Go to file
Shivasharan S 62a04f81e6 scsi: megaraid_sas: IRQ poll to avoid CPU hard lockups
Issue Description:

We have seen cpu lock up issues from field if system has a large (more than
96) logical cpu count.  SAS3.0 controller (Invader series) supports max 96
MSI-X vector and SAS3.5 product (Ventura) supports max 128 MSI-X vectors.

This may be a generic issue (if PCI device support completion on multiple
reply queues).

Let me explain it w.r.t megaraid_sas supported h/w just to simplify the
problem and possible changes to handle such issues.  MegaRAID controller
supports multiple reply queues in completion path.  Driver creates MSI-X
vectors for controller as "minimum of (FW supported Reply queues, Logical
CPUs)".  If submitter is not interrupted via completion on same CPU, there
is a loop in the IO path. This behavior can cause hard/soft CPU lockups, IO
timeout, system sluggish etc.

Example - one CPU (e.g. CPU A) is busy submitting the IOs and another CPU
(e.g. CPU B) is busy with processing the corresponding IO's reply
descriptors from reply descriptor queue upon receiving the interrupts from
HBA.  If CPU A is continuously pumping the IOs then always CPU B (which is
executing the ISR) will see the valid reply descriptors in the reply
descriptor queue and it will be continuously processing those reply
descriptor in a loop without quitting the ISR handler.

megaraid_sas driver will exit ISR handler if it finds unused reply
descriptor in the reply descriptor queue.  Since CPU A will be continuously
sending the IOs, CPU B may always see a valid reply descriptor (posted by
HBA Firmware after processing the IO) in the reply descriptor queue. In
worst case, driver will not quit from this loop in the ISR handler.
Eventually, CPU lockup will be detected by watchdog.

Above mentioned behavior is not common if "rq_affinity" set to 2 or
affinity_hint is honored by irqbalancer as "exact".  If rq_affinity is set
to 2, submitter will be always interrupted via completion on same CPU.  If
irqbalancer is using "exact" policy, interrupt will be delivered to
submitter CPU.

Problem statement:

If CPU count to MSI-X vectors (reply descriptor Queues) count ratio is not
1:1, we still have exposure of issue explained above and for that we don't
have any solution.

Exposure of soft/hard lockup is seen if CPU count is more than MSI-X
supported by device.

If CPUs count to MSI-X vectors count ratio is not 1:1, (Other way, if
CPU counts to MSI-X vector count ratio is something like X:1, where X > 1)
then 'exact' irqbalance policy OR rq_affinity = 2 won't help to avoid CPU
hard/soft lockups. There won't be any one to one mapping between
CPU to MSI-X vector instead one MSI-X interrupt (or reply descriptor queue)
is shared with group/set of CPUs and there is a possibility of having a
loop in the IO path within that CPU group and may observe lockups.

For example: Consider a system having two NUMA nodes and each node having
four logical CPUs and also consider that number of MSI-X vectors enabled on
the HBA is two, then CPUs count to MSI-X vector count ratio as 4:1.
e.g.
MSI-X vector 0 is affinity to CPU 0, CPU 1, CPU 2 & CPU 3 of NUMA node 0 and
MSI-X vector 1 is affinity to CPU 4, CPU 5, CPU 6 & CPU 7 of NUMA node 1.

numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3                 --> MSI-X 0
node 0 size: 65536 MB
node 0 free: 63176 MB
node 1 cpus: 4 5 6 7                 --> MSI-X 1
node 1 size: 65536 MB
node 1 free: 63176 MB

Assume that user started an application which uses all the CPUs of NUMA
node 0 for issuing the IOs.  Only one CPU from affinity list (it can be any
cpu since this behavior depends upon irqbalance) CPU0 will receive the
interrupts from MSI-X 0 for all the IOs. Eventually, CPU 0 IO submission
percentage will be decreasing and ISR processing percentage will be
increasing as it is more busy with processing the interrupts.  Gradually IO
submission percentage on CPU 0 will be zero and it's ISR processing
percentage will be 100% as IO loop has already formed within the
NUMA node 0, i.e. CPU 1, CPU 2 & CPU 3 will be continuously busy with
submitting the heavy IOs and only CPU 0 is busy in the ISR path as it
always find the valid reply descriptor in the reply descriptor queue.
Eventually, we will observe the hard lockup here.

