple calls. This is done so
|
|
* that handling of events can be tracked and a warning can be issued in case
|
|
* an event goes unhandled. The idea of that warning is that it should help
|
|
* discover and identify new/currently unimplemented features.
|
|
*/
|
|
|
|
/**
|
|
* ssam_event_matches_notifier() - Test if an event matches a notifier.
|
|
* @n: The event notifier to test against.
|
|
* @event: The event to test.
|
|
*
|
|
* Return: Returns %true if the given event matches the given notifier
|
|
* according to the rules set in the notifier's event mask, %false otherwise.
|
|
*/
|
|
static bool ssam_event_matches_notifier(const struct ssam_event_notifier *n,
|
|
const struct ssam_event *event)
|
|
{
|
|
bool match = n->event.id.target_category == event->target_category;
|
|
|
|
if (n->event.mask & SSAM_EVENT_MASK_TARGET)
|
|
match &= n->event.reg.target_id == event->target_id;
|
|
|
|
if (n->event.mask & SSAM_EVENT_MASK_INSTANCE)
|
|
match &= n->event.id.instance == event->instance_id;
|
|
|
|
return match;
|
|
}
|
|
|
|
/**
|
|
* ssam_nfblk_call_chain() - Call event notifier callbacks of the given chain.
|
|
* @nh: The notifier head for which the notifier callbacks should be called.
|
|
* @event: The event data provided to the callbacks.
|
|
*
|
|
* Call all registered notifier callbacks in order of their priority until
|
|
* either no notifier is left or a notifier returns a value with the
|
|
* %SSAM_NOTIF_STOP bit set. Note that this bit is automatically set via
|
|
* ssam_notifier_from_errno() on any non-zero error value.
|
|
*
|
|
* Return: Returns the notifier status value, which contains the notifier
|
|
* status bits (%SSAM_NOTIF_HANDLED and %SSAM_NOTIF_STOP) as well as a
|
|
* potential error value returned from the last executed notifier callback.
|
|
* Use ssam_notifier_to_errno() to convert this value to the original error
|
|
* value.
|
|
*/
|
|
static int ssam_nfblk_call_chain(struct ssam_nf_head *nh, struct ssam_event *event)
|
|
{
|
|
struct ssam_event_notifier *nf;
|
|
int ret = 0, idx;
|
|
|
|
idx = srcu_read_lock(&nh->srcu);
|
|
|
|
list_for_each_entry_rcu(nf, &nh->head, base.node,
|
|
srcu_read_lock_held(&nh->srcu)) {
|
|
if (ssam_event_matches_notifier(nf, event)) {
|
|
ret = (ret & SSAM_NOTIF_STATE_MASK) | nf->base.fn(nf, event);
|
|
if (ret & SSAM_NOTIF_STOP)
|
|
break;
|
|
}
|
|
}
|
|
|
|
srcu_read_unlock(&nh->srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ssam_nfblk_insert() - Insert a new notifier block into the given notifier
|
|
* list.
|
|
* @nh: The notifier head into which the block should be inserted.
|
|
* @nb: The notifier block to add.
|
|
*
|
|
* Note: This function must be synchronized by the caller with respect to other
|
|
* insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
|
|
*
|
|
* Return: Returns zero on success, %-EEXIST if the notifier block has already
|
|
* been registered.
|
|
*/
|
|
static int ssam_nfblk_insert(struct ssam_nf_head *nh, struct ssam_notifier_block *nb)
|
|
{
|
|
struct ssam_notifier_block *p;
|
|
struct list_head *h;
|
|
|
|
/* Runs under lock, no need for RCU variant. */
|
|
list_for_each(h, &nh->head) {
|
|
p = list_entry(h, struct ssam_notifier_block, node);
|
|
|
|
if (unlikely(p == nb)) {
|
|
WARN(1, "double register detected");
|
|
return -EEXIST;
|
|
}
|
|
|
|
if (nb->priority > p->priority)
|
|
break;
|
|
}
|
|
|
|
list_add_tail_rcu(&nb->node, h);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_nfblk_find() - Check if a notifier block is registered on the given
|
|
* notifier head.
|
|
* list.
|
|
* @nh: The notifier head on which to search.
|
|
* @nb: The notifier block to search for.
|
|
*
|
|
* Note: This function must be synchronized by the caller with respect to other
|
|
* insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
|
|
*
|
|
* Return: Returns true if the given notifier block is registered on the given
|
|
* notifier head, false otherwise.
|
|
*/
|
|
static bool ssam_nfblk_find(struct ssam_nf_head *nh, struct ssam_notifier_block *nb)
|
|
{
|
|
struct ssam_notifier_block *p;
|
|
|
|
/* Runs under lock, no need for RCU variant. */
|
|
list_for_each_entry(p, &nh->head, node) {
|
|
if (p == nb)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ssam_nfblk_remove() - Remove a notifier block from its notifier list.
|
|
* @nb: The notifier block to be removed.
|
|
*
|
|
* Note: This function must be synchronized by the caller with respect to
|
|
* other insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
|
|
* Furthermore, the caller _must_ ensure SRCU synchronization by calling
|
|
* synchronize_srcu() with ``nh->srcu`` after leaving the critical section, to
|
|
* ensure that the removed notifier block is not in use any more.
|
|
*/
|
|
static void ssam_nfblk_remove(struct ssam_notifier_block *nb)
|
|
{
|
|
list_del_rcu(&nb->node);
|
|
}
|
|
|
|
/**
|
|
* ssam_nf_head_init() - Initialize the given notifier head.
|
|
* @nh: The notifier head to initialize.
|
|
*/
|
|
static int ssam_nf_head_init(struct ssam_nf_head *nh)
|
|
{
|
|
int status;
|
|
|
|
status = init_srcu_struct(&nh->srcu);
|
|
if (status)
|
|
return status;
|
|
|
|
INIT_LIST_HEAD(&nh->head);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_nf_head_destroy() - Deinitialize the given notifier head.
|
|
* @nh: The notifier head to deinitialize.
|
|
*/
|
|
static void ssam_nf_head_destroy(struct ssam_nf_head *nh)
|
|
{
|
|
cleanup_srcu_struct(&nh->srcu);
|
|
}
|
|
|
|
|
|
/* -- Event/notification registry. ------------------------------------------ */
|
|
|
|
/**
|
|
* struct ssam_nf_refcount_key - Key used for event activation reference
|
|
* counting.
|
|
* @reg: The registry via which the event is enabled/disabled.
|
|
* @id: The ID uniquely describing the event.
|
|
*/
|
|
struct ssam_nf_refcount_key {
|
|
struct ssam_event_registry reg;
|
|
struct ssam_event_id id;
|
|
};
|
|
|
|
/**
|
|
* struct ssam_nf_refcount_entry - RB-tree entry for reference counting event
|
|
* activations.
|
|
* @node: The node of this entry in the rb-tree.
|
|
* @key: The key of the event.
|
|
* @refcount: The reference-count of the event.
|
|
* @flags: The flags used when enabling the event.
|
|
*/
|
|
struct ssam_nf_refcount_entry {
|
|
struct rb_node node;
|
|
struct ssam_nf_refcount_key key;
|
|
int refcount;
|
|
u8 flags;
|
|
};
|
|
|
|
/**
|
|
* ssam_nf_refcount_inc() - Increment reference-/activation-count of the given
|
|
* event.
|
|
* @nf: The notifier system reference.
|
|
* @reg: The registry used to enable/disable the event.
|
|
* @id: The event ID.
|
|
*
|
|
* Increments the reference-/activation-count associated with the specified
|
|
* event type/ID, allocating a new entry for this event ID if necessary. A
|
|
* newly allocated entry will have a refcount of one.
|
|
*
|
|
* Note: ``nf->lock`` must be held when calling this function.
|
|
*
|
|
* Return: Returns the refcount entry on success. Returns an error pointer
|
|
* with %-ENOSPC if there have already been %INT_MAX events of the specified
|
|
* ID and type registered, or %-ENOMEM if the entry could not be allocated.
|
|
*/
|
|
static struct ssam_nf_refcount_entry *
|
|
ssam_nf_refcount_inc(struct ssam_nf *nf, struct ssam_event_registry reg,
|
|
struct ssam_event_id id)
|
|
{
|
|
struct ssam_nf_refcount_entry *entry;
|
|
struct ssam_nf_refcount_key key;
|
|
struct rb_node **link = &nf->refcount.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
int cmp;
|
|
|
|
lockdep_assert_held(&nf->lock);
|
|
|
|
key.reg = reg;
|
|
key.id = id;
|
|
|
|
while (*link) {
|
|
entry = rb_entry(*link, struct ssam_nf_refcount_entry, node);
|
|
parent = *link;
|
|
|
|
cmp = memcmp(&key, &entry->key, sizeof(key));
|
|
if (cmp < 0) {
|
|
link = &(*link)->rb_left;
|
|
} else if (cmp > 0) {
|
|
link = &(*link)->rb_right;
|
|
} else if (entry->refcount < INT_MAX) {
|
|
entry->refcount++;
|
|
return entry;
|
|
} else {
|
|
WARN_ON(1);
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
}
|
|
|
|
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
|
|
if (!entry)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
entry->key = key;
|
|
entry->refcount = 1;
|
|
|
|
rb_link_node(&entry->node, parent, link);
|
|
rb_insert_color(&entry->node, &nf->refcount);
|
|
|
|
return entry;
|
|
}
|
|
|
|
/**
|
|
* ssam_nf_refcount_dec() - Decrement reference-/activation-count of the given
|
|
* event.
|
|
* @nf: The notifier system reference.
|
|
* @reg: The registry used to enable/disable the event.
|
|
* @id: The event ID.
|
|
*
|
|
* Decrements the reference-/activation-count of the specified event,
|
|
* returning its entry. If the returned entry has a refcount of zero, the
|
|
* caller is responsible for freeing it using kfree().
|
|
*
|
|
* Note: ``nf->lock`` must be held when calling this function.
|
|
*
|
|
* Return: Returns the refcount entry on success or %NULL if the entry has not
|
|
* been found.
|
|
*/
|
|
static struct ssam_nf_refcount_entry *
|
|
ssam_nf_refcount_dec(struct ssam_nf *nf, struct ssam_event_registry reg,
|
|
struct ssam_event_id id)
|
|
{
|
|
struct ssam_nf_refcount_entry *entry;
|
|
struct ssam_nf_refcount_key key;
|
|
struct rb_node *node = nf->refcount.rb_node;
|
|
int cmp;
|
|
|
|
lockdep_assert_held(&nf->lock);
|
|
|
|
key.reg = reg;
|
|
key.id = id;
|
|
|
|
while (node) {
|
|
entry = rb_entry(node, struct ssam_nf_refcount_entry, node);
|
|
|
|
cmp = memcmp(&key, &entry->key, sizeof(key));
|
|
if (cmp < 0) {
|
|
node = node->rb_left;
|
|
} else if (cmp > 0) {
|
|
node = node->rb_right;
|
|
} else {
|
|
entry->refcount--;
|
|
if (entry->refcount == 0)
|
|
rb_erase(&entry->node, &nf->refcount);
|
|
|
|
return entry;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ssam_nf_refcount_empty() - Test if the notification system has any
|
|
* enabled/active events.
|
|
* @nf: The notification system.
|
|
*/
|
|
static bool ssam_nf_refcount_empty(struct ssam_nf *nf)
|
|
{
|
|
return RB_EMPTY_ROOT(&nf->refcount);
|
|
}
|
|
|
|
/**
|
|
* ssam_nf_call() - Call notification callbacks for the provided event.
|
|
* @nf: The notifier system
|
|
* @dev: The associated device, only used for logging.
|
|
* @rqid: The request ID of the event.
|
|
* @event: The event provided to the callbacks.
