OpenCloudOS-Kernel/fs/ubifs/debug.c

2701 lines
72 KiB
C

/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
*/
/*
* This file implements most of the debugging stuff which is compiled in only
* when it is enabled. But some debugging check functions are implemented in
* corresponding subsystem, just because they are closely related and utilize
* various local functions of those subsystems.
*/
#define UBIFS_DBG_PRESERVE_UBI
#include "ubifs.h"
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/debugfs.h>
#include <linux/math64.h>
#ifdef CONFIG_UBIFS_FS_DEBUG
DEFINE_SPINLOCK(dbg_lock);
static char dbg_key_buf0[128];
static char dbg_key_buf1[128];
unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
unsigned int ubifs_tst_flags;
module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
MODULE_PARM_DESC(debug_chks, "Debug check flags");
MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
static const char *get_key_fmt(int fmt)
{
switch (fmt) {
case UBIFS_SIMPLE_KEY_FMT:
return "simple";
default:
return "unknown/invalid format";
}
}
static const char *get_key_hash(int hash)
{
switch (hash) {
case UBIFS_KEY_HASH_R5:
return "R5";
case UBIFS_KEY_HASH_TEST:
return "test";
default:
return "unknown/invalid name hash";
}
}
static const char *get_key_type(int type)
{
switch (type) {
case UBIFS_INO_KEY:
return "inode";
case UBIFS_DENT_KEY:
return "direntry";
case UBIFS_XENT_KEY:
return "xentry";
case UBIFS_DATA_KEY:
return "data";
case UBIFS_TRUN_KEY:
return "truncate";
default:
return "unknown/invalid key";
}
}
static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
char *buffer)
{
char *p = buffer;
int type = key_type(c, key);
if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
switch (type) {
case UBIFS_INO_KEY:
sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
get_key_type(type));
break;
case UBIFS_DENT_KEY:
case UBIFS_XENT_KEY:
sprintf(p, "(%lu, %s, %#08x)",
(unsigned long)key_inum(c, key),
get_key_type(type), key_hash(c, key));
break;
case UBIFS_DATA_KEY:
sprintf(p, "(%lu, %s, %u)",
(unsigned long)key_inum(c, key),
get_key_type(type), key_block(c, key));
break;
case UBIFS_TRUN_KEY:
sprintf(p, "(%lu, %s)",
(unsigned long)key_inum(c, key),
get_key_type(type));
break;
default:
sprintf(p, "(bad key type: %#08x, %#08x)",
key->u32[0], key->u32[1]);
}
} else
sprintf(p, "bad key format %d", c->key_fmt);
}
const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
{
/* dbg_lock must be held */
sprintf_key(c, key, dbg_key_buf0);
return dbg_key_buf0;
}
const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
{
/* dbg_lock must be held */
sprintf_key(c, key, dbg_key_buf1);
return dbg_key_buf1;
}
const char *dbg_ntype(int type)
{
switch (type) {
case UBIFS_PAD_NODE:
return "padding node";
case UBIFS_SB_NODE:
return "superblock node";
case UBIFS_MST_NODE:
return "master node";
case UBIFS_REF_NODE:
return "reference node";
case UBIFS_INO_NODE:
return "inode node";
case UBIFS_DENT_NODE:
return "direntry node";
case UBIFS_XENT_NODE:
return "xentry node";
case UBIFS_DATA_NODE:
return "data node";
case UBIFS_TRUN_NODE:
return "truncate node";
case UBIFS_IDX_NODE:
return "indexing node";
case UBIFS_CS_NODE:
return "commit start node";
case UBIFS_ORPH_NODE:
return "orphan node";
default:
return "unknown node";
}
}
static const char *dbg_gtype(int type)
{
switch (type) {
case UBIFS_NO_NODE_GROUP:
return "no node group";
case UBIFS_IN_NODE_GROUP:
return "in node group";
case UBIFS_LAST_OF_NODE_GROUP:
return "last of node group";
default:
return "unknown";
}
}
const char *dbg_cstate(int cmt_state)
{
switch (cmt_state) {
case COMMIT_RESTING:
return "commit resting";
case COMMIT_BACKGROUND:
return "background commit requested";
case COMMIT_REQUIRED:
return "commit required";
case COMMIT_RUNNING_BACKGROUND:
return "BACKGROUND commit running";
case COMMIT_RUNNING_REQUIRED:
return "commit running and required";
