OpenCloudOS-Kernel/security/selinux/ss/avtab.c

516 lines
12 KiB
C

/*
* Implementation of the access vector table type.
*
* Author : Stephen Smalley, <sds@epoch.ncsc.mil>
*/
/* Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
*
* Added conditional policy language extensions
*
* Copyright (C) 2003 Tresys Technology, LLC
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*
* Updated: Yuichi Nakamura <ynakam@hitachisoft.jp>
* Tuned number of hash slots for avtab to reduce memory usage
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include "avtab.h"
#include "policydb.h"
static struct kmem_cache *avtab_node_cachep;
static inline int avtab_hash(struct avtab_key *keyp, u16 mask)
{
return ((keyp->target_class + (keyp->target_type << 2) +
(keyp->source_type << 9)) & mask);
}
static struct avtab_node*
avtab_insert_node(struct avtab *h, int hvalue,
struct avtab_node *prev, struct avtab_node *cur,
struct avtab_key *key, struct avtab_datum *datum)
{
struct avtab_node *newnode;
newnode = kmem_cache_zalloc(avtab_node_cachep, GFP_KERNEL);
if (newnode == NULL)
return NULL;
newnode->key = *key;
newnode->datum = *datum;
if (prev) {
newnode->next = prev->next;
prev->next = newnode;
} else {
newnode->next = h->htable[hvalue];
h->htable[hvalue] = newnode;
}
h->nel++;
return newnode;
}
static int avtab_insert(struct avtab *h, struct avtab_key *key, struct avtab_datum *datum)
{
int hvalue;
struct avtab_node *prev, *cur, *newnode;
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
if (!h || !h->htable)
return -EINVAL;
hvalue = avtab_hash(key, h->mask);
for (prev = NULL, cur = h->htable[hvalue];
cur;
prev = cur, cur = cur->next) {
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class == cur->key.target_class &&
(specified & cur->key.specified))
return -EEXIST;
if (key->source_type < cur->key.source_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type < cur->key.target_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class < cur->key.target_class)
break;
}
newnode = avtab_insert_node(h, hvalue, prev, cur, key, datum);
if (!newnode)
return -ENOMEM;
return 0;
}
/* Unlike avtab_insert(), this function allow multiple insertions of the same
* key/specified mask into the table, as needed by the conditional avtab.
* It also returns a pointer to the node inserted.
*/
struct avtab_node *
avtab_insert_nonunique(struct avtab *h, struct avtab_key *key, struct avtab_datum *datum)
{
int hvalue;
struct avtab_node *prev, *cur;
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
if (!h || !h->htable)
return NULL;
hvalue = avtab_hash(key, h->mask);
for (prev = NULL, cur = h->htable[hvalue];
cur;
prev = cur, cur = cur->next) {
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class == cur->key.target_class &&
(specified & cur->key.specified))
break;
if (key->source_type < cur->key.source_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type < cur->key.target_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class < cur->key.target_class)
break;
}
return avtab_insert_node(h, hvalue, prev, cur, key, datum);
}
struct avtab_datum *avtab_search(struct avtab *h, struct avtab_key *key)
{
int hvalue;
struct avtab_node *cur;
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
if (!h || !h->htable)
return NULL;
hvalue = avtab_hash(key, h->mask);
for (cur = h->htable[hvalue]; cur; cur = cur->next) {
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class == cur->key.target_class &&
(specified & cur->key.specified))
return &cur->datum;
if (key->source_type < cur->key.source_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type < cur->key.target_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class < cur->key.target_class)
break;
}
return NULL;
}