|
|
*
|
|
* Execute registered callbacks in order of their priority until either no
|
|
* callback is left or a callback returns a value with the %SSAM_NOTIF_STOP
|
|
* bit set. Note that this bit is set automatically when converting non-zero
|
|
* error values via ssam_notifier_from_errno() to notifier values.
|
|
*
|
|
* Also note that any callback that could handle an event should return a value
|
|
* with bit %SSAM_NOTIF_HANDLED set, indicating that the event does not go
|
|
* unhandled/ignored. In case no registered callback could handle an event,
|
|
* this function will emit a warning.
|
|
*
|
|
* In case a callback failed, this function will emit an error message.
|
|
*/
|
|
static void ssam_nf_call(struct ssam_nf *nf, struct device *dev, u16 rqid,
|
|
struct ssam_event *event)
|
|
{
|
|
struct ssam_nf_head *nf_head;
|
|
int status, nf_ret;
|
|
|
|
if (!ssh_rqid_is_event(rqid)) {
|
|
dev_warn(dev, "event: unsupported rqid: %#06x\n", rqid);
|
|
return;
|
|
}
|
|
|
|
nf_head = &nf->head[ssh_rqid_to_event(rqid)];
|
|
nf_ret = ssam_nfblk_call_chain(nf_head, event);
|
|
status = ssam_notifier_to_errno(nf_ret);
|
|
|
|
if (status < 0) {
|
|
dev_err(dev,
|
|
"event: error handling event: %d (tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n",
|
|
status, event->target_category, event->target_id,
|
|
event->command_id, event->instance_id);
|
|
} else if (!(nf_ret & SSAM_NOTIF_HANDLED)) {
|
|
dev_warn(dev,
|
|
"event: unhandled event (rqid: %#04x, tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n",
|
|
rqid, event->target_category, event->target_id,
|
|
event->command_id, event->instance_id);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ssam_nf_init() - Initialize the notifier system.
|
|
* @nf: The notifier system to initialize.
|
|
*/
|
|
static int ssam_nf_init(struct ssam_nf *nf)
|
|
{
|
|
int i, status;
|
|
|
|
for (i = 0; i < SSH_NUM_EVENTS; i++) {
|
|
status = ssam_nf_head_init(&nf->head[i]);
|
|
if (status)
|
|
break;
|
|
}
|
|
|
|
if (status) {
|
|
while (i--)
|
|
ssam_nf_head_destroy(&nf->head[i]);
|
|
|
|
return status;
|
|
}
|
|
|
|
mutex_init(&nf->lock);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_nf_destroy() - Deinitialize the notifier system.
|
|
* @nf: The notifier system to deinitialize.
|
|
*/
|
|
static void ssam_nf_destroy(struct ssam_nf *nf)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SSH_NUM_EVENTS; i++)
|
|
ssam_nf_head_destroy(&nf->head[i]);
|
|
|
|
mutex_destroy(&nf->lock);
|
|
}
|
|
|
|
|
|
/* -- Event/async request completion system. -------------------------------- */
|
|
|
|
#define SSAM_CPLT_WQ_NAME "ssam_cpltq"
|
|
|
|
/*
|
|
* SSAM_CPLT_WQ_BATCH - Maximum number of event item completions executed per
|
|
* work execution. Used to prevent livelocking of the workqueue. Value chosen
|
|
* via educated guess, may be adjusted.
|
|
*/
|
|
#define SSAM_CPLT_WQ_BATCH 10
|
|
|
|
/*
|
|
* SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN - Maximum payload length for a cached
|
|
* &struct ssam_event_item.
|
|
*
|
|
* This length has been chosen to be accommodate standard touchpad and
|
|
* keyboard input events. Events with larger payloads will be allocated
|
|
* separately.
|
|
*/
|
|
#define SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN 32
|
|
|
|
static struct kmem_cache *ssam_event_item_cache;
|
|
|
|
/**
|
|
* ssam_event_item_cache_init() - Initialize the event item cache.
|
|
*/
|
|
int ssam_event_item_cache_init(void)
|
|
{
|
|
const unsigned int size = sizeof(struct ssam_event_item)
|
|
+ SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN;
|
|
const unsigned int align = __alignof__(struct ssam_event_item);
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("ssam_event_item", size, align, 0, NULL);
|
|
if (!cache)
|
|
return -ENOMEM;
|
|
|
|
ssam_event_item_cache = cache;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_event_item_cache_destroy() - Deinitialize the event item cache.
|
|
*/
|
|
void ssam_event_item_cache_destroy(void)
|
|
{
|
|
kmem_cache_destroy(ssam_event_item_cache);
|
|
ssam_event_item_cache = NULL;
|
|
}
|
|
|
|
static void __ssam_event_item_free_cached(struct ssam_event_item *item)
|
|
{
|
|
kmem_cache_free(ssam_event_item_cache, item);
|
|
}
|
|
|
|
static void __ssam_event_item_free_generic(struct ssam_event_item *item)
|
|
{
|
|
kfree(item);
|
|
}
|
|
|
|
/**
|
|
* ssam_event_item_free() - Free the provided event item.
|
|
* @item: The event item to free.
|
|
*/
|
|
static void ssam_event_item_free(struct ssam_event_item *item)
|
|
{
|
|
trace_ssam_event_item_free(item);
|
|
item->ops.free(item);
|
|
}
|
|
|
|
/**
|
|
* ssam_event_item_alloc() - Allocate an event item with the given payload size.
|
|
* @len: The event payload length.
|
|
* @flags: The flags used for allocation.
|
|
*
|
|
* Allocate an event item with the given payload size, preferring allocation
|
|
* from the event item cache if the payload is small enough (i.e. smaller than
|
|
* %SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN). Sets the item operations and payload
|
|
* length values. The item free callback (``ops.free``) should not be
|
|
* overwritten after this call.
|
|
*
|
|
* Return: Returns the newly allocated event item.
|
|
*/
|
|
static struct ssam_event_item *ssam_event_item_alloc(size_t len, gfp_t flags)
|
|
{
|
|
struct ssam_event_item *item;
|
|
|
|
if (len <= SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN) {
|
|
item = kmem_cache_alloc(ssam_event_item_cache, flags);
|
|
if (!item)
|
|
return NULL;
|
|
|
|
item->ops.free = __ssam_event_item_free_cached;
|
|
} else {
|
|
item = kzalloc(struct_size(item, event.data, len), flags);
|
|
if (!item)
|
|
return NULL;
|
|
|
|
item->ops.free = __ssam_event_item_free_generic;
|
|
}
|
|
|
|
item->event.length = len;
|
|
|
|
trace_ssam_event_item_alloc(item, len);
|
|
return item;
|
|
}
|
|
|
|
/**
|
|
* ssam_event_queue_push() - Push an event item to the event queue.
|
|
* @q: The event queue.
|
|
* @item: The item to add.
|
|
*/
|
|
static void ssam_event_queue_push(struct ssam_event_queue *q,
|
|
struct ssam_event_item *item)
|
|
{
|
|
spin_lock(&q->lock);
|
|
list_add_tail(&item->node, &q->head);
|
|
spin_unlock(&q->lock);
|
|
}
|
|
|
|
/**
|
|
* ssam_event_queue_pop() - Pop the next event item from the event queue.
|
|
* @q: The event queue.
|
|
*
|
|
* Returns and removes the next event item from the queue. Returns %NULL If
|
|
* there is no event item left.
|
|
*/
|
|
static struct ssam_event_item *ssam_event_queue_pop(struct ssam_event_queue *q)
|
|
{
|
|
struct ssam_event_item *item;
|
|
|
|
spin_lock(&q->lock);
|
|
item = list_first_entry_or_null(&q->head, struct ssam_event_item, node);
|
|
if (item)
|
|
list_del(&item->node);
|
|
spin_unlock(&q->lock);
|
|
|
|
return item;
|
|
}
|
|
|
|
/**
|
|
* ssam_event_queue_is_empty() - Check if the event queue is empty.
|
|
* @q: The event queue.
|
|
*/
|
|
static bool ssam_event_queue_is_empty(struct ssam_event_queue *q)
|
|
{
|
|
bool empty;
|
|
|
|
spin_lock(&q->lock);
|
|
empty = list_empty(&q->head);
|
|
spin_unlock(&q->lock);
|
|
|
|
return empty;
|
|
}
|
|
|
|
/**
|
|
* ssam_cplt_get_event_queue() - Get the event queue for the given parameters.
|
|
* @cplt: The completion system on which to look for the queue.
|
|
* @tid: The target ID of the queue.
|
|
* @rqid: The request ID representing the event ID for which to get the queue.
|
|
*
|
|
* Return: Returns the event queue corresponding to the event type described
|
|
* by the given parameters. If the request ID does not represent an event,
|
|
* this function returns %NULL. If the target ID is not supported, this
|
|
* function will fall back to the default target ID (``tid = 1``).
|
|
*/
|
|
static
|
|
struct ssam_event_queue *ssam_cplt_get_event_queue(struct ssam_cplt *cplt,
|
|
u8 tid, u16 rqid)
|
|
{
|
|
u16 event = ssh_rqid_to_event(rqid);
|
|
u16 tidx = ssh_tid_to_index(tid);
|
|
|
|
if (!ssh_rqid_is_event(rqid)) {
|
|
dev_err(cplt->dev, "event: unsupported request ID: %#06x\n", rqid);
|
|
return NULL;
|
|
}
|
|
|
|
if (!ssh_tid_is_valid(tid)) {
|
|
dev_warn(cplt->dev, "event: unsupported target ID: %u\n", tid);
|
|
tidx = 0;
|
|
}
|
|
|
|
return &cplt->event.target[tidx].queue[event];
|
|
}
|
|
|
|
/**
|
|
* ssam_cplt_submit() - Submit a work item to the completion system workqueue.
|
|
* @cplt: The completion system.
|
|
* @work: The work item to submit.
|
|
*/
|
|
static bool ssam_cplt_submit(struct ssam_cplt *cplt, struct work_struct *work)
|
|
{
|
|
return queue_work(cplt->wq, work);
|
|
}
|
|
|
|
/**
|
|
* ssam_cplt_submit_event() - Submit an event to the completion system.
|
|
* @cplt: The completion system.
|
|
* @item: The event item to submit.
|
|
*
|
|
* Submits the event to the completion system by queuing it on the event item
|
|
* queue and queuing the respective event queue work item on the completion
|
|
* workqueue, which will eventually complete the event.
|
|
*
|
|
* Return: Returns zero on success, %-EINVAL if there is no event queue that
|
|
* can handle the given event item.
|
|
*/
|
|
static int ssam_cplt_submit_event(struct ssam_cplt *cplt,
|
|
struct ssam_event_item *item)
|
|
{
|
|
struct ssam_event_queue *evq;
|
|
|
|
evq = ssam_cplt_get_event_queue(cplt, item->event.target_id, item->rqid);
|
|
if (!evq)
|
|
return -EINVAL;
|
|
|
|
ssam_event_queue_push(evq, item);
|
|
ssam_cplt_submit(cplt, &evq->work);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_cplt_flush() - Flush the completion system.
|
|
* @cplt: The completion system.
|
|
*
|
|
* Flush the completion system by waiting until all currently submitted work
|
|
* items have been completed.
|
|
*
|
|
* Note: This function does not guarantee that all events will have been
|
|
* handled once this call terminates. In case of a larger number of
|
|
* to-be-completed events, the event queue work function may re-schedule its
|
|
* work item, which this flush operation will ignore.
|
|
*
|
|
* This operation is only intended to, during normal operation prior to
|
|
* shutdown, try to complete most events and requests to get them out of the
|
|
* system while the system is still fully operational. It does not aim to
|
|
* provide any guarantee that all of them have been handled.