case COMMIT_BROKEN:
return "broken commit";
default:
return "unknown commit state";
}
}
const char *dbg_jhead(int jhead)
{
switch (jhead) {
case GCHD:
return "0 (GC)";
case BASEHD:
return "1 (base)";
case DATAHD:
return "2 (data)";
default:
return "unknown journal head";
}
}
static void dump_ch(const struct ubifs_ch *ch)
{
printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
dbg_ntype(ch->node_type));
printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
dbg_gtype(ch->group_type));
printk(KERN_DEBUG "\tsqnum %llu\n",
(unsigned long long)le64_to_cpu(ch->sqnum));
printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
}
void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
{
const struct ubifs_inode *ui = ubifs_inode(inode);
printk(KERN_DEBUG "Dump in-memory inode:");
printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
printk(KERN_DEBUG "\tsize %llu\n",
(unsigned long long)i_size_read(inode));
printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
printk(KERN_DEBUG "\tatime %u.%u\n",
(unsigned int)inode->i_atime.tv_sec,
(unsigned int)inode->i_atime.tv_nsec);
printk(KERN_DEBUG "\tmtime %u.%u\n",
(unsigned int)inode->i_mtime.tv_sec,
(unsigned int)inode->i_mtime.tv_nsec);
printk(KERN_DEBUG "\tctime %u.%u\n",
(unsigned int)inode->i_ctime.tv_sec,
(unsigned int)inode->i_ctime.tv_nsec);
printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
printk(KERN_DEBUG "\tsynced_i_size %llu\n",
(unsigned long long)ui->synced_i_size);
printk(KERN_DEBUG "\tui_size %llu\n",
(unsigned long long)ui->ui_size);
printk(KERN_DEBUG "\tflags %d\n", ui->flags);
printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
}
void dbg_dump_node(const struct ubifs_info *c, const void *node)
{
int i, n;
union ubifs_key key;
const struct ubifs_ch *ch = node;
if (dbg_failure_mode)
return;
/* If the magic is incorrect, just hexdump the first bytes */
if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
(void *)node, UBIFS_CH_SZ, 1);
return;
}
spin_lock(&dbg_lock);
dump_ch(node);
switch (ch->node_type) {
case UBIFS_PAD_NODE:
{
const struct ubifs_pad_node *pad = node;
printk(KERN_DEBUG "\tpad_len %u\n",
le32_to_cpu(pad->pad_len));
break;
}
case UBIFS_SB_NODE:
{
const struct ubifs_sb_node *sup = node;
unsigned int sup_flags = le32_to_cpu(sup->flags);
printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
(int)sup->key_hash, get_key_hash(sup->key_hash));
printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
(int)sup->key_fmt, get_key_fmt(sup->key_fmt));
printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
printk(KERN_DEBUG "\t big_lpt %u\n",
!!(sup_flags & UBIFS_FLG_BIGLPT));
printk(KERN_DEBUG "\tmin_io_size %u\n",
le32_to_cpu(sup->min_io_size));
printk(KERN_DEBUG "\tleb_size %u\n",
le32_to_cpu(sup->leb_size));
printk(KERN_DEBUG "\tleb_cnt %u\n",
le32_to_cpu(sup->leb_cnt));
printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
le32_to_cpu(sup->max_leb_cnt));
printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
(unsigned long long)le64_to_cpu(sup->max_bud_bytes));
printk(KERN_DEBUG "\tlog_lebs %u\n",
le32_to_cpu(sup->log_lebs));
printk(KERN_DEBUG "\tlpt_lebs %u\n",
le32_to_cpu(sup->lpt_lebs));
printk(KERN_DEBUG "\torph_lebs %u\n",
le32_to_cpu(sup->orph_lebs));
printk(KERN_DEBUG "\tjhead_cnt %u\n",
le32_to_cpu(sup->jhead_cnt));
printk(KERN_DEBUG "\tfanout %u\n",
le32_to_cpu(sup->fanout));
printk(KERN_DEBUG "\tlsave_cnt %u\n",
le32_to_cpu(sup->lsave_cnt));
printk(KERN_DEBUG "\tdefault_compr %u\n",
(int)le16_to_cpu(sup->default_compr));
printk(KERN_DEBUG "\trp_size %llu\n",
(unsigned long long)le64_to_cpu(sup->rp_size));
printk(KERN_DEBUG "\trp_uid %u\n",
le32_to_cpu(sup->rp_uid));
printk(KERN_DEBUG "\trp_gid %u\n",
le32_to_cpu(sup->rp_gid));
printk(KERN_DEBUG "\tfmt_version %u\n",
le32_to_cpu(sup->fmt_version));
printk(KERN_DEBUG "\ttime_gran %u\n",
