OpenCloudOS-Kernel/drivers/infiniband/hw/efa/efa_com.c

1089 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-2-Clause
/*
* Copyright 2018-2019 Amazon.com, Inc. or its affiliates. All rights reserved.
*/
#include "efa_com.h"
#include "efa_regs_defs.h"
#define ADMIN_CMD_TIMEOUT_US 30000000 /* usecs */
#define EFA_REG_READ_TIMEOUT_US 50000 /* usecs */
#define EFA_MMIO_READ_INVALID 0xffffffff
#define EFA_POLL_INTERVAL_MS 100 /* msecs */
#define EFA_ASYNC_QUEUE_DEPTH 16
#define EFA_ADMIN_QUEUE_DEPTH 32
#define MIN_EFA_VER\
((EFA_ADMIN_API_VERSION_MAJOR << EFA_REGS_VERSION_MAJOR_VERSION_SHIFT) | \
(EFA_ADMIN_API_VERSION_MINOR & EFA_REGS_VERSION_MINOR_VERSION_MASK))
#define EFA_CTRL_MAJOR 0
#define EFA_CTRL_MINOR 0
#define EFA_CTRL_SUB_MINOR 1
#define MIN_EFA_CTRL_VER \
(((EFA_CTRL_MAJOR) << \
(EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_SHIFT)) | \
((EFA_CTRL_MINOR) << \
(EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_SHIFT)) | \
(EFA_CTRL_SUB_MINOR))
#define EFA_DMA_ADDR_TO_UINT32_LOW(x) ((u32)((u64)(x)))
#define EFA_DMA_ADDR_TO_UINT32_HIGH(x) ((u32)(((u64)(x)) >> 32))
#define EFA_REGS_ADMIN_INTR_MASK 1
enum efa_cmd_status {
EFA_CMD_SUBMITTED,
EFA_CMD_COMPLETED,
};
struct efa_comp_ctx {
struct completion wait_event;
struct efa_admin_acq_entry *user_cqe;
u32 comp_size;
enum efa_cmd_status status;
/* status from the device */
u8 comp_status;
u8 cmd_opcode;
u8 occupied;
};
static const char *efa_com_cmd_str(u8 cmd)
{
#define EFA_CMD_STR_CASE(_cmd) case EFA_ADMIN_##_cmd: return #_cmd
switch (cmd) {
EFA_CMD_STR_CASE(CREATE_QP);
EFA_CMD_STR_CASE(MODIFY_QP);
EFA_CMD_STR_CASE(QUERY_QP);
EFA_CMD_STR_CASE(DESTROY_QP);
EFA_CMD_STR_CASE(CREATE_AH);
EFA_CMD_STR_CASE(DESTROY_AH);
EFA_CMD_STR_CASE(REG_MR);
EFA_CMD_STR_CASE(DEREG_MR);
EFA_CMD_STR_CASE(CREATE_CQ);
EFA_CMD_STR_CASE(DESTROY_CQ);
EFA_CMD_STR_CASE(GET_FEATURE);
EFA_CMD_STR_CASE(SET_FEATURE);
EFA_CMD_STR_CASE(GET_STATS);
EFA_CMD_STR_CASE(ALLOC_PD);
EFA_CMD_STR_CASE(DEALLOC_PD);
EFA_CMD_STR_CASE(ALLOC_UAR);
EFA_CMD_STR_CASE(DEALLOC_UAR);
default: return "unknown command opcode";
}
#undef EFA_CMD_STR_CASE
}
static u32 efa_com_reg_read32(struct efa_com_dev *edev, u16 offset)
{
struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
struct efa_admin_mmio_req_read_less_resp *read_resp;
unsigned long exp_time;
u32 mmio_read_reg;
u32 err;
read_resp = mmio_read->read_resp;
spin_lock(&mmio_read->lock);
mmio_read->seq_num++;
/* trash DMA req_id to identify when hardware is done */
read_resp->req_id = mmio_read->seq_num + 0x9aL;
mmio_read_reg = (offset << EFA_REGS_MMIO_REG_READ_REG_OFF_SHIFT) &
EFA_REGS_MMIO_REG_READ_REG_OFF_MASK;
mmio_read_reg |= mmio_read->seq_num &
EFA_REGS_MMIO_REG_READ_REQ_ID_MASK;
writel(mmio_read_reg, edev->reg_bar + EFA_REGS_MMIO_REG_READ_OFF);
exp_time = jiffies + usecs_to_jiffies(mmio_read->mmio_read_timeout);
do {
if (READ_ONCE(read_resp->req_id) == mmio_read->seq_num)
break;
udelay(1);
} while (time_is_after_jiffies(exp_time));
if (read_resp->req_id != mmio_read->seq_num) {
ibdev_err(edev->efa_dev,
"Reading register timed out. expected: req id[%u] offset[%#x] actual: req id[%u] offset[%#x]\n",
mmio_read->seq_num, offset, read_resp->req_id,
read_resp->reg_off);
err = EFA_MMIO_READ_INVALID;
goto out;
}
if (read_resp->reg_off != offset) {
ibdev_err(edev->efa_dev,
"Reading register failed: wrong offset provided\n");
err = EFA_MMIO_READ_INVALID;
goto out;
}
err = read_resp->reg_val;
out:
spin_unlock(&mmio_read->lock);
return err;
}
static int efa_com_admin_init_sq(struct efa_com_dev *edev)
{
struct efa_com_admin_queue *aq = &edev->aq;