|
|
*/
|
|
static void ssam_cplt_flush(struct ssam_cplt *cplt)
|
|
{
|
|
flush_workqueue(cplt->wq);
|
|
}
|
|
|
|
static void ssam_event_queue_work_fn(struct work_struct *work)
|
|
{
|
|
struct ssam_event_queue *queue;
|
|
struct ssam_event_item *item;
|
|
struct ssam_nf *nf;
|
|
struct device *dev;
|
|
unsigned int iterations = SSAM_CPLT_WQ_BATCH;
|
|
|
|
queue = container_of(work, struct ssam_event_queue, work);
|
|
nf = &queue->cplt->event.notif;
|
|
dev = queue->cplt->dev;
|
|
|
|
/* Limit number of processed events to avoid livelocking. */
|
|
do {
|
|
item = ssam_event_queue_pop(queue);
|
|
if (!item)
|
|
return;
|
|
|
|
ssam_nf_call(nf, dev, item->rqid, &item->event);
|
|
ssam_event_item_free(item);
|
|
} while (--iterations);
|
|
|
|
if (!ssam_event_queue_is_empty(queue))
|
|
ssam_cplt_submit(queue->cplt, &queue->work);
|
|
}
|
|
|
|
/**
|
|
* ssam_event_queue_init() - Initialize an event queue.
|
|
* @cplt: The completion system on which the queue resides.
|
|
* @evq: The event queue to initialize.
|
|
*/
|
|
static void ssam_event_queue_init(struct ssam_cplt *cplt,
|
|
struct ssam_event_queue *evq)
|
|
{
|
|
evq->cplt = cplt;
|
|
spin_lock_init(&evq->lock);
|
|
INIT_LIST_HEAD(&evq->head);
|
|
INIT_WORK(&evq->work, ssam_event_queue_work_fn);
|
|
}
|
|
|
|
/**
|
|
* ssam_cplt_init() - Initialize completion system.
|
|
* @cplt: The completion system to initialize.
|
|
* @dev: The device used for logging.
|
|
*/
|
|
static int ssam_cplt_init(struct ssam_cplt *cplt, struct device *dev)
|
|
{
|
|
struct ssam_event_target *target;
|
|
int status, c, i;
|
|
|
|
cplt->dev = dev;
|
|
|
|
cplt->wq = create_workqueue(SSAM_CPLT_WQ_NAME);
|
|
if (!cplt->wq)
|
|
return -ENOMEM;
|
|
|
|
for (c = 0; c < ARRAY_SIZE(cplt->event.target); c++) {
|
|
target = &cplt->event.target[c];
|
|
|
|
for (i = 0; i < ARRAY_SIZE(target->queue); i++)
|
|
ssam_event_queue_init(cplt, &target->queue[i]);
|
|
}
|
|
|
|
status = ssam_nf_init(&cplt->event.notif);
|
|
if (status)
|
|
destroy_workqueue(cplt->wq);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ssam_cplt_destroy() - Deinitialize the completion system.
|
|
* @cplt: The completion system to deinitialize.
|
|
*
|
|
* Deinitialize the given completion system and ensure that all pending, i.e.
|
|
* yet-to-be-completed, event items and requests have been handled.
|
|
*/
|
|
static void ssam_cplt_destroy(struct ssam_cplt *cplt)
|
|
{
|
|
/*
|
|
* Note: destroy_workqueue ensures that all currently queued work will
|
|
* be fully completed and the workqueue drained. This means that this
|
|
* call will inherently also free any queued ssam_event_items, thus we
|
|
* don't have to take care of that here explicitly.
|
|
*/
|
|
destroy_workqueue(cplt->wq);
|
|
ssam_nf_destroy(&cplt->event.notif);
|
|
}
|
|
|
|
|
|
/* -- Main SSAM device structures. ------------------------------------------ */
|
|
|
|
/**
|
|
* ssam_controller_device() - Get the &struct device associated with this
|
|
* controller.
|
|
* @c: The controller for which to get the device.
|
|
*
|
|
* Return: Returns the &struct device associated with this controller,
|
|
* providing its lower-level transport.
|
|
*/
|
|
struct device *ssam_controller_device(struct ssam_controller *c)
|
|
{
|
|
return ssh_rtl_get_device(&c->rtl);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_controller_device);
|
|
|
|
static void __ssam_controller_release(struct kref *kref)
|
|
{
|
|
struct ssam_controller *ctrl = to_ssam_controller(kref, kref);
|
|
|
|
/*
|
|
* The lock-call here is to satisfy lockdep. At this point we really
|
|
* expect this to be the last remaining reference to the controller.
|
|
* Anything else is a bug.
|
|
*/
|
|
ssam_controller_lock(ctrl);
|
|
ssam_controller_destroy(ctrl);
|
|
ssam_controller_unlock(ctrl);
|
|
|
|
kfree(ctrl);
|
|
}
|
|
|
|
/**
|
|
* ssam_controller_get() - Increment reference count of controller.
|
|
* @c: The controller.
|
|
*
|
|
* Return: Returns the controller provided as input.
|
|
*/
|
|
struct ssam_controller *ssam_controller_get(struct ssam_controller *c)
|
|
{
|
|
if (c)
|
|
kref_get(&c->kref);
|
|
return c;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_controller_get);
|
|
|
|
/**
|
|
* ssam_controller_put() - Decrement reference count of controller.
|
|
* @c: The controller.
|
|
*/
|
|
void ssam_controller_put(struct ssam_controller *c)
|
|
{
|
|
if (c)
|
|
kref_put(&c->kref, __ssam_controller_release);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_controller_put);
|
|
|
|
/**
|
|
* ssam_controller_statelock() - Lock the controller against state transitions.
|
|
* @c: The controller to lock.
|
|
*
|
|
* Lock the controller against state transitions. Holding this lock guarantees
|
|
* that the controller will not transition between states, i.e. if the
|
|
* controller is in state "started", when this lock has been acquired, it will
|
|
* remain in this state at least until the lock has been released.
|
|
*
|
|
* Multiple clients may concurrently hold this lock. In other words: The
|
|
* ``statelock`` functions represent the read-lock part of a r/w-semaphore.
|
|
* Actions causing state transitions of the controller must be executed while
|
|
* holding the write-part of this r/w-semaphore (see ssam_controller_lock()
|
|
* and ssam_controller_unlock() for that).
|
|
*
|
|
* See ssam_controller_stateunlock() for the corresponding unlock function.
|
|
*/
|
|
void ssam_controller_statelock(struct ssam_controller *c)
|
|
{
|
|
down_read(&c->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_controller_statelock);
|
|
|
|
/**
|
|
* ssam_controller_stateunlock() - Unlock controller state transitions.
|
|
* @c: The controller to unlock.
|
|
*
|
|
* See ssam_controller_statelock() for the corresponding lock function.
|
|
*/
|
|
void ssam_controller_stateunlock(struct ssam_controller *c)
|
|
{
|
|
up_read(&c->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_controller_stateunlock);
|
|
|
|
/**
|
|
* ssam_controller_lock() - Acquire the main controller lock.
|
|
* @c: The controller to lock.
|
|
*
|
|
* This lock must be held for any state transitions, including transition to
|
|
* suspend/resumed states and during shutdown. See ssam_controller_statelock()
|
|
* for more details on controller locking.
|
|
*
|
|
* See ssam_controller_unlock() for the corresponding unlock function.
|
|
*/
|
|
void ssam_controller_lock(struct ssam_controller *c)
|
|
{
|
|
down_write(&c->lock);
|
|
}
|
|
|
|
/*
|
|
* ssam_controller_unlock() - Release the main controller lock.
|
|
* @c: The controller to unlock.
|
|
*
|
|
* See ssam_controller_lock() for the corresponding lock function.
|
|
*/
|
|
void ssam_controller_unlock(struct ssam_controller *c)
|
|
{
|
|
up_write(&c->lock);
|
|
}
|
|
|
|
static void ssam_handle_event(struct ssh_rtl *rtl,
|
|
const struct ssh_command *cmd,
|
|
const struct ssam_span *data)
|
|
{
|
|
struct ssam_controller *ctrl = to_ssam_controller(rtl, rtl);
|
|
struct ssam_event_item *item;
|
|
|
|
item = ssam_event_item_alloc(data->len, GFP_KERNEL);
|
|
if (!item)
|
|
return;
|
|
|
|
item->rqid = get_unaligned_le16(&cmd->rqid);
|
|
item->event.target_category = cmd->tc;
|
|
item->event.target_id = cmd->tid_in;
|
|
item->event.command_id = cmd->cid;
|
|
item->event.instance_id = cmd->iid;
|
|
memcpy(&item->event.data[0], data->ptr, data->len);
|
|
|
|
if (WARN_ON(ssam_cplt_submit_event(&ctrl->cplt, item)))
|
|
ssam_event_item_free(item);
|
|
}
|
|
|
|
static const struct ssh_rtl_ops ssam_rtl_ops = {
|
|
.handle_event = ssam_handle_event,
|
|
};
|
|
|
|
static bool ssam_notifier_is_empty(struct ssam_controller *ctrl);
|
|
static void ssam_notifier_unregister_all(struct ssam_controller *ctrl);
|
|
|
|
#define SSAM_SSH_DSM_REVISION 0
|
|
|
|
/* d5e383e1-d892-4a76-89fc-f6aaae7ed5b5 */
|
|
static const guid_t SSAM_SSH_DSM_GUID =
|
|
GUID_INIT(0xd5e383e1, 0xd892, 0x4a76,
|
|
0x89, 0xfc, 0xf6, 0xaa, 0xae, 0x7e, 0xd5, 0xb5);
|
|
|
|
enum ssh_dsm_fn {
|
|
SSH_DSM_FN_SSH_POWER_PROFILE = 0x05,
|
|
SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT = 0x06,
|
|
SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT = 0x07,
|
|
SSH_DSM_FN_D3_CLOSES_HANDLE = 0x08,
|
|
SSH_DSM_FN_SSH_BUFFER_SIZE = 0x09,
|
|
};
|
|
|
|
static int ssam_dsm_get_functions(acpi_handle handle, u64 *funcs)
|
|
{
|
|
union acpi_object *obj;
|
|
u64 mask = 0;
|
|
int i;
|
|
|
|
*funcs = 0;
|
|
|
|
/*
|
|
* The _DSM function is only present on newer models. It is not
|
|
* present on 5th and 6th generation devices (i.e. up to and including
|
|
* Surface Pro 6, Surface Laptop 2, Surface Book 2).
|
|
*
|
|
* If the _DSM is not present, indicate that no function is supported.
|
|
* This will result in default values being set.
|
|
*/
|
|
if (!acpi_has_method(handle, "_DSM"))
|
|
return 0;
|
|
|
|
obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID,
|
|
SSAM_SSH_DSM_REVISION, 0, NULL,
|
|
ACPI_TYPE_BUFFER);
|
|
if (!obj)
|
|
return -EIO;
|
|
|
|
for (i = 0; i < obj->buffer.length && i < 8; i++)
|
|
mask |= (((u64)obj->buffer.pointer[i]) << (i * 8));
|
|
|
|
if (mask & BIT(0))
|
|
*funcs = mask;
|
|
|
|
ACPI_FREE(obj);
|
|
return 0;
|
|
}
|
|
|
|
static int ssam_dsm_load_u32(acpi_handle handle, u64 funcs, u64 func, u32 *ret)
|
|
{
|
|
union acpi_object *obj;
|
|
u64 val;
|
|
|
|
if (!(funcs & BIT_ULL(func)))
|
|
return 0; /* Not supported, leave *ret at its default value */
|
|
|
|
obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID,
|
|
SSAM_SSH_DSM_REVISION, func, NULL,
|
|
ACPI_TYPE_INTEGER);
|
|
if (!obj)
|
|
return -EIO;
|
|
|
|
val = obj->integer.value;
|
|
ACPI_FREE(obj);
|
|
|
|
if (val > U32_MAX)
|
|
return -ERANGE;
|
|
|
|
*ret = val;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_controller_caps_load_from_acpi() - Load controller capabilities from
|
|
* ACPI _DSM.