le32_to_cpu(sup->time_gran));
printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X"
"-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
sup->uuid[12], sup->uuid[13], sup->uuid[14],
sup->uuid[15]);
break;
}
case UBIFS_MST_NODE:
{
const struct ubifs_mst_node *mst = node;
printk(KERN_DEBUG "\thighest_inum %llu\n",
(unsigned long long)le64_to_cpu(mst->highest_inum));
printk(KERN_DEBUG "\tcommit number %llu\n",
(unsigned long long)le64_to_cpu(mst->cmt_no));
printk(KERN_DEBUG "\tflags %#x\n",
le32_to_cpu(mst->flags));
printk(KERN_DEBUG "\tlog_lnum %u\n",
le32_to_cpu(mst->log_lnum));
printk(KERN_DEBUG "\troot_lnum %u\n",
le32_to_cpu(mst->root_lnum));
printk(KERN_DEBUG "\troot_offs %u\n",
le32_to_cpu(mst->root_offs));
printk(KERN_DEBUG "\troot_len %u\n",
le32_to_cpu(mst->root_len));
printk(KERN_DEBUG "\tgc_lnum %u\n",
le32_to_cpu(mst->gc_lnum));
printk(KERN_DEBUG "\tihead_lnum %u\n",
le32_to_cpu(mst->ihead_lnum));
printk(KERN_DEBUG "\tihead_offs %u\n",
le32_to_cpu(mst->ihead_offs));
printk(KERN_DEBUG "\tindex_size %llu\n",
(unsigned long long)le64_to_cpu(mst->index_size));
printk(KERN_DEBUG "\tlpt_lnum %u\n",
le32_to_cpu(mst->lpt_lnum));
printk(KERN_DEBUG "\tlpt_offs %u\n",
le32_to_cpu(mst->lpt_offs));
printk(KERN_DEBUG "\tnhead_lnum %u\n",
le32_to_cpu(mst->nhead_lnum));
printk(KERN_DEBUG "\tnhead_offs %u\n",
le32_to_cpu(mst->nhead_offs));
printk(KERN_DEBUG "\tltab_lnum %u\n",
le32_to_cpu(mst->ltab_lnum));
printk(KERN_DEBUG "\tltab_offs %u\n",
le32_to_cpu(mst->ltab_offs));
printk(KERN_DEBUG "\tlsave_lnum %u\n",
le32_to_cpu(mst->lsave_lnum));
printk(KERN_DEBUG "\tlsave_offs %u\n",
le32_to_cpu(mst->lsave_offs));
printk(KERN_DEBUG "\tlscan_lnum %u\n",
le32_to_cpu(mst->lscan_lnum));
printk(KERN_DEBUG "\tleb_cnt %u\n",
le32_to_cpu(mst->leb_cnt));
printk(KERN_DEBUG "\tempty_lebs %u\n",
le32_to_cpu(mst->empty_lebs));
printk(KERN_DEBUG "\tidx_lebs %u\n",
le32_to_cpu(mst->idx_lebs));
printk(KERN_DEBUG "\ttotal_free %llu\n",
(unsigned long long)le64_to_cpu(mst->total_free));
printk(KERN_DEBUG "\ttotal_dirty %llu\n",
(unsigned long long)le64_to_cpu(mst->total_dirty));
printk(KERN_DEBUG "\ttotal_used %llu\n",
(unsigned long long)le64_to_cpu(mst->total_used));
printk(KERN_DEBUG "\ttotal_dead %llu\n",
(unsigned long long)le64_to_cpu(mst->total_dead));
printk(KERN_DEBUG "\ttotal_dark %llu\n",
(unsigned long long)le64_to_cpu(mst->total_dark));
break;
}
case UBIFS_REF_NODE:
{
const struct ubifs_ref_node *ref = node;
printk(KERN_DEBUG "\tlnum %u\n",
le32_to_cpu(ref->lnum));
printk(KERN_DEBUG "\toffs %u\n",
le32_to_cpu(ref->offs));
printk(KERN_DEBUG "\tjhead %u\n",
le32_to_cpu(ref->jhead));
break;
}
case UBIFS_INO_NODE:
{
const struct ubifs_ino_node *ino = node;
key_read(c, &ino->key, &key);
printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
(unsigned long long)le64_to_cpu(ino->creat_sqnum));
printk(KERN_DEBUG "\tsize %llu\n",
(unsigned long long)le64_to_cpu(ino->size));
printk(KERN_DEBUG "\tnlink %u\n",
le32_to_cpu(ino->nlink));
printk(KERN_DEBUG "\tatime %lld.%u\n",
(long long)le64_to_cpu(ino->atime_sec),
le32_to_cpu(ino->atime_nsec));
printk(KERN_DEBUG "\tmtime %lld.%u\n",
(long long)le64_to_cpu(ino->mtime_sec),
le32_to_cpu(ino->mtime_nsec));
printk(KERN_DEBUG "\tctime %lld.%u\n",
(long long)le64_to_cpu(ino->ctime_sec),
le32_to_cpu(ino->ctime_nsec));
printk(KERN_DEBUG "\tuid %u\n",
le32_to_cpu(ino->uid));
printk(KERN_DEBUG "\tgid %u\n",
le32_to_cpu(ino->gid));
printk(KERN_DEBUG "\tmode %u\n",
le32_to_cpu(ino->mode));
printk(KERN_DEBUG "\tflags %#x\n",
le32_to_cpu(ino->flags));
printk(KERN_DEBUG "\txattr_cnt %u\n",
le32_to_cpu(ino->xattr_cnt));
printk(KERN_DEBUG "\txattr_size %u\n",
le32_to_cpu(ino->xattr_size));
printk(KERN_DEBUG "\txattr_names %u\n",
le32_to_cpu(ino->xattr_names));
printk(KERN_DEBUG "\tcompr_type %#x\n",
(int)le16_to_cpu(ino->compr_type));
printk(KERN_DEBUG "\tdata len %u\n",
