534 lines
14 KiB
C
534 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* FPU signal frame handling routines.
|
|
*/
|
|
|
|
#include <linux/compat.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/fpu/signal.h>
|
|
#include <asm/fpu/regset.h>
|
|
#include <asm/fpu/xstate.h>
|
|
|
|
#include <asm/sigframe.h>
|
|
#include <asm/trace/fpu.h>
|
|
|
|
static struct _fpx_sw_bytes fx_sw_reserved, fx_sw_reserved_ia32;
|
|
|
|
/*
|
|
* Check for the presence of extended state information in the
|
|
* user fpstate pointer in the sigcontext.
|
|
*/
|
|
static inline int check_for_xstate(struct fxregs_state __user *buf,
|
|
void __user *fpstate,
|
|
struct _fpx_sw_bytes *fx_sw)
|
|
{
|
|
int min_xstate_size = sizeof(struct fxregs_state) +
|
|
sizeof(struct xstate_header);
|
|
unsigned int magic2;
|
|
|
|
if (__copy_from_user(fx_sw, &buf->sw_reserved[0], sizeof(*fx_sw)))
|
|
return -1;
|
|
|
|
/* Check for the first magic field and other error scenarios. */
|
|
if (fx_sw->magic1 != FP_XSTATE_MAGIC1 ||
|
|
fx_sw->xstate_size < min_xstate_size ||
|
|
fx_sw->xstate_size > fpu_user_xstate_size ||
|
|
fx_sw->xstate_size > fx_sw->extended_size)
|
|
return -1;
|
|
|
|
/*
|
|
* Check for the presence of second magic word at the end of memory
|
|
* layout. This detects the case where the user just copied the legacy
|
|
* fpstate layout with out copying the extended state information
|
|
* in the memory layout.
|
|
*/
|
|
if (__get_user(magic2, (__u32 __user *)(fpstate + fx_sw->xstate_size))
|
|
|| magic2 != FP_XSTATE_MAGIC2)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Signal frame handlers.
|
|
*/
|
|
static inline int save_fsave_header(struct task_struct *tsk, void __user *buf)
|
|
{
|
|
if (use_fxsr()) {
|
|
struct xregs_state *xsave = &tsk->thread.fpu.state.xsave;
|
|
struct user_i387_ia32_struct env;
|
|
struct _fpstate_32 __user *fp = buf;
|
|
|
|
fpregs_lock();
|
|
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
copy_fxregs_to_kernel(&tsk->thread.fpu);
|
|
fpregs_unlock();
|
|
|
|
convert_from_fxsr(&env, tsk);
|
|
|
|
if (__copy_to_user(buf, &env, sizeof(env)) ||
|
|
__put_user(xsave->i387.swd, &fp->status) ||
|
|
__put_user(X86_FXSR_MAGIC, &fp->magic))
|
|
return -1;
|
|
} else {
|
|
struct fregs_state __user *fp = buf;
|
|
u32 swd;
|
|
if (__get_user(swd, &fp->swd) || __put_user(swd, &fp->status))
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int save_xstate_epilog(void __user *buf, int ia32_frame)
|
|
{
|
|
struct xregs_state __user *x = buf;
|
|
struct _fpx_sw_bytes *sw_bytes;
|
|
u32 xfeatures;
|
|
int err;
|
|
|
|
/* Setup the bytes not touched by the [f]xsave and reserved for SW. */
|
|
sw_bytes = ia32_frame ? &fx_sw_reserved_ia32 : &fx_sw_reserved;
|
|
err = __copy_to_user(&x->i387.sw_reserved, sw_bytes, sizeof(*sw_bytes));
|
|
|
|
if (!use_xsave())
|
|
return err;
|
|
|
|
err |= __put_user(FP_XSTATE_MAGIC2,
|
|
(__u32 __user *)(buf + fpu_user_xstate_size));
|
|
|
|
/*
|
|
* Read the xfeatures which we copied (directly from the cpu or
|
|
* from the state in task struct) to the user buffers.