|
|
* @handle: The handle of the ACPI controller/SSH device.
|
|
* @caps: Where to store the capabilities in.
|
|
*
|
|
* Initializes the given controller capabilities with default values, then
|
|
* checks and, if the respective _DSM functions are available, loads the
|
|
* actual capabilities from the _DSM.
|
|
*
|
|
* Return: Returns zero on success, a negative error code on failure.
|
|
*/
|
|
static
|
|
int ssam_controller_caps_load_from_acpi(acpi_handle handle,
|
|
struct ssam_controller_caps *caps)
|
|
{
|
|
u32 d3_closes_handle = false;
|
|
u64 funcs;
|
|
int status;
|
|
|
|
/* Set defaults. */
|
|
caps->ssh_power_profile = U32_MAX;
|
|
caps->screen_on_sleep_idle_timeout = U32_MAX;
|
|
caps->screen_off_sleep_idle_timeout = U32_MAX;
|
|
caps->d3_closes_handle = false;
|
|
caps->ssh_buffer_size = U32_MAX;
|
|
|
|
/* Pre-load supported DSM functions. */
|
|
status = ssam_dsm_get_functions(handle, &funcs);
|
|
if (status)
|
|
return status;
|
|
|
|
/* Load actual values from ACPI, if present. */
|
|
status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_POWER_PROFILE,
|
|
&caps->ssh_power_profile);
|
|
if (status)
|
|
return status;
|
|
|
|
status = ssam_dsm_load_u32(handle, funcs,
|
|
SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT,
|
|
&caps->screen_on_sleep_idle_timeout);
|
|
if (status)
|
|
return status;
|
|
|
|
status = ssam_dsm_load_u32(handle, funcs,
|
|
SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT,
|
|
&caps->screen_off_sleep_idle_timeout);
|
|
if (status)
|
|
return status;
|
|
|
|
status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_D3_CLOSES_HANDLE,
|
|
&d3_closes_handle);
|
|
if (status)
|
|
return status;
|
|
|
|
caps->d3_closes_handle = !!d3_closes_handle;
|
|
|
|
status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_BUFFER_SIZE,
|
|
&caps->ssh_buffer_size);
|
|
if (status)
|
|
return status;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_controller_init() - Initialize SSAM controller.
|
|
* @ctrl: The controller to initialize.
|
|
* @serdev: The serial device representing the underlying data transport.
|
|
*
|
|
* Initializes the given controller. Does neither start receiver nor
|
|
* transmitter threads. After this call, the controller has to be hooked up to
|
|
* the serdev core separately via &struct serdev_device_ops, relaying calls to
|
|
* ssam_controller_receive_buf() and ssam_controller_write_wakeup(). Once the
|
|
* controller has been hooked up, transmitter and receiver threads may be
|
|
* started via ssam_controller_start(). These setup steps need to be completed
|
|
* before controller can be used for requests.
|
|
*/
|
|
int ssam_controller_init(struct ssam_controller *ctrl,
|
|
struct serdev_device *serdev)
|
|
{
|
|
acpi_handle handle = ACPI_HANDLE(&serdev->dev);
|
|
int status;
|
|
|
|
init_rwsem(&ctrl->lock);
|
|
kref_init(&ctrl->kref);
|
|
|
|
status = ssam_controller_caps_load_from_acpi(handle, &ctrl->caps);
|
|
if (status)
|
|
return status;
|
|
|
|
dev_dbg(&serdev->dev,
|
|
"device capabilities:\n"
|
|
" ssh_power_profile: %u\n"
|
|
" ssh_buffer_size: %u\n"
|
|
" screen_on_sleep_idle_timeout: %u\n"
|
|
" screen_off_sleep_idle_timeout: %u\n"
|
|
" d3_closes_handle: %u\n",
|
|
ctrl->caps.ssh_power_profile,
|
|
ctrl->caps.ssh_buffer_size,
|
|
ctrl->caps.screen_on_sleep_idle_timeout,
|
|
ctrl->caps.screen_off_sleep_idle_timeout,
|
|
ctrl->caps.d3_closes_handle);
|
|
|
|
ssh_seq_reset(&ctrl->counter.seq);
|
|
ssh_rqid_reset(&ctrl->counter.rqid);
|
|
|
|
/* Initialize event/request completion system. */
|
|
status = ssam_cplt_init(&ctrl->cplt, &serdev->dev);
|
|
if (status)
|
|
return status;
|
|
|
|
/* Initialize request and packet transport layers. */
|
|
status = ssh_rtl_init(&ctrl->rtl, serdev, &ssam_rtl_ops);
|
|
if (status) {
|
|
ssam_cplt_destroy(&ctrl->cplt);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Set state via write_once even though we expect to be in an
|
|
* exclusive context, due to smoke-testing in
|
|
* ssam_request_sync_submit().
|
|
*/
|
|
WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_INITIALIZED);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_controller_start() - Start the receiver and transmitter threads of the
|
|
* controller.
|
|
* @ctrl: The controller.
|
|
*
|
|
* Note: When this function is called, the controller should be properly
|
|
* hooked up to the serdev core via &struct serdev_device_ops. Please refer
|
|
* to ssam_controller_init() for more details on controller initialization.
|
|
*
|
|
* This function must be called with the main controller lock held (i.e. by
|
|
* calling ssam_controller_lock()).
|
|
*/
|
|
int ssam_controller_start(struct ssam_controller *ctrl)
|
|
{
|
|
int status;
|
|
|
|
lockdep_assert_held_write(&ctrl->lock);
|
|
|
|
if (ctrl->state != SSAM_CONTROLLER_INITIALIZED)
|
|
return -EINVAL;
|
|
|
|
status = ssh_rtl_start(&ctrl->rtl);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Set state via write_once even though we expect to be locked/in an
|
|
* exclusive context, due to smoke-testing in
|
|
* ssam_request_sync_submit().
|
|
*/
|
|
WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT - Timeout for flushing requests during
|
|
* shutdown.
|
|
*
|
|
* Chosen to be larger than one full request timeout, including packets timing
|
|
* out. This value should give ample time to complete any outstanding requests
|
|
* during normal operation and account for the odd package timeout.
|
|
*/
|
|
#define SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT msecs_to_jiffies(5000)
|
|
|
|
/**
|
|
* ssam_controller_shutdown() - Shut down the controller.
|
|
* @ctrl: The controller.
|
|
*
|
|
* Shuts down the controller by flushing all pending requests and stopping the
|
|
* transmitter and receiver threads. All requests submitted after this call
|
|
* will fail with %-ESHUTDOWN. While it is discouraged to do so, this function
|
|
* is safe to use in parallel with ongoing request submission.
|
|
*
|
|
* In the course of this shutdown procedure, all currently registered
|
|
* notifiers will be unregistered. It is, however, strongly recommended to not
|
|
* rely on this behavior, and instead the party registering the notifier
|
|
* should unregister it before the controller gets shut down, e.g. via the
|
|
* SSAM bus which guarantees client devices to be removed before a shutdown.
|
|
*
|
|
* Note that events may still be pending after this call, but, due to the
|
|
* notifiers being unregistered, these events will be dropped when the
|
|
* controller is subsequently destroyed via ssam_controller_destroy().
|
|
*
|
|
* This function must be called with the main controller lock held (i.e. by
|
|
* calling ssam_controller_lock()).
|
|
*/
|
|
void ssam_controller_shutdown(struct ssam_controller *ctrl)
|
|
{
|
|
enum ssam_controller_state s = ctrl->state;
|
|
int status;
|
|
|
|
lockdep_assert_held_write(&ctrl->lock);
|
|
|
|
if (s == SSAM_CONTROLLER_UNINITIALIZED || s == SSAM_CONTROLLER_STOPPED)
|
|
return;
|
|
|
|
/*
|
|
* Try to flush pending events and requests while everything still
|
|
* works. Note: There may still be packets and/or requests in the
|
|
* system after this call (e.g. via control packets submitted by the
|
|
* packet transport layer or flush timeout / failure, ...). Those will
|
|
* be handled with the ssh_rtl_shutdown() call below.
|
|
*/
|
|
status = ssh_rtl_flush(&ctrl->rtl, SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT);
|
|
if (status) {
|
|
ssam_err(ctrl, "failed to flush request transport layer: %d\n",
|
|
status);
|
|
}
|
|
|
|
/* Try to flush all currently completing requests and events. */
|
|
ssam_cplt_flush(&ctrl->cplt);
|
|
|
|
/*
|
|
* We expect all notifiers to have been removed by the respective client
|
|
* driver that set them up at this point. If this warning occurs, some
|
|
* client driver has not done that...
|
|
*/
|
|
WARN_ON(!ssam_notifier_is_empty(ctrl));
|
|
|
|
/*
|
|
* Nevertheless, we should still take care of drivers that don't behave
|
|
* well. Thus disable all enabled events, unregister all notifiers.
|
|
*/
|
|
ssam_notifier_unregister_all(ctrl);
|
|
|
|
/*
|
|
* Cancel remaining requests. Ensure no new ones can be queued and stop
|
|
* threads.
|
|
*/
|
|
ssh_rtl_shutdown(&ctrl->rtl);
|
|
|
|
/*
|
|
* Set state via write_once even though we expect to be locked/in an
|
|
* exclusive context, due to smoke-testing in
|
|
* ssam_request_sync_submit().
|
|
*/
|
|
WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STOPPED);
|
|
ctrl->rtl.ptl.serdev = NULL;
|
|
}
|
|
|
|
/**
|
|
* ssam_controller_destroy() - Destroy the controller and free its resources.
|
|
* @ctrl: The controller.
|
|
*
|
|
* Ensures that all resources associated with the controller get freed. This
|
|
* function should only be called after the controller has been stopped via
|
|
* ssam_controller_shutdown(). In general, this function should not be called
|
|
* directly. The only valid place to call this function directly is during
|
|
* initialization, before the controller has been fully initialized and passed
|
|
* to other processes. This function is called automatically when the
|
|
* reference count of the controller reaches zero.
|
|
*
|
|
* This function must be called with the main controller lock held (i.e. by
|
|
* calling ssam_controller_lock()).
|
|
*/
|
|
void ssam_controller_destroy(struct ssam_controller *ctrl)
|
|
{
|
|
lockdep_assert_held_write(&ctrl->lock);
|
|
|
|
if (ctrl->state == SSAM_CONTROLLER_UNINITIALIZED)
|
|
return;
|
|
|
|
WARN_ON(ctrl->state != SSAM_CONTROLLER_STOPPED);
|
|
|
|
/*
|
|
* Note: New events could still have been received after the previous
|
|
* flush in ssam_controller_shutdown, before the request transport layer
|
|
* has been shut down. At this point, after the shutdown, we can be sure
|
|
* that no new events will be queued. The call to ssam_cplt_destroy will
|
|
* ensure that those remaining are being completed and freed.
|
|
*/
|
|
|
|
/* Actually free resources. */
|
|
ssam_cplt_destroy(&ctrl->cplt);
|
|
ssh_rtl_destroy(&ctrl->rtl);
|
|
|
|
/*
|
|
* Set state via write_once even though we expect to be locked/in an
|
|
* exclusive context, due to smoke-testing in
|
|
* ssam_request_sync_submit().
|
|
*/
|
|
WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_UNINITIALIZED);
|
|
}
|
|
|
|
/**
|
|
* ssam_controller_suspend() - Suspend the controller.
|
|
* @ctrl: The controller to suspend.