struct efa_com_admin_sq *sq = &aq->sq;
u16 size = aq->depth * sizeof(*sq->entries);
u32 addr_high;
u32 addr_low;
u32 aq_caps;
sq->entries =
dma_alloc_coherent(aq->dmadev, size, &sq->dma_addr, GFP_KERNEL);
if (!sq->entries)
return -ENOMEM;
spin_lock_init(&sq->lock);
sq->cc = 0;
sq->pc = 0;
sq->phase = 1;
sq->db_addr = (u32 __iomem *)(edev->reg_bar + EFA_REGS_AQ_PROD_DB_OFF);
addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(sq->dma_addr);
addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(sq->dma_addr);
writel(addr_low, edev->reg_bar + EFA_REGS_AQ_BASE_LO_OFF);
writel(addr_high, edev->reg_bar + EFA_REGS_AQ_BASE_HI_OFF);
aq_caps = aq->depth & EFA_REGS_AQ_CAPS_AQ_DEPTH_MASK;
aq_caps |= (sizeof(struct efa_admin_aq_entry) <<
EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE_SHIFT) &
EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE_MASK;
writel(aq_caps, edev->reg_bar + EFA_REGS_AQ_CAPS_OFF);
return 0;
}
static int efa_com_admin_init_cq(struct efa_com_dev *edev)
{
struct efa_com_admin_queue *aq = &edev->aq;
struct efa_com_admin_cq *cq = &aq->cq;
u16 size = aq->depth * sizeof(*cq->entries);
u32 addr_high;
u32 addr_low;
u32 acq_caps;
cq->entries =
dma_alloc_coherent(aq->dmadev, size, &cq->dma_addr, GFP_KERNEL);
if (!cq->entries)
return -ENOMEM;
spin_lock_init(&cq->lock);
cq->cc = 0;
cq->phase = 1;
addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(cq->dma_addr);
addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(cq->dma_addr);
writel(addr_low, edev->reg_bar + EFA_REGS_ACQ_BASE_LO_OFF);
writel(addr_high, edev->reg_bar + EFA_REGS_ACQ_BASE_HI_OFF);
acq_caps = aq->depth & EFA_REGS_ACQ_CAPS_ACQ_DEPTH_MASK;
acq_caps |= (sizeof(struct efa_admin_acq_entry) <<
EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE_SHIFT) &
EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE_MASK;
acq_caps |= (aq->msix_vector_idx <<
EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR_SHIFT) &
EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR_MASK;
writel(acq_caps, edev->reg_bar + EFA_REGS_ACQ_CAPS_OFF);
return 0;
}
static int efa_com_admin_init_aenq(struct efa_com_dev *edev,
struct efa_aenq_handlers *aenq_handlers)
{
struct efa_com_aenq *aenq = &edev->aenq;
u32 addr_low, addr_high, aenq_caps;
u16 size;
if (!aenq_handlers) {
ibdev_err(edev->efa_dev, "aenq handlers pointer is NULL\n");
return -EINVAL;
}
size = EFA_ASYNC_QUEUE_DEPTH * sizeof(*aenq->entries);
aenq->entries = dma_alloc_coherent(edev->dmadev, size, &aenq->dma_addr,
GFP_KERNEL);
if (!aenq->entries)
return -ENOMEM;
aenq->aenq_handlers = aenq_handlers;
aenq->depth = EFA_ASYNC_QUEUE_DEPTH;
aenq->cc = 0;
aenq->phase = 1;
addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(aenq->dma_addr);
addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(aenq->dma_addr);
writel(addr_low, edev->reg_bar + EFA_REGS_AENQ_BASE_LO_OFF);
writel(addr_high, edev->reg_bar + EFA_REGS_AENQ_BASE_HI_OFF);
aenq_caps = aenq->depth & EFA_REGS_AENQ_CAPS_AENQ_DEPTH_MASK;
aenq_caps |= (sizeof(struct efa_admin_aenq_entry) <<
EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE_SHIFT) &
EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE_MASK;
aenq_caps |= (aenq->msix_vector_idx
<< EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR_SHIFT) &
EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR_MASK;
writel(aenq_caps, edev->reg_bar + EFA_REGS_AENQ_CAPS_OFF);
/*
* Init cons_db to mark that all entries in the queue
* are initially available
*/
writel(edev->aenq.cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF);
return 0;