Chances of occurring of hard/soft lockups are directly proportional to
value of X. If value of X is high, then chances of observing CPU lockups is
high.

Solution:

Use IRQ poll interface defined in "irq_poll.c".

megaraid_sas driver will execute ISR routine in softirq context and it will
always quit the loop based on budget provided in IRQ poll interface.
Driver will switch to IRQ poll only when more than a threshold number of
reply descriptors are handled in one ISR. Currently threshold is set as
1/4th of HBA queue depth.

In these scenarios (i.e. where CPUs count to MSI-X vectors count ratio is
X:1 (where X >  1)), IRQ poll interface will avoid CPU hard lockups due to
voluntary exit from the reply queue processing based on budget.
Note - Only one MSI-X vector is busy doing processing.

Select CONFIG_IRQ_POLL from driver Kconfig for driver compilation.

Signed-off-by: Kashyap Desai <kashyap.desai@broadcom.com>
Signed-off-by: Shivasharan S <shivasharan.srikanteshwara@broadcom.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-06-18 19:46:19 -04:00
Documentation scsi: osst: kill obsolete driver 2019-06-18 19:46:18 -04:00
LICENSES LICENSES: Rename other to deprecated 2019-05-03 06:34:32 -06:00
arch Merge branch 'akpm' (patches from Andrew) 2019-05-19 12:15:32 -07:00
block for-5.2/block-post-20190516 2019-05-16 19:08:15 -07:00
certs kexec, KEYS: Make use of platform keyring for signature verify 2019-02-04 17:34:07 -05:00
crypto Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next 2019-05-07 22:03:58 -07:00
drivers scsi: megaraid_sas: IRQ poll to avoid CPU hard lockups 2019-06-18 19:46:19 -04:00
fs This pull request contains the following fixes for UBIFS: 2019-05-19 15:22:03 -07:00
include scsi: libsas: switch remaining files to SPDX tags 2019-05-21 06:16:22 -04:00
init initramfs: don't free a non-existent initrd 2019-05-18 15:52:26 -07:00
ipc ipc: do cyclic id allocation for the ipc object. 2019-05-14 19:52:52 -07:00
kernel Merge branch 'akpm' (patches from Andrew) 2019-05-19 12:15:32 -07:00
lib slab: remove /proc/slab_allocators 2019-05-16 15:51:55 -07:00
mm Merge branch 'akpm' (patches from Andrew) 2019-05-19 12:15:32 -07:00
net treewide: prefix header search paths with $(srctree)/ 2019-05-18 11:49:57 +09:00
samples samples: guard sub-directories with CONFIG options 2019-05-18 11:29:01 +09:00
scripts kconfig: use 'else ifneq' for Makefile to improve readability 2019-05-19 09:34:35 +09:00
security Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2019-05-13 15:15:00 -07:00
sound sound fixes for 5.2-rc1 2019-05-17 13:57:54 -07:00
tools Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip 2019-05-19 11:20:22 -07:00
usr user/Makefile: Fix typo and capitalization in comment section 2018-12-11 00:18:03 +09:00
virt * ARM: support for SVE and Pointer Authentication in guests, PMU improvements 2019-05-17 10:33:30 -07:00
.clang-format Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2019-04-17 11:26:25 -07:00
.cocciconfig
.get_maintainer.ignore Opt out of scripts/get_maintainer.pl 2019-05-16 10:53:40 -07:00
.gitattributes .gitattributes: set git diff driver for C source code files 2016-10-07 18:46:30 -07:00
.gitignore .gitignore: exclude .get_maintainer.ignore and .gitattributes 2019-05-18 11:49:54 +09:00
.mailmap A reasonably busy cycle for docs, including: 2019-05-08 12:42:50 -07:00
COPYING COPYING: use the new text with points to the license files 2018-03-23 12:41:45 -06:00
CREDITS Char/Misc driver patches for 5.1-rc1 2019-03-06 14:18:59 -08:00
Kbuild Kbuild updates for v5.1 2019-03-10 17:48:21 -07:00
Kconfig kconfig: move the "Executable file formats" menu to fs/Kconfig.binfmt 2018-08-02 08:06:55 +09:00
MAINTAINERS scsi: osst: kill obsolete driver 2019-06-18 19:46:18 -04:00
Makefile Linux 5.2-rc1 2019-05-19 15:47:09 -07:00
README Drop all 00-INDEX files from Documentation/ 2018-09-09 15:08:58 -06:00

README

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.