le32_to_cpu(ino->data_len));
break;
}
case UBIFS_DENT_NODE:
case UBIFS_XENT_NODE:
{
const struct ubifs_dent_node *dent = node;
int nlen = le16_to_cpu(dent->nlen);
key_read(c, &dent->key, &key);
printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
printk(KERN_DEBUG "\tinum %llu\n",
(unsigned long long)le64_to_cpu(dent->inum));
printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
printk(KERN_DEBUG "\tnlen %d\n", nlen);
printk(KERN_DEBUG "\tname ");
if (nlen > UBIFS_MAX_NLEN)
printk(KERN_DEBUG "(bad name length, not printing, "
"bad or corrupted node)");
else {
for (i = 0; i < nlen && dent->name[i]; i++)
printk(KERN_CONT "%c", dent->name[i]);
}
printk(KERN_CONT "\n");
break;
}
case UBIFS_DATA_NODE:
{
const struct ubifs_data_node *dn = node;
int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
key_read(c, &dn->key, &key);
printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
printk(KERN_DEBUG "\tsize %u\n",
le32_to_cpu(dn->size));
printk(KERN_DEBUG "\tcompr_typ %d\n",
(int)le16_to_cpu(dn->compr_type));
printk(KERN_DEBUG "\tdata size %d\n",
dlen);
printk(KERN_DEBUG "\tdata:\n");
print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
(void *)&dn->data, dlen, 0);
break;
}
case UBIFS_TRUN_NODE:
{
const struct ubifs_trun_node *trun = node;
printk(KERN_DEBUG "\tinum %u\n",
le32_to_cpu(trun->inum));
printk(KERN_DEBUG "\told_size %llu\n",
(unsigned long long)le64_to_cpu(trun->old_size));
printk(KERN_DEBUG "\tnew_size %llu\n",
(unsigned long long)le64_to_cpu(trun->new_size));
break;
}
case UBIFS_IDX_NODE:
{
const struct ubifs_idx_node *idx = node;
n = le16_to_cpu(idx->child_cnt);
printk(KERN_DEBUG "\tchild_cnt %d\n", n);
printk(KERN_DEBUG "\tlevel %d\n",
(int)le16_to_cpu(idx->level));
printk(KERN_DEBUG "\tBranches:\n");
for (i = 0; i < n && i < c->fanout - 1; i++) {
const struct ubifs_branch *br;
br = ubifs_idx_branch(c, idx, i);
key_read(c, &br->key, &key);
printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
le32_to_cpu(br->len), DBGKEY(&key));
}
break;
}
case UBIFS_CS_NODE:
break;
case UBIFS_ORPH_NODE:
{
const struct ubifs_orph_node *orph = node;
printk(KERN_DEBUG "\tcommit number %llu\n",
(unsigned long long)
le64_to_cpu(orph->cmt_no) & LLONG_MAX);
printk(KERN_DEBUG "\tlast node flag %llu\n",
(unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
for (i = 0; i < n; i++)
printk(KERN_DEBUG "\t ino %llu\n",
(unsigned long long)le64_to_cpu(orph->inos[i]));
break;
}
default:
printk(KERN_DEBUG "node type %d was not recognized\n",
(int)ch->node_type);
}
spin_unlock(&dbg_lock);
}
void dbg_dump_budget_req(const struct ubifs_budget_req *req)
{
spin_lock(&dbg_lock);
printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
req->new_ino, req->dirtied_ino);
printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
req->new_ino_d, req->dirtied_ino_d);
printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
req->new_page, req->dirtied_page);
printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
req->new_dent, req->mod_dent);
printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
req->data_growth, req->dd_growth);
spin_unlock(&dbg_lock);
}
void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
{
spin_lock(&dbg_lock);
printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
"idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
"total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
lst->total_dirty);
printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
"total_dead %lld\n", lst->total_used, lst->total_dark,
lst->total_dead);
spin_unlock(&dbg_lock);
}
void dbg_dump_budg(struct ubifs_info *c)
{
int i;
struct rb_node *rb;
struct ubifs_bud *bud;
struct ubifs_gced_idx_leb *idx_gc;
long long available, outstanding, free;
ubifs_assert(spin_is_locked(&c->space_lock));
spin_lock(&dbg_lock);
printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
"budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
"freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
c->freeable_cnt);
printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
"calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
"clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
atomic_long_read(&c->dirty_zn_cnt),
atomic_long_read(&c->clean_zn_cnt));
printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
c->dark_wm, c->dead_wm, c->max_idx_node_sz);
printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
c->gc_lnum, c->ihead_lnum);
/* If we are in R/O mode, journal heads do not exist */
if (c->jheads)
for (i = 0; i < c->jhead_cnt; i++)
printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
dbg_jhead(c->jheads[i].wbuf.jhead),
c->jheads[i].wbuf.lnum);
for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
bud = rb_entry(rb, struct ubifs_bud, rb);
printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
}
list_for_each_entry(bud, &c->old_buds, list)
printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
list_for_each_entry(idx_gc, &c->idx_gc, list)
printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
idx_gc->lnum, idx_gc->unmap);
printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
/* Print budgeting predictions */
available = ubifs_calc_available(c, c->min_idx_lebs);
outstanding = c->budg_data_growth + c->budg_dd_growth;
free = ubifs_get_free_space_nolock(c);
printk(KERN_DEBUG "Budgeting predictions:\n");
printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
available, outstanding, free);
spin_unlock(&dbg_lock);
}
void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
{
int i, spc, dark = 0, dead = 0;
struct rb_node *rb;
struct ubifs_bud *bud;
spc = lp->free + lp->dirty;
if (spc < c->dead_wm)
dead = spc;
else
dark = ubifs_calc_dark(c, spc);
if (lp->flags & LPROPS_INDEX)
printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
"free + dirty %-8d flags %#x (", lp->lnum, lp->free,
lp->dirty, c->leb_size - spc, spc, lp->flags);
else
printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
"free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
"flags %#-4x (", lp->lnum, lp->free, lp->dirty,
c->leb_size - spc, spc, dark, dead,
(int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
if (lp->flags & LPROPS_TAKEN) {
if (lp->flags & LPROPS_INDEX)
printk(KERN_CONT "index, taken");
else
printk(KERN_CONT "taken");
} else {
const char *s;
if (lp->flags & LPROPS_INDEX) {
switch (lp->flags & LPROPS_CAT_MASK) {
case LPROPS_DIRTY_IDX:
s = "dirty index";
break;
case LPROPS_FRDI_IDX:
s = "freeable index";
break;
default:
s = "index";
}
} else {
switch (lp->flags & LPROPS_CAT_MASK) {
case LPROPS_UNCAT:
s = "not categorized";
break;
case LPROPS_DIRTY:
s = "dirty";
break;
case LPROPS_FREE:
s = "free";
break;
case LPROPS_EMPTY:
s = "empty";
break;
case LPROPS_FREEABLE:
s = "freeable";
break;
default:
s = NULL;
break;
}
}
printk(KERN_CONT "%s", s);
}
for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
bud = rb_entry(rb, struct ubifs_bud, rb);
if (bud->lnum == lp->lnum) {
int head = 0;
for (i = 0; i < c->jhead_cnt; i++) {
if (lp->lnum == c->jheads[i].wbuf.lnum) {
printk(KERN_CONT ", jhead %s",
dbg_jhead(i));
head = 1;
}
}
if (!head)
printk(KERN_CONT ", bud of jhead %s",
dbg_jhead(bud->jhead));
}
}
if (lp->lnum == c->gc_lnum)
printk(KERN_CONT ", GC LEB");
printk(KERN_CONT ")\n");
}
void dbg_dump_lprops(struct ubifs_info *c)
{
int lnum, err;
struct ubifs_lprops lp;
struct ubifs_lp_stats lst;
printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
current->pid);
ubifs_get_lp_stats(c, &lst);
dbg_dump_lstats(&lst);
for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
err = ubifs_read_one_lp(c, lnum, &lp);
if (err)
ubifs_err("cannot read lprops for LEB %d", lnum);
dbg_dump_lprop(c, &lp);
}
printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
current->pid);