}
/* ID to be used with efa_com_get_comp_ctx */
static u16 efa_com_alloc_ctx_id(struct efa_com_admin_queue *aq)
{
u16 ctx_id;
spin_lock(&aq->comp_ctx_lock);
ctx_id = aq->comp_ctx_pool[aq->comp_ctx_pool_next];
aq->comp_ctx_pool_next++;
spin_unlock(&aq->comp_ctx_lock);
return ctx_id;
}
static void efa_com_dealloc_ctx_id(struct efa_com_admin_queue *aq,
u16 ctx_id)
{
spin_lock(&aq->comp_ctx_lock);
aq->comp_ctx_pool_next--;
aq->comp_ctx_pool[aq->comp_ctx_pool_next] = ctx_id;
spin_unlock(&aq->comp_ctx_lock);
}
static inline void efa_com_put_comp_ctx(struct efa_com_admin_queue *aq,
struct efa_comp_ctx *comp_ctx)
{
u16 comp_id = comp_ctx->user_cqe->acq_common_descriptor.command &
EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID_MASK;
ibdev_dbg(aq->efa_dev, "Putting completion command_id %d\n", comp_id);
comp_ctx->occupied = 0;
efa_com_dealloc_ctx_id(aq, comp_id);
}
static struct efa_comp_ctx *efa_com_get_comp_ctx(struct efa_com_admin_queue *aq,
u16 command_id, bool capture)
{
if (command_id >= aq->depth) {
ibdev_err(aq->efa_dev,
"command id is larger than the queue size. cmd_id: %u queue size %d\n",
command_id, aq->depth);
return NULL;
}
if (aq->comp_ctx[command_id].occupied && capture) {
ibdev_err(aq->efa_dev, "Completion context is occupied\n");
return NULL;
}
if (capture) {
aq->comp_ctx[command_id].occupied = 1;
ibdev_dbg(aq->efa_dev, "Taking completion ctxt command_id %d\n",
command_id);
}
return &aq->comp_ctx[command_id];
}
static struct efa_comp_ctx *__efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq,
struct efa_admin_aq_entry *cmd,
size_t cmd_size_in_bytes,
struct efa_admin_acq_entry *comp,
size_t comp_size_in_bytes)
{
struct efa_comp_ctx *comp_ctx;
u16 queue_size_mask;
u16 ctx_id;
u16 pi;
queue_size_mask = aq->depth - 1;
pi = aq->sq.pc & queue_size_mask;
ctx_id = efa_com_alloc_ctx_id(aq);
cmd->aq_common_descriptor.flags |= aq->sq.phase &
EFA_ADMIN_AQ_COMMON_DESC_PHASE_MASK;
cmd->aq_common_descriptor.command_id |= ctx_id &
EFA_ADMIN_AQ_COMMON_DESC_COMMAND_ID_MASK;
comp_ctx = efa_com_get_comp_ctx(aq, ctx_id, true);
if (!comp_ctx) {
efa_com_dealloc_ctx_id(aq, ctx_id);
return ERR_PTR(-EINVAL);
}
comp_ctx->status = EFA_CMD_SUBMITTED;
comp_ctx->comp_size = comp_size_in_bytes;
comp_ctx->user_cqe = comp;
comp_ctx->cmd_opcode = cmd->aq_common_descriptor.opcode;
reinit_completion(&comp_ctx->wait_event);
memcpy(&aq->sq.entries[pi], cmd, cmd_size_in_bytes);
aq->sq.pc++;
atomic64_inc(&aq->stats.submitted_cmd);
if ((aq->sq.pc & queue_size_mask) == 0)
aq->sq.phase = !aq->sq.phase;
/* barrier not needed in case of writel */
writel(aq->sq.pc, aq->sq.db_addr);
return comp_ctx;
}
static inline int efa_com_init_comp_ctxt(struct efa_com_admin_queue *aq)
{
size_t pool_size = aq->depth * sizeof(*aq->comp_ctx_pool);
size_t size = aq->depth * sizeof(struct efa_comp_ctx);
struct efa_comp_ctx *comp_ctx;
u16 i;
aq->comp_ctx = devm_kzalloc(aq->dmadev, size, GFP_KERNEL);
aq->comp_ctx_pool = devm_kzalloc(aq->dmadev, pool_size, GFP_KERNEL);
if (!aq->comp_ctx || !aq->comp_ctx_pool) {
devm_kfree(aq->dmadev, aq->comp_ctx_pool);
devm_kfree(aq->dmadev, aq->comp_ctx);
return -ENOMEM;
}
for (i = 0; i < aq->depth; i++) {
comp_ctx = efa_com_get_comp_ctx(aq, i, false);
if (comp_ctx)
init_completion(&comp_ctx->wait_event);
aq->comp_ctx_pool[i] = i;
}
spin_lock_init(&aq->comp_ctx_lock);
aq->comp_ctx_pool_next = 0;
return 0;
}
static struct efa_comp_ctx *efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq,
struct efa_admin_aq_entry *cmd,
size_t cmd_size_in_bytes,
struct efa_admin_acq_entry *comp,
size_t comp_size_in_bytes)