|
|
*
|
|
* Marks the controller as suspended. Note that display-off and D0-exit
|
|
* notifications have to be sent manually before transitioning the controller
|
|
* into the suspended state via this function.
|
|
*
|
|
* See ssam_controller_resume() for the corresponding resume function.
|
|
*
|
|
* Return: Returns %-EINVAL if the controller is currently not in the
|
|
* "started" state.
|
|
*/
|
|
int ssam_controller_suspend(struct ssam_controller *ctrl)
|
|
{
|
|
ssam_controller_lock(ctrl);
|
|
|
|
if (ctrl->state != SSAM_CONTROLLER_STARTED) {
|
|
ssam_controller_unlock(ctrl);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ssam_dbg(ctrl, "pm: suspending controller\n");
|
|
|
|
/*
|
|
* Set state via write_once even though we're locked, due to
|
|
* smoke-testing in ssam_request_sync_submit().
|
|
*/
|
|
WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_SUSPENDED);
|
|
|
|
ssam_controller_unlock(ctrl);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_controller_resume() - Resume the controller from suspend.
|
|
* @ctrl: The controller to resume.
|
|
*
|
|
* Resume the controller from the suspended state it was put into via
|
|
* ssam_controller_suspend(). This function does not issue display-on and
|
|
* D0-entry notifications. If required, those have to be sent manually after
|
|
* this call.
|
|
*
|
|
* Return: Returns %-EINVAL if the controller is currently not suspended.
|
|
*/
|
|
int ssam_controller_resume(struct ssam_controller *ctrl)
|
|
{
|
|
ssam_controller_lock(ctrl);
|
|
|
|
if (ctrl->state != SSAM_CONTROLLER_SUSPENDED) {
|
|
ssam_controller_unlock(ctrl);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ssam_dbg(ctrl, "pm: resuming controller\n");
|
|
|
|
/*
|
|
* Set state via write_once even though we're locked, due to
|
|
* smoke-testing in ssam_request_sync_submit().
|
|
*/
|
|
WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED);
|
|
|
|
ssam_controller_unlock(ctrl);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* -- Top-level request interface ------------------------------------------- */
|
|
|
|
/**
|
|
* ssam_request_write_data() - Construct and write SAM request message to
|
|
* buffer.
|
|
* @buf: The buffer to write the data to.
|
|
* @ctrl: The controller via which the request will be sent.
|
|
* @spec: The request data and specification.
|
|
*
|
|
* Constructs a SAM/SSH request message and writes it to the provided buffer.
|
|
* The request and transport counters, specifically RQID and SEQ, will be set
|
|
* in this call. These counters are obtained from the controller. It is thus
|
|
* only valid to send the resulting message via the controller specified here.
|
|
*
|
|
* For calculation of the required buffer size, refer to the
|
|
* SSH_COMMAND_MESSAGE_LENGTH() macro.
|
|
*
|
|
* Return: Returns the number of bytes used in the buffer on success. Returns
|
|
* %-EINVAL if the payload length provided in the request specification is too
|
|
* large (larger than %SSH_COMMAND_MAX_PAYLOAD_SIZE) or if the provided buffer
|
|
* is too small.
|
|
*/
|
|
ssize_t ssam_request_write_data(struct ssam_span *buf,
|
|
struct ssam_controller *ctrl,
|
|
const struct ssam_request *spec)
|
|
{
|
|
struct msgbuf msgb;
|
|
u16 rqid;
|
|
u8 seq;
|
|
|
|
if (spec->length > SSH_COMMAND_MAX_PAYLOAD_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (SSH_COMMAND_MESSAGE_LENGTH(spec->length) > buf->len)
|
|
return -EINVAL;
|
|
|
|
msgb_init(&msgb, buf->ptr, buf->len);
|
|
seq = ssh_seq_next(&ctrl->counter.seq);
|
|
rqid = ssh_rqid_next(&ctrl->counter.rqid);
|
|
msgb_push_cmd(&msgb, seq, rqid, spec);
|
|
|
|
return msgb_bytes_used(&msgb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_request_write_data);
|
|
|
|
static void ssam_request_sync_complete(struct ssh_request *rqst,
|
|
const struct ssh_command *cmd,
|
|
const struct ssam_span *data, int status)
|
|
{
|
|
struct ssh_rtl *rtl = ssh_request_rtl(rqst);
|
|
struct ssam_request_sync *r;
|
|
|
|
r = container_of(rqst, struct ssam_request_sync, base);
|
|
r->status = status;
|
|
|
|
if (r->resp)
|
|
r->resp->length = 0;
|
|
|
|
if (status) {
|
|
rtl_dbg_cond(rtl, "rsp: request failed: %d\n", status);
|
|
return;
|
|
}
|
|
|
|
if (!data) /* Handle requests without a response. */
|
|
return;
|
|
|
|
if (!r->resp || !r->resp->pointer) {
|
|
if (data->len)
|
|
rtl_warn(rtl, "rsp: no response buffer provided, dropping data\n");
|
|
return;
|
|
}
|
|
|
|
if (data->len > r->resp->capacity) {
|
|
rtl_err(rtl,
|
|
"rsp: response buffer too small, capacity: %zu bytes, got: %zu bytes\n",
|
|
r->resp->capacity, data->len);
|
|
r->status = -ENOSPC;
|
|
return;
|
|
}
|
|
|
|
r->resp->length = data->len;
|
|
memcpy(r->resp->pointer, data->ptr, data->len);
|
|
}
|
|
|
|
static void ssam_request_sync_release(struct ssh_request *rqst)
|
|
{
|
|
complete_all(&container_of(rqst, struct ssam_request_sync, base)->comp);
|
|
}
|
|
|
|
static const struct ssh_request_ops ssam_request_sync_ops = {
|
|
.release = ssam_request_sync_release,
|
|
.complete = ssam_request_sync_complete,
|
|
};
|
|
|
|
/**
|
|
* ssam_request_sync_alloc() - Allocate a synchronous request.
|
|
* @payload_len: The length of the request payload.
|
|
* @flags: Flags used for allocation.
|
|
* @rqst: Where to store the pointer to the allocated request.
|
|
* @buffer: Where to store the buffer descriptor for the message buffer of
|
|
* the request.
|
|
*
|
|
* Allocates a synchronous request with corresponding message buffer. The
|
|
* request still needs to be initialized ssam_request_sync_init() before
|
|
* it can be submitted, and the message buffer data must still be set to the
|
|
* returned buffer via ssam_request_sync_set_data() after it has been filled,
|
|
* if need be with adjusted message length.
|
|
*
|
|
* After use, the request and its corresponding message buffer should be freed
|
|
* via ssam_request_sync_free(). The buffer must not be freed separately.
|
|
*
|
|
* Return: Returns zero on success, %-ENOMEM if the request could not be
|
|
* allocated.
|
|
*/
|
|
int ssam_request_sync_alloc(size_t payload_len, gfp_t flags,
|
|
struct ssam_request_sync **rqst,
|
|
struct ssam_span *buffer)
|
|
{
|
|
size_t msglen = SSH_COMMAND_MESSAGE_LENGTH(payload_len);
|
|
|
|
*rqst = kzalloc(sizeof(**rqst) + msglen, flags);
|
|
if (!*rqst)
|
|
return -ENOMEM;
|
|
|
|
buffer->ptr = (u8 *)(*rqst + 1);
|
|
buffer->len = msglen;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_request_sync_alloc);
|
|
|
|
/**
|
|
* ssam_request_sync_free() - Free a synchronous request.
|
|
* @rqst: The request to be freed.
|
|
*
|
|
* Free a synchronous request and its corresponding buffer allocated with
|
|
* ssam_request_sync_alloc(). Do not use for requests allocated on the stack
|
|
* or via any other function.
|
|
*
|
|
* Warning: The caller must ensure that the request is not in use any more.
|
|
* I.e. the caller must ensure that it has the only reference to the request
|
|
* and the request is not currently pending. This means that the caller has
|
|
* either never submitted the request, request submission has failed, or the
|
|
* caller has waited until the submitted request has been completed via
|
|
* ssam_request_sync_wait().
|
|
*/
|
|
void ssam_request_sync_free(struct ssam_request_sync *rqst)
|
|
{
|
|
kfree(rqst);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_request_sync_free);
|
|
|
|
/**
|
|
* ssam_request_sync_init() - Initialize a synchronous request struct.
|
|
* @rqst: The request to initialize.
|
|
* @flags: The request flags.
|
|
*
|
|
* Initializes the given request struct. Does not initialize the request
|
|
* message data. This has to be done explicitly after this call via
|
|
* ssam_request_sync_set_data() and the actual message data has to be written
|
|
* via ssam_request_write_data().
|
|
*
|
|
* Return: Returns zero on success or %-EINVAL if the given flags are invalid.
|
|
*/
|
|
int ssam_request_sync_init(struct ssam_request_sync *rqst,
|
|
enum ssam_request_flags flags)
|
|
{
|
|
int status;
|
|
|
|
status = ssh_request_init(&rqst->base, flags, &ssam_request_sync_ops);
|
|
if (status)
|
|
return status;
|
|
|
|
init_completion(&rqst->comp);
|
|
rqst->resp = NULL;
|
|
rqst->status = 0;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_request_sync_init);
|
|
|
|
/**
|
|
* ssam_request_sync_submit() - Submit a synchronous request.
|
|
* @ctrl: The controller with which to submit the request.
|
|
* @rqst: The request to submit.
|
|
*
|
|
* Submit a synchronous request. The request has to be initialized and
|
|
* properly set up, including response buffer (may be %NULL if no response is
|
|
* expected) and command message data. This function does not wait for the
|
|
* request to be completed.
|
|
*
|
|
* If this function succeeds, ssam_request_sync_wait() must be used to ensure
|
|
* that the request has been completed before the response data can be
|
|
* accessed and/or the request can be freed. On failure, the request may
|
|
* immediately be freed.
|
|
*
|
|
* This function may only be used if the controller is active, i.e. has been
|
|
* initialized and not suspended.
|
|
*/
|
|
int ssam_request_sync_submit(struct ssam_controller *ctrl,
|
|
struct ssam_request_sync *rqst)
|
|
{
|
|
int status;
|
|
|
|
/*
|
|
* This is only a superficial check. In general, the caller needs to
|
|
* ensure that the controller is initialized and is not (and does not
|
|
* get) suspended during use, i.e. until the request has been completed
|
|
* (if _absolutely_ necessary, by use of ssam_controller_statelock/
|
|
* ssam_controller_stateunlock, but something like ssam_client_link
|
|
* should be preferred as this needs to last until the request has been
|
|
* completed).
|
|
*
|
|
* Note that it is actually safe to use this function while the
|
|
* controller is in the process of being shut down (as ssh_rtl_submit
|
|
* is safe with regards to this), but it is generally discouraged to do
|
|
* so.
|
|
*/
|
|
if (WARN_ON(READ_ONCE(ctrl->state) != SSAM_CONTROLLER_STARTED)) {
|
|
ssh_request_put(&rqst->base);
|
|
return -ENODEV;
|
|
}
|
|
|
|
status = ssh_rtl_submit(&ctrl->rtl, &rqst->base);
|
|
ssh_request_put(&rqst->base);
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_request_sync_submit);
|
|
|
|
/**
|
|
* ssam_request_sync() - Execute a synchronous request.
|
|
* @ctrl: The controller via which the request will be submitted.
|
|
* @spec: The request specification and payload.
|
|
* @rsp: The response buffer.
|
|
*
|
|
* Allocates a synchronous request with its message data buffer on the heap
|
|
* via ssam_request_sync_alloc(), fully initializes it via the provided
|
|
* request specification, submits it, and finally waits for its completion
|
|
* before freeing it and returning its status.
|
|
*
|
|
* Return: Returns the status of the request or any failure during setup.