}
void dbg_dump_lpt_info(struct ubifs_info *c)
{
int i;
spin_lock(&dbg_lock);
printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
c->nhead_lnum, c->nhead_offs);
printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
c->ltab_lnum, c->ltab_offs);
if (c->big_lpt)
printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
c->lsave_lnum, c->lsave_offs);
for (i = 0; i < c->lpt_lebs; i++)
printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
"cmt %d\n", i + c->lpt_first, c->ltab[i].free,
c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
spin_unlock(&dbg_lock);
}
void dbg_dump_leb(const struct ubifs_info *c, int lnum)
{
struct ubifs_scan_leb *sleb;
struct ubifs_scan_node *snod;
if (dbg_failure_mode)
return;
printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
current->pid, lnum);
sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
if (IS_ERR(sleb)) {
ubifs_err("scan error %d", (int)PTR_ERR(sleb));
return;
}
printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
sleb->nodes_cnt, sleb->endpt);
list_for_each_entry(snod, &sleb->nodes, list) {
cond_resched();
printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
snod->offs, snod->len);
dbg_dump_node(c, snod->node);
}
printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
current->pid, lnum);
ubifs_scan_destroy(sleb);
return;
}
void dbg_dump_znode(const struct ubifs_info *c,
const struct ubifs_znode *znode)
{
int n;
const struct ubifs_zbranch *zbr;
spin_lock(&dbg_lock);
if (znode->parent)
zbr = &znode->parent->zbranch[znode->iip];
else
zbr = &c->zroot;
printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
" child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
zbr->len, znode->parent, znode->iip, znode->level,
znode->child_cnt, znode->flags);
if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
spin_unlock(&dbg_lock);
return;
}
printk(KERN_DEBUG "zbranches:\n");
for (n = 0; n < znode->child_cnt; n++) {
zbr = &znode->zbranch[n];
if (znode->level > 0)
printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
"%s\n", n, zbr->znode, zbr->lnum,
zbr->offs, zbr->len,
DBGKEY(&zbr->key));
else
printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
"%s\n", n, zbr->znode, zbr->lnum,
zbr->offs, zbr->len,
DBGKEY(&zbr->key));
}
spin_unlock(&dbg_lock);
}
void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
{
int i;
printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
current->pid, cat, heap->cnt);
for (i = 0; i < heap->cnt; i++) {
struct ubifs_lprops *lprops = heap->arr[i];
printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
"flags %d\n", i, lprops->lnum, lprops->hpos,
lprops->free, lprops->dirty, lprops->flags);
}
printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
}
void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
struct ubifs_nnode *parent, int iip)
{
int i;
printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
(size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
pnode->flags, iip, pnode->level, pnode->num);
for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
struct ubifs_lprops *lp = &pnode->lprops[i];
printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
i, lp->free, lp->dirty, lp->flags, lp->lnum);
}
}
void dbg_dump_tnc(struct ubifs_info *c)
{
struct ubifs_znode *znode;
int level;
printk(KERN_DEBUG "\n");
printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
level = znode->level;
printk(KERN_DEBUG "== Level %d ==\n", level);
while (znode) {
if (level != znode->level) {
level = znode->level;
printk(KERN_DEBUG "== Level %d ==\n", level);
}
dbg_dump_znode(c, znode);
znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
}
printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
}
static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
void *priv)
{
dbg_dump_znode(c, znode);
return 0;
}
/**
* dbg_dump_index - dump the on-flash index.