{
struct efa_comp_ctx *comp_ctx;
spin_lock(&aq->sq.lock);
if (!test_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state)) {
ibdev_err(aq->efa_dev, "Admin queue is closed\n");
spin_unlock(&aq->sq.lock);
return ERR_PTR(-ENODEV);
}
comp_ctx = __efa_com_submit_admin_cmd(aq, cmd, cmd_size_in_bytes, comp,
comp_size_in_bytes);
spin_unlock(&aq->sq.lock);
if (IS_ERR(comp_ctx))
clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
return comp_ctx;
}
static void efa_com_handle_single_admin_completion(struct efa_com_admin_queue *aq,
struct efa_admin_acq_entry *cqe)
{
struct efa_comp_ctx *comp_ctx;
u16 cmd_id;
cmd_id = cqe->acq_common_descriptor.command &
EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID_MASK;
comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, false);
if (!comp_ctx) {
ibdev_err(aq->efa_dev,
"comp_ctx is NULL. Changing the admin queue running state\n");
clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
return;
}
comp_ctx->status = EFA_CMD_COMPLETED;
comp_ctx->comp_status = cqe->acq_common_descriptor.status;
if (comp_ctx->user_cqe)
memcpy(comp_ctx->user_cqe, cqe, comp_ctx->comp_size);
if (!test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state))
complete(&comp_ctx->wait_event);
}
static void efa_com_handle_admin_completion(struct efa_com_admin_queue *aq)
{
struct efa_admin_acq_entry *cqe;
u16 queue_size_mask;
u16 comp_num = 0;
u8 phase;
u16 ci;
queue_size_mask = aq->depth - 1;
ci = aq->cq.cc & queue_size_mask;
phase = aq->cq.phase;
cqe = &aq->cq.entries[ci];
/* Go over all the completions */
while ((READ_ONCE(cqe->acq_common_descriptor.flags) &
EFA_ADMIN_ACQ_COMMON_DESC_PHASE_MASK) == phase) {
/*
* Do not read the rest of the completion entry before the
* phase bit was validated
*/
dma_rmb();
efa_com_handle_single_admin_completion(aq, cqe);
ci++;
comp_num++;
if (ci == aq->depth) {
ci = 0;
phase = !phase;
}
cqe = &aq->cq.entries[ci];
}
aq->cq.cc += comp_num;
aq->cq.phase = phase;
aq->sq.cc += comp_num;
atomic64_add(comp_num, &aq->stats.completed_cmd);
}
static int efa_com_comp_status_to_errno(u8 comp_status)
{
switch (comp_status) {
case EFA_ADMIN_SUCCESS:
return 0;
case EFA_ADMIN_RESOURCE_ALLOCATION_FAILURE:
return -ENOMEM;
case EFA_ADMIN_UNSUPPORTED_OPCODE:
return -EOPNOTSUPP;
case EFA_ADMIN_BAD_OPCODE:
case EFA_ADMIN_MALFORMED_REQUEST:
case EFA_ADMIN_ILLEGAL_PARAMETER:
case EFA_ADMIN_UNKNOWN_ERROR:
return -EINVAL;
default:
return -EINVAL;
}
}
static int efa_com_wait_and_process_admin_cq_polling(struct efa_comp_ctx *comp_ctx,
struct efa_com_admin_queue *aq)
{
unsigned long timeout;
unsigned long flags;
int err;
timeout = jiffies + usecs_to_jiffies(aq->completion_timeout);
while (1) {
spin_lock_irqsave(&aq->cq.lock, flags);
efa_com_handle_admin_completion(aq);
spin_unlock_irqrestore(&aq->cq.lock, flags);
if (comp_ctx->status != EFA_CMD_SUBMITTED)
break;
if (time_is_before_jiffies(timeout)) {
ibdev_err(aq->efa_dev,
"Wait for completion (polling) timeout\n");
/* EFA didn't have any completion */
atomic64_inc(&aq->stats.no_completion);
clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
err = -ETIME;
goto out;
}
msleep(aq->poll_interval);
}
err = efa_com_comp_status_to_errno(comp_ctx->comp_status);
out:
efa_com_put_comp_ctx(aq, comp_ctx);
return err;
}
static int efa_com_wait_and_process_admin_cq_interrupts(struct efa_comp_ctx *comp_ctx,
struct efa_com_admin_queue *aq)
{
unsigned long flags;
int err;
wait_for_completion_timeout(&comp_ctx->wait_event,
usecs_to_jiffies(aq->completion_timeout));
/*
* In case the command wasn't completed find out the root cause.