|
|
*/
|
|
err |= __get_user(xfeatures, (__u32 __user *)&x->header.xfeatures);
|
|
|
|
/*
|
|
* For legacy compatible, we always set FP/SSE bits in the bit
|
|
* vector while saving the state to the user context. This will
|
|
* enable us capturing any changes(during sigreturn) to
|
|
* the FP/SSE bits by the legacy applications which don't touch
|
|
* xfeatures in the xsave header.
|
|
*
|
|
* xsave aware apps can change the xfeatures in the xsave
|
|
* header as well as change any contents in the memory layout.
|
|
* xrestore as part of sigreturn will capture all the changes.
|
|
*/
|
|
xfeatures |= XFEATURE_MASK_FPSSE;
|
|
|
|
err |= __put_user(xfeatures, (__u32 __user *)&x->header.xfeatures);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline int copy_fpregs_to_sigframe(struct xregs_state __user *buf)
|
|
{
|
|
int err;
|
|
|
|
if (use_xsave())
|
|
err = copy_xregs_to_user(buf);
|
|
else if (use_fxsr())
|
|
err = copy_fxregs_to_user((struct fxregs_state __user *) buf);
|
|
else
|
|
err = copy_fregs_to_user((struct fregs_state __user *) buf);
|
|
|
|
if (unlikely(err) && __clear_user(buf, fpu_user_xstate_size))
|
|
err = -EFAULT;
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Save the fpu, extended register state to the user signal frame.
|
|
*
|
|
* 'buf_fx' is the 64-byte aligned pointer at which the [f|fx|x]save
|
|
* state is copied.
|
|
* 'buf' points to the 'buf_fx' or to the fsave header followed by 'buf_fx'.
|
|
*
|
|
* buf == buf_fx for 64-bit frames and 32-bit fsave frame.
|
|
* buf != buf_fx for 32-bit frames with fxstate.
|
|
*
|
|
* Try to save it directly to the user frame with disabled page fault handler.
|
|
* If this fails then do the slow path where the FPU state is first saved to
|
|
* task's fpu->state and then copy it to the user frame pointed to by the
|
|
* aligned pointer 'buf_fx'.
|
|
*
|
|
* If this is a 32-bit frame with fxstate, put a fsave header before
|
|
* the aligned state at 'buf_fx'.
|
|
*
|
|
* For [f]xsave state, update the SW reserved fields in the [f]xsave frame
|
|
* indicating the absence/presence of the extended state to the user.
|
|
*/
|
|
int copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int ia32_fxstate = (buf != buf_fx);
|
|
int ret;
|
|
|
|
ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) ||
|
|
IS_ENABLED(CONFIG_IA32_EMULATION));
|
|
|
|
if (!access_ok(buf, size))
|
|
return -EACCES;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_get(current, NULL, 0,
|
|
sizeof(struct user_i387_ia32_struct), NULL,
|
|
(struct _fpstate_32 __user *) buf) ? -1 : 1;
|
|
|
|
retry:
|
|
/*
|
|
* Load the FPU registers if they are not valid for the current task.
|
|
* With a valid FPU state we can attempt to save the state directly to
|
|
* userland's stack frame which will likely succeed. If it does not,
|
|
* resolve the fault in the user memory and try again.
|
|
*/
|
|
fpregs_lock();
|
|
if (test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
__fpregs_load_activate();
|
|
|
|
pagefault_disable();
|
|
ret = copy_fpregs_to_sigframe(buf_fx);
|
|
pagefault_enable();
|
|
fpregs_unlock();
|
|
|
|
if (ret) {
|
|
if (!fault_in_pages_writeable(buf_fx, fpu_user_xstate_size))
|
|
goto retry;
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Save the fsave header for the 32-bit frames. */
|
|
if ((ia32_fxstate || !use_fxsr()) && save_fsave_header(tsk, buf))
|
|
return -1;
|
|
|
|
if (use_fxsr() && save_xstate_epilog(buf_fx, ia32_fxstate))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
sanitize_restored_user_xstate(union fpregs_state *state,
|
|
struct user_i387_ia32_struct *ia32_env,
|
|
u64 user_xfeatures, int fx_only)
|
|
{
|
|
struct xregs_state *xsave = &state->xsave;
|
|
struct xstate_header *header = &xsave->header;
|
|
|
|
if (use_xsave()) {
|
|
/*
|
|
* Note: we don't need to zero the reserved bits in the
|
|
* xstate_header here because we either didn't copy them at all,
|
|
* or we checked earlier that they aren't set.