|
|
*/
|
|
int ssam_request_sync(struct ssam_controller *ctrl,
|
|
const struct ssam_request *spec,
|
|
struct ssam_response *rsp)
|
|
{
|
|
struct ssam_request_sync *rqst;
|
|
struct ssam_span buf;
|
|
ssize_t len;
|
|
int status;
|
|
|
|
status = ssam_request_sync_alloc(spec->length, GFP_KERNEL, &rqst, &buf);
|
|
if (status)
|
|
return status;
|
|
|
|
status = ssam_request_sync_init(rqst, spec->flags);
|
|
if (status)
|
|
return status;
|
|
|
|
ssam_request_sync_set_resp(rqst, rsp);
|
|
|
|
len = ssam_request_write_data(&buf, ctrl, spec);
|
|
if (len < 0) {
|
|
ssam_request_sync_free(rqst);
|
|
return len;
|
|
}
|
|
|
|
ssam_request_sync_set_data(rqst, buf.ptr, len);
|
|
|
|
status = ssam_request_sync_submit(ctrl, rqst);
|
|
if (!status)
|
|
status = ssam_request_sync_wait(rqst);
|
|
|
|
ssam_request_sync_free(rqst);
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_request_sync);
|
|
|
|
/**
|
|
* ssam_request_sync_with_buffer() - Execute a synchronous request with the
|
|
* provided buffer as back-end for the message buffer.
|
|
* @ctrl: The controller via which the request will be submitted.
|
|
* @spec: The request specification and payload.
|
|
* @rsp: The response buffer.
|
|
* @buf: The buffer for the request message data.
|
|
*
|
|
* Allocates a synchronous request struct on the stack, fully initializes it
|
|
* using the provided buffer as message data buffer, submits it, and then
|
|
* waits for its completion before returning its status. The
|
|
* SSH_COMMAND_MESSAGE_LENGTH() macro can be used to compute the required
|
|
* message buffer size.
|
|
*
|
|
* This function does essentially the same as ssam_request_sync(), but instead
|
|
* of dynamically allocating the request and message data buffer, it uses the
|
|
* provided message data buffer and stores the (small) request struct on the
|
|
* heap.
|
|
*
|
|
* Return: Returns the status of the request or any failure during setup.
|
|
*/
|
|
int ssam_request_sync_with_buffer(struct ssam_controller *ctrl,
|
|
const struct ssam_request *spec,
|
|
struct ssam_response *rsp,
|
|
struct ssam_span *buf)
|
|
{
|
|
struct ssam_request_sync rqst;
|
|
ssize_t len;
|
|
int status;
|
|
|
|
status = ssam_request_sync_init(&rqst, spec->flags);
|
|
if (status)
|
|
return status;
|
|
|
|
ssam_request_sync_set_resp(&rqst, rsp);
|
|
|
|
len = ssam_request_write_data(buf, ctrl, spec);
|
|
if (len < 0)
|
|
return len;
|
|
|
|
ssam_request_sync_set_data(&rqst, buf->ptr, len);
|
|
|
|
status = ssam_request_sync_submit(ctrl, &rqst);
|
|
if (!status)
|
|
status = ssam_request_sync_wait(&rqst);
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_request_sync_with_buffer);
|
|
|
|
|
|
/* -- Internal SAM requests. ------------------------------------------------ */
|
|
|
|
SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_get_firmware_version, __le32, {
|
|
.target_category = SSAM_SSH_TC_SAM,
|
|
.target_id = 0x01,
|
|
.command_id = 0x13,
|
|
.instance_id = 0x00,
|
|
});
|
|
|
|
SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_off, u8, {
|
|
.target_category = SSAM_SSH_TC_SAM,
|
|
.target_id = 0x01,
|
|
.command_id = 0x15,
|
|
.instance_id = 0x00,
|
|
});
|
|
|
|
SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_on, u8, {
|
|
.target_category = SSAM_SSH_TC_SAM,
|
|
.target_id = 0x01,
|
|
.command_id = 0x16,
|
|
.instance_id = 0x00,
|
|
});
|
|
|
|
SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_exit, u8, {
|
|
.target_category = SSAM_SSH_TC_SAM,
|
|
.target_id = 0x01,
|
|
.command_id = 0x33,
|
|
.instance_id = 0x00,
|
|
});
|
|
|
|
SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_entry, u8, {
|
|
.target_category = SSAM_SSH_TC_SAM,
|
|
.target_id = 0x01,
|
|
.command_id = 0x34,
|
|
.instance_id = 0x00,
|
|
});
|
|
|
|
/**
|
|
* struct ssh_notification_params - Command payload to enable/disable SSH
|
|
* notifications.
|
|
* @target_category: The target category for which notifications should be
|
|
* enabled/disabled.
|
|
* @flags: Flags determining how notifications are being sent.
|
|
* @request_id: The request ID that is used to send these notifications.
|
|
* @instance_id: The specific instance in the given target category for
|
|
* which notifications should be enabled.
|
|
*/
|
|
struct ssh_notification_params {
|
|
u8 target_category;
|
|
u8 flags;
|
|
__le16 request_id;
|
|
u8 instance_id;
|
|
} __packed;
|
|
|
|
static_assert(sizeof(struct ssh_notification_params) == 5);
|
|
|
|
static int __ssam_ssh_event_request(struct ssam_controller *ctrl,
|
|
struct ssam_event_registry reg, u8 cid,
|
|
struct ssam_event_id id, u8 flags)
|
|
{
|
|
struct ssh_notification_params params;
|
|
struct ssam_request rqst;
|
|
struct ssam_response result;
|
|
int status;
|
|
|
|
u16 rqid = ssh_tc_to_rqid(id.target_category);
|
|
u8 buf = 0;
|
|
|
|
/* Only allow RQIDs that lie within the event spectrum. */
|
|
if (!ssh_rqid_is_event(rqid))
|
|
return -EINVAL;
|
|
|
|
params.target_category = id.target_category;
|
|
params.instance_id = id.instance;
|
|
params.flags = flags;
|
|
put_unaligned_le16(rqid, ¶ms.request_id);
|
|
|
|
rqst.target_category = reg.target_category;
|
|
rqst.target_id = reg.target_id;
|
|
rqst.command_id = cid;
|
|
rqst.instance_id = 0x00;
|
|
rqst.flags = SSAM_REQUEST_HAS_RESPONSE;
|
|
rqst.length = sizeof(params);
|
|
rqst.payload = (u8 *)¶ms;
|
|
|
|
result.capacity = sizeof(buf);
|
|
result.length = 0;
|
|
result.pointer = &buf;
|
|
|
|
status = ssam_retry(ssam_request_sync_onstack, ctrl, &rqst, &result,
|
|
sizeof(params));
|
|
|
|
return status < 0 ? status : buf;
|
|
}
|
|
|
|
/**
|
|
* ssam_ssh_event_enable() - Enable SSH event.
|
|
* @ctrl: The controller for which to enable the event.
|
|
* @reg: The event registry describing what request to use for enabling and
|
|
* disabling the event.
|
|
* @id: The event identifier.
|
|
* @flags: The event flags.
|
|
*
|
|
* Enables the specified event on the EC. This function does not manage
|
|
* reference counting of enabled events and is basically only a wrapper for
|
|
* the raw EC request. If the specified event is already enabled, the EC will
|
|
* ignore this request.
|
|
*
|
|
* Return: Returns the status of the executed SAM request (zero on success and
|
|
* negative on direct failure) or %-EPROTO if the request response indicates a
|
|
* failure.
|
|
*/
|
|
static int ssam_ssh_event_enable(struct ssam_controller *ctrl,
|
|
struct ssam_event_registry reg,
|
|
struct ssam_event_id id, u8 flags)
|
|
{
|
|
int status;
|
|
|
|
status = __ssam_ssh_event_request(ctrl, reg, reg.cid_enable, id, flags);
|
|
|
|
if (status < 0 && status != -EINVAL) {
|
|
ssam_err(ctrl,
|
|
"failed to enable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n",
|
|
id.target_category, id.instance, reg.target_category);
|
|
}
|
|
|
|
if (status > 0) {
|
|
ssam_err(ctrl,
|
|
"unexpected result while enabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n",
|
|
status, id.target_category, id.instance, reg.target_category);
|
|
return -EPROTO;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ssam_ssh_event_disable() - Disable SSH event.
|
|
* @ctrl: The controller for which to disable the event.
|
|
* @reg: The event registry describing what request to use for enabling and
|
|
* disabling the event (must be same as used when enabling the event).
|
|
* @id: The event identifier.
|
|
* @flags: The event flags (likely ignored for disabling of events).
|
|
*
|
|
* Disables the specified event on the EC. This function does not manage
|
|
* reference counting of enabled events and is basically only a wrapper for
|
|
* the raw EC request. If the specified event is already disabled, the EC will
|
|
* ignore this request.
|
|
*
|
|
* Return: Returns the status of the executed SAM request (zero on success and
|
|
* negative on direct failure) or %-EPROTO if the request response indicates a
|
|
* failure.
|
|
*/
|
|
static int ssam_ssh_event_disable(struct ssam_controller *ctrl,
|
|
struct ssam_event_registry reg,
|
|
struct ssam_event_id id, u8 flags)
|
|
{
|
|
int status;
|
|
|
|
status = __ssam_ssh_event_request(ctrl, reg, reg.cid_disable, id, flags);
|
|
|
|
if (status < 0 && status != -EINVAL) {
|
|
ssam_err(ctrl,
|
|
"failed to disable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n",
|
|
id.target_category, id.instance, reg.target_category);
|
|
}
|
|
|
|
if (status > 0) {
|
|
ssam_err(ctrl,
|
|
"unexpected result while disabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n",
|
|
status, id.target_category, id.instance, reg.target_category);
|
|
return -EPROTO;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/* -- Wrappers for internal SAM requests. ----------------------------------- */
|
|
|
|
/**
|
|
* ssam_get_firmware_version() - Get the SAM/EC firmware version.
|
|
* @ctrl: The controller.
|
|
* @version: Where to store the version number.
|
|
*
|
|
* Return: Returns zero on success or the status of the executed SAM request
|
|
* if that request failed.
|
|
*/
|
|
int ssam_get_firmware_version(struct ssam_controller *ctrl, u32 *version)
|
|
{
|
|
__le32 __version;
|
|
int status;
|
|
|
|
status = ssam_retry(ssam_ssh_get_firmware_version, ctrl, &__version);
|
|
if (status)
|
|
return status;
|
|
|
|
*version = le32_to_cpu(__version);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_ctrl_notif_display_off() - Notify EC that the display has been turned
|
|
* off.
|
|
* @ctrl: The controller.
|
|
*
|
|
* Notify the EC that the display has been turned off and the driver may enter
|
|
* a lower-power state. This will prevent events from being sent directly.
|
|
* Rather, the EC signals an event by pulling the wakeup GPIO high for as long
|
|
* as there are pending events. The events then need to be manually released,
|
|
* one by one, via the GPIO callback request. All pending events accumulated
|
|
* during this state can also be released by issuing the display-on
|
|
* notification, e.g. via ssam_ctrl_notif_display_on(), which will also reset
|
|
* the GPIO.
|
|
*
|
|
* On some devices, specifically ones with an integrated keyboard, the keyboard
|
|
* backlight will be turned off by this call.
|
|
*
|
|
* This function will only send the display-off notification command if
|
|
* display notifications are supported by the EC. Currently all known devices
|
|
* support these notifications.
|
|
*
|
|
* Use ssam_ctrl_notif_display_on() to reverse the effects of this function.
|
|
*
|
|
* Return: Returns zero on success or if no request has been executed, the
|
|
* status of the executed SAM request if that request failed, or %-EPROTO if
|
|
* an unexpected response has been received.