* There might be 2 kinds of errors
* 1) No completion (timeout reached)
* 2) There is completion but the device didn't get any msi-x interrupt.
*/
if (comp_ctx->status == EFA_CMD_SUBMITTED) {
spin_lock_irqsave(&aq->cq.lock, flags);
efa_com_handle_admin_completion(aq);
spin_unlock_irqrestore(&aq->cq.lock, flags);
atomic64_inc(&aq->stats.no_completion);
if (comp_ctx->status == EFA_CMD_COMPLETED)
ibdev_err(aq->efa_dev,
"The device sent a completion but the driver didn't receive any MSI-X interrupt for admin cmd %s(%d) status %d (ctx: 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n",
efa_com_cmd_str(comp_ctx->cmd_opcode),
comp_ctx->cmd_opcode, comp_ctx->status,
comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc);
else
ibdev_err(aq->efa_dev,
"The device didn't send any completion for admin cmd %s(%d) status %d (ctx 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n",
efa_com_cmd_str(comp_ctx->cmd_opcode),
comp_ctx->cmd_opcode, comp_ctx->status,
comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc);
clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
err = -ETIME;
goto out;
}
err = efa_com_comp_status_to_errno(comp_ctx->comp_status);
out:
efa_com_put_comp_ctx(aq, comp_ctx);
return err;
}
/*
* There are two types to wait for completion.
* Polling mode - wait until the completion is available.
* Async mode - wait on wait queue until the completion is ready
* (or the timeout expired).
* It is expected that the IRQ called efa_com_handle_admin_completion
* to mark the completions.
*/
static int efa_com_wait_and_process_admin_cq(struct efa_comp_ctx *comp_ctx,
struct efa_com_admin_queue *aq)
{
if (test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state))
return efa_com_wait_and_process_admin_cq_polling(comp_ctx, aq);
return efa_com_wait_and_process_admin_cq_interrupts(comp_ctx, aq);
}
/**
* efa_com_cmd_exec - Execute admin command
* @aq: admin queue.
* @cmd: the admin command to execute.
* @cmd_size: the command size.
* @comp: command completion return entry.
* @comp_size: command completion size.
* Submit an admin command and then wait until the device will return a
* completion.
* The completion will be copied into comp.
*
* @return - 0 on success, negative value on failure.
*/
int efa_com_cmd_exec(struct efa_com_admin_queue *aq,
struct efa_admin_aq_entry *cmd,
size_t cmd_size,
struct efa_admin_acq_entry *comp,
size_t comp_size)
{
struct efa_comp_ctx *comp_ctx;
int err;
might_sleep();
/* In case of queue FULL */
down(&aq->avail_cmds);
ibdev_dbg(aq->efa_dev, "%s (opcode %d)\n",
efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
cmd->aq_common_descriptor.opcode);
comp_ctx = efa_com_submit_admin_cmd(aq, cmd, cmd_size, comp, comp_size);
if (IS_ERR(comp_ctx)) {
ibdev_err(aq->efa_dev,
"Failed to submit command %s (opcode %u) err %ld\n",
efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
cmd->aq_common_descriptor.opcode, PTR_ERR(comp_ctx));
up(&aq->avail_cmds);
return PTR_ERR(comp_ctx);
}
err = efa_com_wait_and_process_admin_cq(comp_ctx, aq);
if (err)
ibdev_err(aq->efa_dev,
"Failed to process command %s (opcode %u) comp_status %d err %d\n",
efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
cmd->aq_common_descriptor.opcode,
comp_ctx->comp_status, err);
up(&aq->avail_cmds);
return err;
}
/**
* efa_com_admin_destroy - Destroy the admin and the async events queues.