|
|
*/
|
|
|
|
/*
|
|
* 'user_xfeatures' might have bits clear which are
|
|
* set in header->xfeatures. This represents features that
|
|
* were in init state prior to a signal delivery, and need
|
|
* to be reset back to the init state. Clear any user
|
|
* feature bits which are set in the kernel buffer to get
|
|
* them back to the init state.
|
|
*
|
|
* Supervisor state is unchanged by input from userspace.
|
|
* Ensure supervisor state bits stay set and supervisor
|
|
* state is not modified.
|
|
*/
|
|
if (fx_only)
|
|
header->xfeatures = XFEATURE_MASK_FPSSE;
|
|
else
|
|
header->xfeatures &= user_xfeatures |
|
|
xfeatures_mask_supervisor();
|
|
}
|
|
|
|
if (use_fxsr()) {
|
|
/*
|
|
* mscsr reserved bits must be masked to zero for security
|
|
* reasons.
|
|
*/
|
|
xsave->i387.mxcsr &= mxcsr_feature_mask;
|
|
|
|
if (ia32_env)
|
|
convert_to_fxsr(&state->fxsave, ia32_env);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore the extended state if present. Otherwise, restore the FP/SSE state.
|
|
*/
|
|
static int copy_user_to_fpregs_zeroing(void __user *buf, u64 xbv, int fx_only)
|
|
{
|
|
u64 init_bv;
|
|
int r;
|
|
|
|
if (use_xsave()) {
|
|
if (fx_only) {
|
|
init_bv = xfeatures_mask_user() & ~XFEATURE_MASK_FPSSE;
|
|
|
|
r = copy_user_to_fxregs(buf);
|
|
if (!r)
|
|
copy_kernel_to_xregs(&init_fpstate.xsave, init_bv);
|
|
return r;
|
|
} else {
|
|
init_bv = xfeatures_mask_user() & ~xbv;
|
|
|
|
r = copy_user_to_xregs(buf, xbv);
|
|
if (!r && unlikely(init_bv))
|
|
copy_kernel_to_xregs(&init_fpstate.xsave, init_bv);
|
|
return r;
|
|
}
|
|
} else if (use_fxsr()) {
|
|
return copy_user_to_fxregs(buf);
|
|
} else
|
|
return copy_user_to_fregs(buf);
|
|
}
|
|
|
|
static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size)
|
|
{
|
|
struct user_i387_ia32_struct *envp = NULL;
|
|
int state_size = fpu_kernel_xstate_size;
|
|
int ia32_fxstate = (buf != buf_fx);
|
|
struct task_struct *tsk = current;
|
|
struct fpu *fpu = &tsk->thread.fpu;
|
|
struct user_i387_ia32_struct env;
|
|
u64 user_xfeatures = 0;
|
|
int fx_only = 0;
|
|
int ret = 0;
|
|
|
|
ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) ||
|
|
IS_ENABLED(CONFIG_IA32_EMULATION));
|
|
|
|
if (!buf) {
|
|
fpu__clear_user_states(fpu);
|
|
return 0;
|
|
}
|
|
|
|
if (!access_ok(buf, size))
|
|
return -EACCES;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_set(current, NULL,
|
|
0, sizeof(struct user_i387_ia32_struct),
|
|
NULL, buf) != 0;
|
|
|
|
if (use_xsave()) {
|
|
struct _fpx_sw_bytes fx_sw_user;
|
|
if (unlikely(check_for_xstate(buf_fx, buf_fx, &fx_sw_user))) {
|
|
/*
|
|
* Couldn't find the extended state information in the
|
|
* memory layout. Restore just the FP/SSE and init all
|
|
* the other extended state.