/* This search function returns a node pointer, and can be used in
* conjunction with avtab_search_next_node()
*/
struct avtab_node*
avtab_search_node(struct avtab *h, struct avtab_key *key)
{
int hvalue;
struct avtab_node *cur;
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
if (!h || !h->htable)
return NULL;
hvalue = avtab_hash(key, h->mask);
for (cur = h->htable[hvalue]; cur; cur = cur->next) {
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class == cur->key.target_class &&
(specified & cur->key.specified))
return cur;
if (key->source_type < cur->key.source_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type < cur->key.target_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class < cur->key.target_class)
break;
}
return NULL;
}
struct avtab_node*
avtab_search_node_next(struct avtab_node *node, int specified)
{
struct avtab_node *cur;
if (!node)
return NULL;
specified &= ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
for (cur = node->next; cur; cur = cur->next) {
if (node->key.source_type == cur->key.source_type &&
node->key.target_type == cur->key.target_type &&
node->key.target_class == cur->key.target_class &&
(specified & cur->key.specified))
return cur;
if (node->key.source_type < cur->key.source_type)
break;
if (node->key.source_type == cur->key.source_type &&
node->key.target_type < cur->key.target_type)
break;
if (node->key.source_type == cur->key.source_type &&
node->key.target_type == cur->key.target_type &&
node->key.target_class < cur->key.target_class)
break;
}
return NULL;
}
void avtab_destroy(struct avtab *h)
{
int i;
struct avtab_node *cur, *temp;
if (!h || !h->htable)
return;
for (i = 0; i < h->nslot; i++) {
cur = h->htable[i];
while (cur) {
temp = cur;
cur = cur->next;
kmem_cache_free(avtab_node_cachep, temp);
}
h->htable[i] = NULL;
}
kfree(h->htable);
h->htable = NULL;
h->nslot = 0;
h->mask = 0;
}
int avtab_init(struct avtab *h)
{
h->htable = NULL;
h->nel = 0;
return 0;
}
int avtab_alloc(struct avtab *h, u32 nrules)
{
u16 mask = 0;
u32 shift = 0;
u32 work = nrules;
u32 nslot = 0;
if (nrules == 0)
goto avtab_alloc_out;
while (work) {
work = work >> 1;
shift++;
}
if (shift > 2)
shift = shift - 2;
nslot = 1 << shift;
if (nslot > MAX_AVTAB_SIZE)
nslot = MAX_AVTAB_SIZE;
mask = nslot - 1;
h->htable = kcalloc(nslot, sizeof(*(h->htable)), GFP_KERNEL);
if (!h->htable)
return -ENOMEM;
avtab_alloc_out:
h->nel = 0;
h->nslot = nslot;
h->mask = mask;
printk(KERN_DEBUG "SELinux: %d avtab hash slots, %d rules.\n",
h->nslot, nrules);
return 0;
}
void avtab_hash_eval(struct avtab *h, char *tag)
{
int i, chain_len, slots_used, max_chain_len;
unsigned long long chain2_len_sum;
struct avtab_node *cur;
slots_used = 0;
max_chain_len = 0;
chain2_len_sum = 0;
for (i = 0; i < h->nslot; i++) {
cur = h->htable[i];
if (cur) {
slots_used++;
chain_len = 0;
while (cur) {
chain_len++;
cur = cur->next;
}
if (chain_len > max_chain_len)
max_chain_len = chain_len;
chain2_len_sum += chain_len * chain_len;
}
}
printk(KERN_DEBUG "SELinux: %s: %d entries and %d/%d buckets used, "
"longest chain length %d sum of chain length^2 %llu\n",
tag, h->nel, slots_used, h->nslot, max_chain_len,
chain2_len_sum);
}
static uint16_t spec_order[] = {
AVTAB_ALLOWED,
AVTAB_AUDITDENY,
AVTAB_AUDITALLOW,
AVTAB_TRANSITION,
AVTAB_CHANGE,
AVTAB_MEMBER
};
int avtab_read_item(struct avtab *a, void *fp, struct policydb *pol,
int (*insertf)(struct avtab *a, struct avtab_key *k,
struct avtab_datum *d, void *p),
void *p)
{
__le16 buf16[4];
u16 enabled;
__le32 buf32[7];
u32 items, items2, val, vers = pol->policyvers;
struct avtab_key key;
struct avtab_datum datum;
int i, rc;
unsigned set;
memset(&key, 0, sizeof(struct avtab_key));
memset(&datum, 0, sizeof(struct avtab_datum));