* @edev: EFA communication layer struct
*/
void efa_com_admin_destroy(struct efa_com_dev *edev)
{
struct efa_com_admin_queue *aq = &edev->aq;
struct efa_com_aenq *aenq = &edev->aenq;
struct efa_com_admin_cq *cq = &aq->cq;
struct efa_com_admin_sq *sq = &aq->sq;
u16 size;
clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
devm_kfree(edev->dmadev, aq->comp_ctx_pool);
devm_kfree(edev->dmadev, aq->comp_ctx);
size = aq->depth * sizeof(*sq->entries);
dma_free_coherent(edev->dmadev, size, sq->entries, sq->dma_addr);
size = aq->depth * sizeof(*cq->entries);
dma_free_coherent(edev->dmadev, size, cq->entries, cq->dma_addr);
size = aenq->depth * sizeof(*aenq->entries);
dma_free_coherent(edev->dmadev, size, aenq->entries, aenq->dma_addr);
}
/**
* efa_com_set_admin_polling_mode - Set the admin completion queue polling mode
* @edev: EFA communication layer struct
* @polling: Enable/Disable polling mode
*
* Set the admin completion mode.
*/
void efa_com_set_admin_polling_mode(struct efa_com_dev *edev, bool polling)
{
u32 mask_value = 0;
if (polling)
mask_value = EFA_REGS_ADMIN_INTR_MASK;
writel(mask_value, edev->reg_bar + EFA_REGS_INTR_MASK_OFF);
if (polling)
set_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state);
else
clear_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state);
}
static void efa_com_stats_init(struct efa_com_dev *edev)
{
atomic64_t *s = (atomic64_t *)&edev->aq.stats;
int i;
for (i = 0; i < sizeof(edev->aq.stats) / sizeof(*s); i++, s++)
atomic64_set(s, 0);
}
/**
* efa_com_admin_init - Init the admin and the async queues
* @edev: EFA communication layer struct
* @aenq_handlers: Those handlers to be called upon event.
*
* Initialize the admin submission and completion queues.
* Initialize the asynchronous events notification queues.
*
* @return - 0 on success, negative value on failure.
*/
int efa_com_admin_init(struct efa_com_dev *edev,
struct efa_aenq_handlers *aenq_handlers)
{
struct efa_com_admin_queue *aq = &edev->aq;
u32 timeout;
u32 dev_sts;
u32 cap;
int err;
dev_sts = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
if (!(dev_sts & EFA_REGS_DEV_STS_READY_MASK)) {
ibdev_err(edev->efa_dev,
"Device isn't ready, abort com init %#x\n", dev_sts);
return -ENODEV;
}
aq->depth = EFA_ADMIN_QUEUE_DEPTH;
aq->dmadev = edev->dmadev;
aq->efa_dev = edev->efa_dev;
set_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state);
sema_init(&aq->avail_cmds, aq->depth);
efa_com_stats_init(edev);
err = efa_com_init_comp_ctxt(aq);
if (err)
return err;
err = efa_com_admin_init_sq(edev);
if (err)
goto err_destroy_comp_ctxt;
err = efa_com_admin_init_cq(edev);
if (err)
goto err_destroy_sq;
efa_com_set_admin_polling_mode(edev, false);
err = efa_com_admin_init_aenq(edev, aenq_handlers);
if (err)
goto err_destroy_cq;
cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
timeout = (cap & EFA_REGS_CAPS_ADMIN_CMD_TO_MASK) >>
EFA_REGS_CAPS_ADMIN_CMD_TO_SHIFT;
if (timeout)
/* the resolution of timeout reg is 100ms */
aq->completion_timeout = timeout * 100000;
else
aq->completion_timeout = ADMIN_CMD_TIMEOUT_US;
aq->poll_interval = EFA_POLL_INTERVAL_MS;
set_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
return 0;
err_destroy_cq:
dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->cq.entries),
aq->cq.entries, aq->cq.dma_addr);
err_destroy_sq:
dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->sq.entries),
aq->sq.entries, aq->sq.dma_addr);
err_destroy_comp_ctxt:
devm_kfree(edev->dmadev, aq->comp_ctx);
return err;
}
/**
* efa_com_admin_q_comp_intr_handler - admin queue interrupt handler
* @edev: EFA communication layer struct
*
* This method goes over the admin completion queue and wakes up
* all the pending threads that wait on the commands wait event.
*
* @note: Should be called after MSI-X interrupt.