|
|
*/
|
|
int ssam_ctrl_notif_display_off(struct ssam_controller *ctrl)
|
|
{
|
|
int status;
|
|
u8 response;
|
|
|
|
ssam_dbg(ctrl, "pm: notifying display off\n");
|
|
|
|
status = ssam_retry(ssam_ssh_notif_display_off, ctrl, &response);
|
|
if (status)
|
|
return status;
|
|
|
|
if (response != 0) {
|
|
ssam_err(ctrl, "unexpected response from display-off notification: %#04x\n",
|
|
response);
|
|
return -EPROTO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_ctrl_notif_display_on() - Notify EC that the display has been turned on.
|
|
* @ctrl: The controller.
|
|
*
|
|
* Notify the EC that the display has been turned back on and the driver has
|
|
* exited its lower-power state. This notification is the counterpart to the
|
|
* display-off notification sent via ssam_ctrl_notif_display_off() and will
|
|
* reverse its effects, including resetting events to their default behavior.
|
|
*
|
|
* This function will only send the display-on notification command if display
|
|
* notifications are supported by the EC. Currently all known devices support
|
|
* these notifications.
|
|
*
|
|
* See ssam_ctrl_notif_display_off() for more details.
|
|
*
|
|
* Return: Returns zero on success or if no request has been executed, the
|
|
* status of the executed SAM request if that request failed, or %-EPROTO if
|
|
* an unexpected response has been received.
|
|
*/
|
|
int ssam_ctrl_notif_display_on(struct ssam_controller *ctrl)
|
|
{
|
|
int status;
|
|
u8 response;
|
|
|
|
ssam_dbg(ctrl, "pm: notifying display on\n");
|
|
|
|
status = ssam_retry(ssam_ssh_notif_display_on, ctrl, &response);
|
|
if (status)
|
|
return status;
|
|
|
|
if (response != 0) {
|
|
ssam_err(ctrl, "unexpected response from display-on notification: %#04x\n",
|
|
response);
|
|
return -EPROTO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_ctrl_notif_d0_exit() - Notify EC that the driver/device exits the D0
|
|
* power state.
|
|
* @ctrl: The controller
|
|
*
|
|
* Notifies the EC that the driver prepares to exit the D0 power state in
|
|
* favor of a lower-power state. Exact effects of this function related to the
|
|
* EC are currently unknown.
|
|
*
|
|
* This function will only send the D0-exit notification command if D0-state
|
|
* notifications are supported by the EC. Only newer Surface generations
|
|
* support these notifications.
|
|
*
|
|
* Use ssam_ctrl_notif_d0_entry() to reverse the effects of this function.
|
|
*
|
|
* Return: Returns zero on success or if no request has been executed, the
|
|
* status of the executed SAM request if that request failed, or %-EPROTO if
|
|
* an unexpected response has been received.
|
|
*/
|
|
int ssam_ctrl_notif_d0_exit(struct ssam_controller *ctrl)
|
|
{
|
|
int status;
|
|
u8 response;
|
|
|
|
if (!ctrl->caps.d3_closes_handle)
|
|
return 0;
|
|
|
|
ssam_dbg(ctrl, "pm: notifying D0 exit\n");
|
|
|
|
status = ssam_retry(ssam_ssh_notif_d0_exit, ctrl, &response);
|
|
if (status)
|
|
return status;
|
|
|
|
if (response != 0) {
|
|
ssam_err(ctrl, "unexpected response from D0-exit notification: %#04x\n",
|
|
response);
|
|
return -EPROTO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_ctrl_notif_d0_entry() - Notify EC that the driver/device enters the D0
|
|
* power state.
|
|
* @ctrl: The controller
|
|
*
|
|
* Notifies the EC that the driver has exited a lower-power state and entered
|
|
* the D0 power state. Exact effects of this function related to the EC are
|
|
* currently unknown.
|
|
*
|
|
* This function will only send the D0-entry notification command if D0-state
|
|
* notifications are supported by the EC. Only newer Surface generations
|
|
* support these notifications.
|
|
*
|
|
* See ssam_ctrl_notif_d0_exit() for more details.
|
|
*
|
|
* Return: Returns zero on success or if no request has been executed, the
|
|
* status of the executed SAM request if that request failed, or %-EPROTO if
|
|
* an unexpected response has been received.
|
|
*/
|
|
int ssam_ctrl_notif_d0_entry(struct ssam_controller *ctrl)
|
|
{
|
|
int status;
|
|
u8 response;
|
|
|
|
if (!ctrl->caps.d3_closes_handle)
|
|
return 0;
|
|
|
|
ssam_dbg(ctrl, "pm: notifying D0 entry\n");
|
|
|
|
status = ssam_retry(ssam_ssh_notif_d0_entry, ctrl, &response);
|
|
if (status)
|
|
return status;
|
|
|
|
if (response != 0) {
|
|
ssam_err(ctrl, "unexpected response from D0-entry notification: %#04x\n",
|
|
response);
|
|
return -EPROTO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* -- Top-level event registry interface. ----------------------------------- */
|
|
|
|
/**
|
|
* ssam_notifier_register() - Register an event notifier.
|
|
* @ctrl: The controller to register the notifier on.
|
|
* @n: The event notifier to register.
|
|
*
|
|
* Register an event notifier and increment the usage counter of the
|
|
* associated SAM event. If the event was previously not enabled, it will be
|
|
* enabled during this call.
|
|
*
|
|
* Return: Returns zero on success, %-ENOSPC if there have already been
|
|
* %INT_MAX notifiers for the event ID/type associated with the notifier block
|
|
* registered, %-ENOMEM if the corresponding event entry could not be
|
|
* allocated. If this is the first time that a notifier block is registered
|
|
* for the specific associated event, returns the status of the event-enable
|
|
* EC-command.
|
|
*/
|
|
int ssam_notifier_register(struct ssam_controller *ctrl,
|
|
struct ssam_event_notifier *n)
|
|
{
|
|
u16 rqid = ssh_tc_to_rqid(n->event.id.target_category);
|
|
struct ssam_nf_refcount_entry *entry;
|
|
struct ssam_nf_head *nf_head;
|
|
struct ssam_nf *nf;
|
|
int status;
|
|
|
|
if (!ssh_rqid_is_event(rqid))
|
|
return -EINVAL;
|
|
|
|
nf = &ctrl->cplt.event.notif;
|
|
nf_head = &nf->head[ssh_rqid_to_event(rqid)];
|
|
|
|
mutex_lock(&nf->lock);
|
|
|
|
entry = ssam_nf_refcount_inc(nf, n->event.reg, n->event.id);
|
|
if (IS_ERR(entry)) {
|
|
mutex_unlock(&nf->lock);
|
|
return PTR_ERR(entry);
|
|
}
|
|
|
|
ssam_dbg(ctrl, "enabling event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n",
|
|
n->event.reg.target_category, n->event.id.target_category,
|
|
n->event.id.instance, entry->refcount);
|
|
|
|
status = ssam_nfblk_insert(nf_head, &n->base);
|
|
if (status) {
|
|
entry = ssam_nf_refcount_dec(nf, n->event.reg, n->event.id);
|
|
if (entry->refcount == 0)
|
|
kfree(entry);
|
|
|
|
mutex_unlock(&nf->lock);
|
|
return status;
|
|
}
|
|
|
|
if (entry->refcount == 1) {
|
|
status = ssam_ssh_event_enable(ctrl, n->event.reg, n->event.id,
|
|
n->event.flags);
|
|
if (status) {
|
|
ssam_nfblk_remove(&n->base);
|
|
kfree(ssam_nf_refcount_dec(nf, n->event.reg, n->event.id));
|
|
mutex_unlock(&nf->lock);
|
|
synchronize_srcu(&nf_head->srcu);
|
|
return status;
|
|
}
|
|
|
|
entry->flags = n->event.flags;
|
|
|
|
} else if (entry->flags != n->event.flags) {
|
|
ssam_warn(ctrl,
|
|
"inconsistent flags when enabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n",
|
|
n->event.flags, entry->flags, n->event.reg.target_category,
|
|
n->event.id.target_category, n->event.id.instance);
|
|
}
|
|
|
|
mutex_unlock(&nf->lock);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_notifier_register);
|
|
|
|
/**
|
|
* ssam_notifier_unregister() - Unregister an event notifier.
|
|
* @ctrl: The controller the notifier has been registered on.
|
|
* @n: The event notifier to unregister.
|
|
*
|
|
* Unregister an event notifier and decrement the usage counter of the
|
|
* associated SAM event. If the usage counter reaches zero, the event will be
|
|
* disabled.
|
|
*
|
|
* Return: Returns zero on success, %-ENOENT if the given notifier block has
|
|
* not been registered on the controller. If the given notifier block was the
|
|
* last one associated with its specific event, returns the status of the
|
|
* event-disable EC-command.
|
|
*/
|
|
int ssam_notifier_unregister(struct ssam_controller *ctrl,
|
|
struct ssam_event_notifier *n)
|
|
{
|
|
u16 rqid = ssh_tc_to_rqid(n->event.id.target_category);
|
|
struct ssam_nf_refcount_entry *entry;
|
|
struct ssam_nf_head *nf_head;
|
|
struct ssam_nf *nf;
|
|
int status = 0;
|
|
|
|
if (!ssh_rqid_is_event(rqid))
|
|
return -EINVAL;
|
|
|
|
nf = &ctrl->cplt.event.notif;
|
|
nf_head = &nf->head[ssh_rqid_to_event(rqid)];
|
|
|
|
mutex_lock(&nf->lock);
|
|
|
|
if (!ssam_nfblk_find(nf_head, &n->base)) {
|
|
mutex_unlock(&nf->lock);
|
|
return -ENOENT;
|
|
}
|
|
|
|
entry = ssam_nf_refcount_dec(nf, n->event.reg, n->event.id);
|
|
if (WARN_ON(!entry)) {
|
|
/*
|
|
* If this does not return an entry, there's a logic error
|
|
* somewhere: The notifier block is registered, but the event
|
|
* refcount entry is not there. Remove the notifier block
|
|
* anyways.
|
|
*/
|
|
status = -ENOENT;
|
|
goto remove;
|
|
}
|
|
|
|
ssam_dbg(ctrl, "disabling event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n",
|
|
n->event.reg.target_category, n->event.id.target_category,
|
|
n->event.id.instance, entry->refcount);
|
|
|
|
if (entry->flags != n->event.flags) {
|
|
ssam_warn(ctrl,
|
|
"inconsistent flags when disabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n",
|
|
n->event.flags, entry->flags, n->event.reg.target_category,
|
|
n->event.id.target_category, n->event.id.instance);
|
|
}
|
|
|
|
if (entry->refcount == 0) {
|
|
status = ssam_ssh_event_disable(ctrl, n->event.reg, n->event.id,
|
|
n->event.flags);
|
|
kfree(entry);
|
|
}
|
|
|
|
remove:
|
|
ssam_nfblk_remove(&n->base);
|
|
mutex_unlock(&nf->lock);
|
|
synchronize_srcu(&nf_head->srcu);
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ssam_notifier_unregister);
|
|
|
|
/**
|
|
* ssam_notifier_disable_registered() - Disable events for all registered
|
|
* notifiers.
|
|
* @ctrl: The controller for which to disable the notifiers/events.
|
|
*
|
|
* Disables events for all currently registered notifiers. In case of an error
|
|
* (EC command failing), all previously disabled events will be restored and
|
|
* the error code returned.
|
|
*
|
|
* This function is intended to disable all events prior to hibernation entry.
|
|
* See ssam_notifier_restore_registered() to restore/re-enable all events
|
|
* disabled with this function.