|
|
*/
|
|
state_size = sizeof(struct fxregs_state);
|
|
fx_only = 1;
|
|
trace_x86_fpu_xstate_check_failed(fpu);
|
|
} else {
|
|
state_size = fx_sw_user.xstate_size;
|
|
user_xfeatures = fx_sw_user.xfeatures;
|
|
}
|
|
}
|
|
|
|
if ((unsigned long)buf_fx % 64)
|
|
fx_only = 1;
|
|
|
|
if (!ia32_fxstate) {
|
|
/*
|
|
* Attempt to restore the FPU registers directly from user
|
|
* memory. For that to succeed, the user access cannot cause
|
|
* page faults. If it does, fall back to the slow path below,
|
|
* going through the kernel buffer with the enabled pagefault
|
|
* handler.
|
|
*/
|
|
fpregs_lock();
|
|
pagefault_disable();
|
|
ret = copy_user_to_fpregs_zeroing(buf_fx, user_xfeatures, fx_only);
|
|
pagefault_enable();
|
|
if (!ret) {
|
|
|
|
/*
|
|
* Restore supervisor states: previous context switch
|
|
* etc has done XSAVES and saved the supervisor states
|
|
* in the kernel buffer from which they can be restored
|
|
* now.
|
|
*
|
|
* We cannot do a single XRSTORS here - which would
|
|
* be nice - because the rest of the FPU registers are
|
|
* being restored from a user buffer directly. The
|
|
* single XRSTORS happens below, when the user buffer
|
|
* has been copied to the kernel one.
|
|
*/
|
|
if (test_thread_flag(TIF_NEED_FPU_LOAD) &&
|
|
xfeatures_mask_supervisor())
|
|
copy_kernel_to_xregs(&fpu->state.xsave,
|
|
xfeatures_mask_supervisor());
|
|
fpregs_mark_activate();
|
|
fpregs_unlock();
|
|
return 0;
|
|
}
|
|
fpregs_unlock();
|
|
} else {
|
|
/*
|
|
* For 32-bit frames with fxstate, copy the fxstate so it can
|
|
* be reconstructed later.
|
|
*/
|
|
ret = __copy_from_user(&env, buf, sizeof(env));
|
|
if (ret)
|
|
goto err_out;
|
|
envp = &env;
|
|
}
|
|
|
|
/*
|
|
* By setting TIF_NEED_FPU_LOAD it is ensured that our xstate is
|
|
* not modified on context switch and that the xstate is considered
|
|
* to be loaded again on return to userland (overriding last_cpu avoids
|
|
* the optimisation).
|
|
*/
|
|
fpregs_lock();
|
|
|
|
if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
|
|
|
|
/*
|
|
* Supervisor states are not modified by user space input. Save
|
|
* current supervisor states first and invalidate the FPU regs.
|
|
*/
|
|
if (xfeatures_mask_supervisor())
|
|
copy_supervisor_to_kernel(&fpu->state.xsave);
|
|
set_thread_flag(TIF_NEED_FPU_LOAD);
|
|
}
|
|
__fpu_invalidate_fpregs_state(fpu);
|
|
fpregs_unlock();
|
|
|
|
if (use_xsave() && !fx_only) {
|
|
u64 init_bv = xfeatures_mask_user() & ~user_xfeatures;
|
|
|
|
if (using_compacted_format()) {
|
|
ret = copy_user_to_xstate(&fpu->state.xsave, buf_fx);
|
|
} else {
|
|
ret = __copy_from_user(&fpu->state.xsave, buf_fx, state_size);
|
|
|
|
if (!ret && state_size > offsetof(struct xregs_state, header))
|
|
ret = validate_user_xstate_header(&fpu->state.xsave.header);
|
|
}
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
sanitize_restored_user_xstate(&fpu->state, envp, user_xfeatures,
|
|
fx_only);
|
|
|
|
fpregs_lock();
|
|
if (unlikely(init_bv))
|
|
copy_kernel_to_xregs(&init_fpstate.xsave, init_bv);
|
|
|
|
/*
|
|
* Restore previously saved supervisor xstates along with
|
|
* copied-in user xstates.