* @c: UBIFS file-system description object
*
* This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
* which dumps only in-memory znodes and does not read znodes which from flash.
*/
void dbg_dump_index(struct ubifs_info *c)
{
dbg_walk_index(c, NULL, dump_znode, NULL);
}
/**
* dbg_save_space_info - save information about flash space.
* @c: UBIFS file-system description object
*
* This function saves information about UBIFS free space, dirty space, etc, in
* order to check it later.
*/
void dbg_save_space_info(struct ubifs_info *c)
{
struct ubifs_debug_info *d = c->dbg;
ubifs_get_lp_stats(c, &d->saved_lst);
spin_lock(&c->space_lock);
d->saved_free = ubifs_get_free_space_nolock(c);
spin_unlock(&c->space_lock);
}
/**
* dbg_check_space_info - check flash space information.
* @c: UBIFS file-system description object
*
* This function compares current flash space information with the information
* which was saved when the 'dbg_save_space_info()' function was called.
* Returns zero if the information has not changed, and %-EINVAL it it has
* changed.
*/
int dbg_check_space_info(struct ubifs_info *c)
{
struct ubifs_debug_info *d = c->dbg;
struct ubifs_lp_stats lst;
long long avail, free;
spin_lock(&c->space_lock);
avail = ubifs_calc_available(c, c->min_idx_lebs);
spin_unlock(&c->space_lock);
free = ubifs_get_free_space(c);
if (free != d->saved_free) {
ubifs_err("free space changed from %lld to %lld",
d->saved_free, free);
goto out;
}
return 0;
out:
ubifs_msg("saved lprops statistics dump");
dbg_dump_lstats(&d->saved_lst);
ubifs_get_lp_stats(c, &lst);
ubifs_msg("current lprops statistics dump");
dbg_dump_lstats(&lst);
spin_lock(&c->space_lock);
dbg_dump_budg(c);
spin_unlock(&c->space_lock);
dump_stack();
return -EINVAL;
}
/**
* dbg_check_synced_i_size - check synchronized inode size.
* @inode: inode to check
*
* If inode is clean, synchronized inode size has to be equivalent to current
* inode size. This function has to be called only for locked inodes (@i_mutex
* has to be locked). Returns %0 if synchronized inode size if correct, and
* %-EINVAL if not.
*/
int dbg_check_synced_i_size(struct inode *inode)
{
int err = 0;
struct ubifs_inode *ui = ubifs_inode(inode);
if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
return 0;
if (!S_ISREG(inode->i_mode))
return 0;
mutex_lock(&ui->ui_mutex);
spin_lock(&ui->ui_lock);
if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
"is clean", ui->ui_size, ui->synced_i_size);
ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
inode->i_mode, i_size_read(inode));
dbg_dump_stack();
err = -EINVAL;
}
spin_unlock(&ui->ui_lock);
mutex_unlock(&ui->ui_mutex);
return err;
}
/*
* dbg_check_dir - check directory inode size and link count.
* @c: UBIFS file-system description object
* @dir: the directory to calculate size for
* @size: the result is returned here
*
* This function makes sure that directory size and link count are correct.
* Returns zero in case of success and a negative error code in case of
* failure.
*
* Note, it is good idea to make sure the @dir->i_mutex is locked before
* calling this function.