|
|
*
|
|
* Note that this function will not disable events for notifiers registered
|
|
* after calling this function. It should thus be made sure that no new
|
|
* notifiers are going to be added after this call and before the corresponding
|
|
* call to ssam_notifier_restore_registered().
|
|
*
|
|
* Return: Returns zero on success. In case of failure returns the error code
|
|
* returned by the failed EC command to disable an event.
|
|
*/
|
|
int ssam_notifier_disable_registered(struct ssam_controller *ctrl)
|
|
{
|
|
struct ssam_nf *nf = &ctrl->cplt.event.notif;
|
|
struct rb_node *n;
|
|
int status;
|
|
|
|
mutex_lock(&nf->lock);
|
|
for (n = rb_first(&nf->refcount); n; n = rb_next(n)) {
|
|
struct ssam_nf_refcount_entry *e;
|
|
|
|
e = rb_entry(n, struct ssam_nf_refcount_entry, node);
|
|
status = ssam_ssh_event_disable(ctrl, e->key.reg,
|
|
e->key.id, e->flags);
|
|
if (status)
|
|
goto err;
|
|
}
|
|
mutex_unlock(&nf->lock);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
for (n = rb_prev(n); n; n = rb_prev(n)) {
|
|
struct ssam_nf_refcount_entry *e;
|
|
|
|
e = rb_entry(n, struct ssam_nf_refcount_entry, node);
|
|
ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags);
|
|
}
|
|
mutex_unlock(&nf->lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ssam_notifier_restore_registered() - Restore/re-enable events for all
|
|
* registered notifiers.
|
|
* @ctrl: The controller for which to restore the notifiers/events.
|
|
*
|
|
* Restores/re-enables all events for which notifiers have been registered on
|
|
* the given controller. In case of a failure, the error is logged and the
|
|
* function continues to try and enable the remaining events.
|
|
*
|
|
* This function is intended to restore/re-enable all registered events after
|
|
* hibernation. See ssam_notifier_disable_registered() for the counter part
|
|
* disabling the events and more details.
|
|
*/
|
|
void ssam_notifier_restore_registered(struct ssam_controller *ctrl)
|
|
{
|
|
struct ssam_nf *nf = &ctrl->cplt.event.notif;
|
|
struct rb_node *n;
|
|
|
|
mutex_lock(&nf->lock);
|
|
for (n = rb_first(&nf->refcount); n; n = rb_next(n)) {
|
|
struct ssam_nf_refcount_entry *e;
|
|
|
|
e = rb_entry(n, struct ssam_nf_refcount_entry, node);
|
|
|
|
/* Ignore errors, will get logged in call. */
|
|
ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags);
|
|
}
|
|
mutex_unlock(&nf->lock);
|
|
}
|
|
|
|
/**
|
|
* ssam_notifier_is_empty() - Check if there are any registered notifiers.
|
|
* @ctrl: The controller to check on.
|
|
*
|
|
* Return: Returns %true if there are currently no notifiers registered on the
|
|
* controller, %false otherwise.
|
|
*/
|
|
static bool ssam_notifier_is_empty(struct ssam_controller *ctrl)
|
|
{
|
|
struct ssam_nf *nf = &ctrl->cplt.event.notif;
|
|
bool result;
|
|
|
|
mutex_lock(&nf->lock);
|
|
result = ssam_nf_refcount_empty(nf);
|
|
mutex_unlock(&nf->lock);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* ssam_notifier_unregister_all() - Unregister all currently registered
|
|
* notifiers.
|
|
* @ctrl: The controller to unregister the notifiers on.
|
|
*
|
|
* Unregisters all currently registered notifiers. This function is used to
|
|
* ensure that all notifiers will be unregistered and associated
|
|
* entries/resources freed when the controller is being shut down.
|
|
*/
|
|
static void ssam_notifier_unregister_all(struct ssam_controller *ctrl)
|
|
{
|
|
struct ssam_nf *nf = &ctrl->cplt.event.notif;
|
|
struct ssam_nf_refcount_entry *e, *n;
|
|
|
|
mutex_lock(&nf->lock);
|
|
rbtree_postorder_for_each_entry_safe(e, n, &nf->refcount, node) {
|
|
/* Ignore errors, will get logged in call. */
|
|
ssam_ssh_event_disable(ctrl, e->key.reg, e->key.id, e->flags);
|
|
kfree(e);
|
|
}
|
|
nf->refcount = RB_ROOT;
|
|
mutex_unlock(&nf->lock);
|
|
}
|
|
|
|
|
|
/* -- Wakeup IRQ. ----------------------------------------------------------- */
|
|
|
|
static irqreturn_t ssam_irq_handle(int irq, void *dev_id)
|
|
{
|
|
struct ssam_controller *ctrl = dev_id;
|
|
|
|
ssam_dbg(ctrl, "pm: wake irq triggered\n");
|
|
|
|
/*
|
|
* Note: Proper wakeup detection is currently unimplemented.
|
|
* When the EC is in display-off or any other non-D0 state, it
|
|
* does not send events/notifications to the host. Instead it
|
|
* signals that there are events available via the wakeup IRQ.
|
|
* This driver is responsible for calling back to the EC to
|
|
* release these events one-by-one.
|
|
*
|
|
* This IRQ should not cause a full system resume by its own.
|
|
* Instead, events should be handled by their respective subsystem
|
|
* drivers, which in turn should signal whether a full system
|
|
* resume should be performed.
|
|
*
|
|
* TODO: Send GPIO callback command repeatedly to EC until callback
|
|
* returns 0x00. Return flag of callback is "has more events".
|
|
* Each time the command is sent, one event is "released". Once
|
|
* all events have been released (return = 0x00), the GPIO is
|
|
* re-armed. Detect wakeup events during this process, go back to
|
|
* sleep if no wakeup event has been received.
|
|
*/
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* ssam_irq_setup() - Set up SAM EC wakeup-GPIO interrupt.
|
|
* @ctrl: The controller for which the IRQ should be set up.
|
|
*
|
|
* Set up an IRQ for the wakeup-GPIO pin of the SAM EC. This IRQ can be used
|
|
* to wake the device from a low power state.
|
|
*
|
|
* Note that this IRQ can only be triggered while the EC is in the display-off
|
|
* state. In this state, events are not sent to the host in the usual way.
|
|
* Instead the wakeup-GPIO gets pulled to "high" as long as there are pending
|
|
* events and these events need to be released one-by-one via the GPIO
|
|
* callback request, either until there are no events left and the GPIO is
|
|
* reset, or all at once by transitioning the EC out of the display-off state,
|
|
* which will also clear the GPIO.
|
|
*
|
|
* Not all events, however, should trigger a full system wakeup. Instead the
|
|
* driver should, if necessary, inspect and forward each event to the
|
|
* corresponding subsystem, which in turn should decide if the system needs to
|
|
* be woken up. This logic has not been implemented yet, thus wakeup by this
|
|
* IRQ should be disabled by default to avoid spurious wake-ups, caused, for
|
|
* example, by the remaining battery percentage changing. Refer to comments in
|
|
* this function and comments in the corresponding IRQ handler for more
|
|
* details on how this should be implemented.
|
|
*
|
|
* See also ssam_ctrl_notif_display_off() and ssam_ctrl_notif_display_off()
|
|
* for functions to transition the EC into and out of the display-off state as
|
|
* well as more details on it.
|
|
*
|
|
* The IRQ is disabled by default and has to be enabled before it can wake up
|
|
* the device from suspend via ssam_irq_arm_for_wakeup(). On teardown, the IRQ
|
|
* should be freed via ssam_irq_free().
|
|
*/
|
|
int ssam_irq_setup(struct ssam_controller *ctrl)
|
|
{
|
|
struct device *dev = ssam_controller_device(ctrl);
|
|
struct gpio_desc *gpiod;
|
|
int irq;
|
|
int status;
|
|
|
|
/*
|
|
* The actual GPIO interrupt is declared in ACPI as TRIGGER_HIGH.
|
|
* However, the GPIO line only gets reset by sending the GPIO callback
|
|
* command to SAM (or alternatively the display-on notification). As
|
|
* proper handling for this interrupt is not implemented yet, leaving
|
|
* the IRQ at TRIGGER_HIGH would cause an IRQ storm (as the callback
|
|
* never gets sent and thus the line never gets reset). To avoid this,
|
|
* mark the IRQ as TRIGGER_RISING for now, only creating a single
|
|
* interrupt, and let the SAM resume callback during the controller
|
|
* resume process clear it.
|
|
*/
|
|
const int irqf = IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN;
|
|
|
|
gpiod = gpiod_get(dev, "ssam_wakeup-int", GPIOD_ASIS);
|
|
if (IS_ERR(gpiod))
|
|
return PTR_ERR(gpiod);
|
|
|
|
irq = gpiod_to_irq(gpiod);
|
|
gpiod_put(gpiod);
|
|
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
status = request_threaded_irq(irq, NULL, ssam_irq_handle, irqf,
|
|
"ssam_wakeup", ctrl);
|
|
if (status)
|
|
return status;
|
|
|
|
ctrl->irq.num = irq;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_irq_free() - Free SAM EC wakeup-GPIO interrupt.
|
|
* @ctrl: The controller for which the IRQ should be freed.
|
|
*
|
|
* Free the wakeup-GPIO IRQ previously set-up via ssam_irq_setup().
|
|
*/
|
|
void ssam_irq_free(struct ssam_controller *ctrl)
|
|
{
|
|
free_irq(ctrl->irq.num, ctrl);
|
|
ctrl->irq.num = -1;
|
|
}
|
|
|
|
/**
|
|
* ssam_irq_arm_for_wakeup() - Arm the EC IRQ for wakeup, if enabled.
|
|
* @ctrl: The controller for which the IRQ should be armed.
|
|
*
|
|
* Sets up the IRQ so that it can be used to wake the device. Specifically,
|
|
* this function enables the irq and then, if the device is allowed to wake up
|
|
* the system, calls enable_irq_wake(). See ssam_irq_disarm_wakeup() for the
|
|
* corresponding function to disable the IRQ.
|
|
*
|
|
* This function is intended to arm the IRQ before entering S2idle suspend.
|
|
*
|
|
* Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must
|
|
* be balanced.
|
|
*/
|
|
int ssam_irq_arm_for_wakeup(struct ssam_controller *ctrl)
|
|
{
|
|
struct device *dev = ssam_controller_device(ctrl);
|
|
int status;
|
|
|
|
enable_irq(ctrl->irq.num);
|
|
if (device_may_wakeup(dev)) {
|
|
status = enable_irq_wake(ctrl->irq.num);
|
|
if (status) {
|
|
ssam_err(ctrl, "failed to enable wake IRQ: %d\n", status);
|
|
disable_irq(ctrl->irq.num);
|
|
return status;
|
|
}
|
|
|
|
ctrl->irq.wakeup_enabled = true;
|
|
} else {
|
|
ctrl->irq.wakeup_enabled = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ssam_irq_disarm_wakeup() - Disarm the wakeup IRQ.
|
|
* @ctrl: The controller for which the IRQ should be disarmed.
|
|
*
|
|
* Disarm the IRQ previously set up for wake via ssam_irq_arm_for_wakeup().
|
|
*
|
|
* This function is intended to disarm the IRQ after exiting S2idle suspend.
|
|
*
|
|
* Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must
|
|
* be balanced.
|
|
*/
|
|
void ssam_irq_disarm_wakeup(struct ssam_controller *ctrl)
|
|
{
|
|
int status;
|
|
|
|
if (ctrl->irq.wakeup_enabled) {
|
|
status = disable_irq_wake(ctrl->irq.num);
|
|
if (status)
|
|
ssam_err(ctrl, "failed to disable wake IRQ: %d\n", status);
|
|
|
|
ctrl->irq.wakeup_enabled = false;
|
|
}
|
|
disable_irq(ctrl->irq.num);
|
|
}
|