*/
void efa_com_admin_q_comp_intr_handler(struct efa_com_dev *edev)
{
unsigned long flags;
spin_lock_irqsave(&edev->aq.cq.lock, flags);
efa_com_handle_admin_completion(&edev->aq);
spin_unlock_irqrestore(&edev->aq.cq.lock, flags);
}
/*
* efa_handle_specific_aenq_event:
* return the handler that is relevant to the specific event group
*/
static efa_aenq_handler efa_com_get_specific_aenq_cb(struct efa_com_dev *edev,
u16 group)
{
struct efa_aenq_handlers *aenq_handlers = edev->aenq.aenq_handlers;
if (group < EFA_MAX_HANDLERS && aenq_handlers->handlers[group])
return aenq_handlers->handlers[group];
return aenq_handlers->unimplemented_handler;
}
/**
* efa_com_aenq_intr_handler - AENQ interrupt handler
* @edev: EFA communication layer struct
* @data: Data of interrupt handler.
*
* Go over the async event notification queue and call the proper aenq handler.
*/
void efa_com_aenq_intr_handler(struct efa_com_dev *edev, void *data)
{
struct efa_admin_aenq_common_desc *aenq_common;
struct efa_com_aenq *aenq = &edev->aenq;
struct efa_admin_aenq_entry *aenq_e;
efa_aenq_handler handler_cb;
u32 processed = 0;
u8 phase;
u32 ci;
ci = aenq->cc & (aenq->depth - 1);
phase = aenq->phase;
aenq_e = &aenq->entries[ci]; /* Get first entry */
aenq_common = &aenq_e->aenq_common_desc;
/* Go over all the events */
while ((READ_ONCE(aenq_common->flags) &
EFA_ADMIN_AENQ_COMMON_DESC_PHASE_MASK) == phase) {
/*
* Do not read the rest of the completion entry before the
* phase bit was validated
*/
dma_rmb();
/* Handle specific event*/
handler_cb = efa_com_get_specific_aenq_cb(edev,
aenq_common->group);
handler_cb(data, aenq_e); /* call the actual event handler*/
/* Get next event entry */
ci++;
processed++;
if (ci == aenq->depth) {
ci = 0;
phase = !phase;
}
aenq_e = &aenq->entries[ci];
aenq_common = &aenq_e->aenq_common_desc;
}
aenq->cc += processed;
aenq->phase = phase;
/* Don't update aenq doorbell if there weren't any processed events */
if (!processed)
return;
/* barrier not needed in case of writel */
writel(aenq->cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF);
}
static void efa_com_mmio_reg_read_resp_addr_init(struct efa_com_dev *edev)
{
struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
u32 addr_high;
u32 addr_low;
/* dma_addr_bits is unknown at this point */
addr_high = (mmio_read->read_resp_dma_addr >> 32) & GENMASK(31, 0);
addr_low = mmio_read->read_resp_dma_addr & GENMASK(31, 0);
writel(addr_high, edev->reg_bar + EFA_REGS_MMIO_RESP_HI_OFF);
writel(addr_low, edev->reg_bar + EFA_REGS_MMIO_RESP_LO_OFF);
}
int efa_com_mmio_reg_read_init(struct efa_com_dev *edev)
{
struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
spin_lock_init(&mmio_read->lock);
mmio_read->read_resp =
dma_alloc_coherent(edev->dmadev, sizeof(*mmio_read->read_resp),
&mmio_read->read_resp_dma_addr, GFP_KERNEL);
if (!mmio_read->read_resp)
return -ENOMEM;
efa_com_mmio_reg_read_resp_addr_init(edev);
mmio_read->read_resp->req_id = 0;
mmio_read->seq_num = 0;
mmio_read->mmio_read_timeout = EFA_REG_READ_TIMEOUT_US;
return 0;
}
void efa_com_mmio_reg_read_destroy(struct efa_com_dev *edev)
{
struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
dma_free_coherent(edev->dmadev, sizeof(*mmio_read->read_resp),
mmio_read->read_resp, mmio_read->read_resp_dma_addr);
}
int efa_com_validate_version(struct efa_com_dev *edev)
{
u32 ctrl_ver_masked;
u32 ctrl_ver;
u32 ver;
/*
* Make sure the EFA version and the controller version are at least
* as the driver expects
*/
ver = efa_com_reg_read32(edev, EFA_REGS_VERSION_OFF);
ctrl_ver = efa_com_reg_read32(edev,
EFA_REGS_CONTROLLER_VERSION_OFF);
ibdev_dbg(edev->efa_dev, "efa device version: %d.%d\n",
(ver & EFA_REGS_VERSION_MAJOR_VERSION_MASK) >>
EFA_REGS_VERSION_MAJOR_VERSION_SHIFT,
ver & EFA_REGS_VERSION_MINOR_VERSION_MASK);
if (ver < MIN_EFA_VER) {
ibdev_err(edev->efa_dev,
"EFA version is lower than the minimal version the driver supports\n");
return -EOPNOTSUPP;
}
ibdev_dbg(edev->efa_dev,
"efa controller version: %d.%d.%d implementation version %d\n",
(ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_MASK) >>
EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_SHIFT,
(ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_MASK) >>
EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_SHIFT,
(ctrl_ver & EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION_MASK),
(ctrl_ver & EFA_REGS_CONTROLLER_VERSION_IMPL_ID_MASK) >>
EFA_REGS_CONTROLLER_VERSION_IMPL_ID_SHIFT);
ctrl_ver_masked =
(ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_MASK) |
(ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_MASK) |
(ctrl_ver & EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION_MASK);
/* Validate the ctrl version without the implementation ID */
if (ctrl_ver_masked < MIN_EFA_CTRL_VER) {
ibdev_err(edev->efa_dev,
"EFA ctrl version is lower than the minimal ctrl version the driver supports\n");
return -EOPNOTSUPP;
}
return 0;
}
/**
* efa_com_get_dma_width - Retrieve physical dma address width the device
* supports.