|
|
*/
|
|
ret = copy_kernel_to_xregs_err(&fpu->state.xsave,
|
|
user_xfeatures | xfeatures_mask_supervisor());
|
|
|
|
} else if (use_fxsr()) {
|
|
ret = __copy_from_user(&fpu->state.fxsave, buf_fx, state_size);
|
|
if (ret) {
|
|
ret = -EFAULT;
|
|
goto err_out;
|
|
}
|
|
|
|
sanitize_restored_user_xstate(&fpu->state, envp, user_xfeatures,
|
|
fx_only);
|
|
|
|
fpregs_lock();
|
|
if (use_xsave()) {
|
|
u64 init_bv;
|
|
|
|
init_bv = xfeatures_mask_user() & ~XFEATURE_MASK_FPSSE;
|
|
copy_kernel_to_xregs(&init_fpstate.xsave, init_bv);
|
|
}
|
|
|
|
ret = copy_kernel_to_fxregs_err(&fpu->state.fxsave);
|
|
} else {
|
|
ret = __copy_from_user(&fpu->state.fsave, buf_fx, state_size);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
fpregs_lock();
|
|
ret = copy_kernel_to_fregs_err(&fpu->state.fsave);
|
|
}
|
|
if (!ret)
|
|
fpregs_mark_activate();
|
|
else
|
|
fpregs_deactivate(fpu);
|
|
fpregs_unlock();
|
|
|
|
err_out:
|
|
if (ret)
|
|
fpu__clear_user_states(fpu);
|
|
return ret;
|
|
}
|
|
|
|
static inline int xstate_sigframe_size(void)
|
|
{
|
|
return use_xsave() ? fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE :
|
|
fpu_user_xstate_size;
|
|
}
|
|
|
|
/*
|
|
* Restore FPU state from a sigframe:
|
|
*/
|
|
int fpu__restore_sig(void __user *buf, int ia32_frame)
|
|
{
|
|
void __user *buf_fx = buf;
|
|
int size = xstate_sigframe_size();
|
|
|
|
if (ia32_frame && use_fxsr()) {
|
|
buf_fx = buf + sizeof(struct fregs_state);
|
|
size += sizeof(struct fregs_state);
|
|
}
|
|
|
|
return __fpu__restore_sig(buf, buf_fx, size);
|
|
}
|
|
|
|
unsigned long
|
|
fpu__alloc_mathframe(unsigned long sp, int ia32_frame,
|
|
unsigned long *buf_fx, unsigned long *size)
|
|
{
|
|
unsigned long frame_size = xstate_sigframe_size();
|
|
|
|
*buf_fx = sp = round_down(sp - frame_size, 64);
|
|
if (ia32_frame && use_fxsr()) {
|
|
frame_size += sizeof(struct fregs_state);
|
|
sp -= sizeof(struct fregs_state);
|
|
}
|
|
|
|
*size = frame_size;
|
|
|
|
return sp;
|
|
}
|
|
/*
|
|
* Prepare the SW reserved portion of the fxsave memory layout, indicating
|
|
* the presence of the extended state information in the memory layout
|
|
* pointed by the fpstate pointer in the sigcontext.
|
|
* This will be saved when ever the FP and extended state context is
|
|
* saved on the user stack during the signal handler delivery to the user.
|
|
*/
|
|
void fpu__init_prepare_fx_sw_frame(void)
|
|
{
|
|
int size = fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE;
|
|
|
|
fx_sw_reserved.magic1 = FP_XSTATE_MAGIC1;
|
|
fx_sw_reserved.extended_size = size;
|
|
fx_sw_reserved.xfeatures = xfeatures_mask_user();
|
|
fx_sw_reserved.xstate_size = fpu_user_xstate_size;
|
|
|
|
if (IS_ENABLED(CONFIG_IA32_EMULATION) ||
|
|
IS_ENABLED(CONFIG_X86_32)) {
|
|
int fsave_header_size = sizeof(struct fregs_state);
|
|
|
|
fx_sw_reserved_ia32 = fx_sw_reserved;
|
|
fx_sw_reserved_ia32.extended_size = size + fsave_header_size;
|
|
}
|
|
}
|
|
|