if (vers < POLICYDB_VERSION_AVTAB) {
rc = next_entry(buf32, fp, sizeof(u32));
if (rc < 0) {
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
return -1;
}
items2 = le32_to_cpu(buf32[0]);
if (items2 > ARRAY_SIZE(buf32)) {
printk(KERN_ERR "SELinux: avtab: entry overflow\n");
return -1;
}
rc = next_entry(buf32, fp, sizeof(u32)*items2);
if (rc < 0) {
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
return -1;
}
items = 0;
val = le32_to_cpu(buf32[items++]);
key.source_type = (u16)val;
if (key.source_type != val) {
printk(KERN_ERR "SELinux: avtab: truncated source type\n");
return -1;
}
val = le32_to_cpu(buf32[items++]);
key.target_type = (u16)val;
if (key.target_type != val) {
printk(KERN_ERR "SELinux: avtab: truncated target type\n");
return -1;
}
val = le32_to_cpu(buf32[items++]);
key.target_class = (u16)val;
if (key.target_class != val) {
printk(KERN_ERR "SELinux: avtab: truncated target class\n");
return -1;
}
val = le32_to_cpu(buf32[items++]);
enabled = (val & AVTAB_ENABLED_OLD) ? AVTAB_ENABLED : 0;
if (!(val & (AVTAB_AV | AVTAB_TYPE))) {
printk(KERN_ERR "SELinux: avtab: null entry\n");
return -1;
}
if ((val & AVTAB_AV) &&
(val & AVTAB_TYPE)) {
printk(KERN_ERR "SELinux: avtab: entry has both access vectors and types\n");
return -1;
}
for (i = 0; i < ARRAY_SIZE(spec_order); i++) {
if (val & spec_order[i]) {
key.specified = spec_order[i] | enabled;
datum.data = le32_to_cpu(buf32[items++]);
rc = insertf(a, &key, &datum, p);
if (rc)
return rc;
}
}
if (items != items2) {
printk(KERN_ERR "SELinux: avtab: entry only had %d items, expected %d\n", items2, items);
return -1;
}
return 0;
}
rc = next_entry(buf16, fp, sizeof(u16)*4);
if (rc < 0) {
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
return -1;
}
items = 0;
key.source_type = le16_to_cpu(buf16[items++]);
key.target_type = le16_to_cpu(buf16[items++]);
key.target_class = le16_to_cpu(buf16[items++]);
key.specified = le16_to_cpu(buf16[items++]);
if (!policydb_type_isvalid(pol, key.source_type) ||
!policydb_type_isvalid(pol, key.target_type) ||
!policydb_class_isvalid(pol, key.target_class)) {
printk(KERN_ERR "SELinux: avtab: invalid type or class\n");
return -1;
}
set = 0;
for (i = 0; i < ARRAY_SIZE(spec_order); i++) {
if (key.specified & spec_order[i])
set++;
}
if (!set || set > 1) {
printk(KERN_ERR "SELinux: avtab: more than one specifier\n");
return -1;
}
rc = next_entry(buf32, fp, sizeof(u32));
if (rc < 0) {
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
return -1;
}
datum.data = le32_to_cpu(*buf32);
if ((key.specified & AVTAB_TYPE) &&
!policydb_type_isvalid(pol, datum.data)) {
printk(KERN_ERR "SELinux: avtab: invalid type\n");
return -1;
}
return insertf(a, &key, &datum, p);
}
static int avtab_insertf(struct avtab *a, struct avtab_key *k,
struct avtab_datum *d, void *p)
{
return avtab_insert(a, k, d);
}
int avtab_read(struct avtab *a, void *fp, struct policydb *pol)
{
int rc;
__le32 buf[1];
u32 nel, i;
rc = next_entry(buf, fp, sizeof(u32));
if (rc < 0) {
printk(KERN_ERR "SELinux: avtab: truncated table\n");
goto bad;
}
nel = le32_to_cpu(buf[0]);
if (!nel) {
printk(KERN_ERR "SELinux: avtab: table is empty\n");
rc = -EINVAL;
goto bad;
}
rc = avtab_alloc(a, nel);
if (rc)
goto bad;
for (i = 0; i < nel; i++) {
rc = avtab_read_item(a, fp, pol, avtab_insertf, NULL);
if (rc) {
if (rc == -ENOMEM)
printk(KERN_ERR "SELinux: avtab: out of memory\n");
else if (rc == -EEXIST)
printk(KERN_ERR "SELinux: avtab: duplicate entry\n");
else
rc = -EINVAL;
goto bad;
}
}
rc = 0;
out:
return rc;
bad:
avtab_destroy(a);
goto out;
}
void avtab_cache_init(void)
{
avtab_node_cachep = kmem_cache_create("avtab_node",
sizeof(struct avtab_node),
0, SLAB_PANIC, NULL);
}
void avtab_cache_destroy(void)
{
kmem_cache_destroy(avtab_node_cachep);
}