* @edev: EFA communication layer struct
*
* Retrieve the maximum physical address bits the device can handle.
*
* @return: > 0 on Success and negative value otherwise.
*/
int efa_com_get_dma_width(struct efa_com_dev *edev)
{
u32 caps = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
int width;
width = (caps & EFA_REGS_CAPS_DMA_ADDR_WIDTH_MASK) >>
EFA_REGS_CAPS_DMA_ADDR_WIDTH_SHIFT;
ibdev_dbg(edev->efa_dev, "DMA width: %d\n", width);
if (width < 32 || width > 64) {
ibdev_err(edev->efa_dev, "DMA width illegal value: %d\n", width);
return -EINVAL;
}
edev->dma_addr_bits = width;
return width;
}
static int wait_for_reset_state(struct efa_com_dev *edev, u32 timeout,
u16 exp_state)
{
u32 val, i;
for (i = 0; i < timeout; i++) {
val = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
if ((val & EFA_REGS_DEV_STS_RESET_IN_PROGRESS_MASK) ==
exp_state)
return 0;
ibdev_dbg(edev->efa_dev, "Reset indication val %d\n", val);
msleep(EFA_POLL_INTERVAL_MS);
}
return -ETIME;
}
/**
* efa_com_dev_reset - Perform device FLR to the device.
* @edev: EFA communication layer struct
* @reset_reason: Specify what is the trigger for the reset in case of an error.
*
* @return - 0 on success, negative value on failure.
*/
int efa_com_dev_reset(struct efa_com_dev *edev,
enum efa_regs_reset_reason_types reset_reason)
{
u32 stat, timeout, cap, reset_val;
int err;
stat = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
if (!(stat & EFA_REGS_DEV_STS_READY_MASK)) {
ibdev_err(edev->efa_dev,
"Device isn't ready, can't reset device\n");
return -EINVAL;
}
timeout = (cap & EFA_REGS_CAPS_RESET_TIMEOUT_MASK) >>
EFA_REGS_CAPS_RESET_TIMEOUT_SHIFT;
if (!timeout) {
ibdev_err(edev->efa_dev, "Invalid timeout value\n");
return -EINVAL;
}
/* start reset */
reset_val = EFA_REGS_DEV_CTL_DEV_RESET_MASK;
reset_val |= (reset_reason << EFA_REGS_DEV_CTL_RESET_REASON_SHIFT) &
EFA_REGS_DEV_CTL_RESET_REASON_MASK;
writel(reset_val, edev->reg_bar + EFA_REGS_DEV_CTL_OFF);
/* reset clears the mmio readless address, restore it */
efa_com_mmio_reg_read_resp_addr_init(edev);
err = wait_for_reset_state(edev, timeout,
EFA_REGS_DEV_STS_RESET_IN_PROGRESS_MASK);
if (err) {
ibdev_err(edev->efa_dev, "Reset indication didn't turn on\n");
return err;
}
/* reset done */
writel(0, edev->reg_bar + EFA_REGS_DEV_CTL_OFF);
err = wait_for_reset_state(edev, timeout, 0);
if (err) {
ibdev_err(edev->efa_dev, "Reset indication didn't turn off\n");
return err;
}
timeout = (cap & EFA_REGS_CAPS_ADMIN_CMD_TO_MASK) >>
EFA_REGS_CAPS_ADMIN_CMD_TO_SHIFT;
if (timeout)
/* the resolution of timeout reg is 100ms */
edev->aq.completion_timeout = timeout * 100000;
else
edev->aq.completion_timeout = ADMIN_CMD_TIMEOUT_US;
return 0;
}