*/
int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
{
unsigned int nlink = 2;
union ubifs_key key;
struct ubifs_dent_node *dent, *pdent = NULL;
struct qstr nm = { .name = NULL };
loff_t size = UBIFS_INO_NODE_SZ;
if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
return 0;
if (!S_ISDIR(dir->i_mode))
return 0;
lowest_dent_key(c, &key, dir->i_ino);
while (1) {
int err;
dent = ubifs_tnc_next_ent(c, &key, &nm);
if (IS_ERR(dent)) {
err = PTR_ERR(dent);
if (err == -ENOENT)
break;
return err;
}
nm.name = dent->name;
nm.len = le16_to_cpu(dent->nlen);
size += CALC_DENT_SIZE(nm.len);
if (dent->type == UBIFS_ITYPE_DIR)
nlink += 1;
kfree(pdent);
pdent = dent;
key_read(c, &dent->key, &key);
}
kfree(pdent);
if (i_size_read(dir) != size) {
ubifs_err("directory inode %lu has size %llu, "
"but calculated size is %llu", dir->i_ino,
(unsigned long long)i_size_read(dir),
(unsigned long long)size);
dump_stack();
return -EINVAL;
}
if (dir->i_nlink != nlink) {
ubifs_err("directory inode %lu has nlink %u, but calculated "
"nlink is %u", dir->i_ino, dir->i_nlink, nlink);
dump_stack();
return -EINVAL;
}
return 0;
}
/**
* dbg_check_key_order - make sure that colliding keys are properly ordered.
* @c: UBIFS file-system description object
* @zbr1: first zbranch
* @zbr2: following zbranch
*
* In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
* names of the direntries/xentries which are referred by the keys. This
* function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
* sure the name of direntry/xentry referred by @zbr1 is less than
* direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
* and a negative error code in case of failure.
*/
static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
struct ubifs_zbranch *zbr2)
{
int err, nlen1, nlen2, cmp;
struct ubifs_dent_node *dent1, *dent2;
union ubifs_key key;
ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
if (!dent1)
return -ENOMEM;
dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
if (!dent2) {
err = -ENOMEM;
goto out_free;
}
err = ubifs_tnc_read_node(c, zbr1, dent1);
if (err)
goto out_free;
err = ubifs_validate_entry(c, dent1);
if (err)
goto out_free;
err = ubifs_tnc_read_node(c, zbr2, dent2);
if (err)
goto out_free;
err = ubifs_validate_entry(c, dent2);
if (err)
goto out_free;
/* Make sure node keys are the same as in zbranch */
err = 1;
key_read(c, &dent1->key, &key);
if (keys_cmp(c, &zbr1->key, &key)) {
dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
zbr1->offs, DBGKEY(&key));
dbg_err("but it should have key %s according to tnc",
DBGKEY(&zbr1->key));
dbg_dump_node(c, dent1);
goto out_free;
}
key_read(c, &dent2->key, &key);
if (keys_cmp(c, &zbr2->key, &key)) {
dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
zbr1->offs, DBGKEY(&key));
dbg_err("but it should have key %s according to tnc",
DBGKEY(&zbr2->key));
dbg_dump_node(c, dent2);
goto out_free;
}
nlen1 = le16_to_cpu(dent1->nlen);
nlen2 = le16_to_cpu(dent2->nlen);
cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
err = 0;
goto out_free;
}
if (cmp == 0 && nlen1 == nlen2)
dbg_err("2 xent/dent nodes with the same name");
else
dbg_err("bad order of colliding key %s",
DBGKEY(&key));
ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
dbg_dump_node(c, dent1);
ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
dbg_dump_node(c, dent2);
out_free:
kfree(dent2);
kfree(dent1);
return err;
}
/**
* dbg_check_znode - check if znode is all right.
* @c: UBIFS file-system description object
* @zbr: zbranch which points to this znode
*
* This function makes sure that znode referred to by @zbr is all right.
* Returns zero if it is, and %-EINVAL if it is not.
*/
static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
{
struct ubifs_znode *znode = zbr->znode;
struct ubifs_znode *zp = znode->parent;
int n, err, cmp;
if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
err = 1;
goto out;
}
if (znode->level < 0) {
err = 2;
goto out;
}
if (znode->iip < 0 || znode->iip >= c->fanout) {
err = 3;
goto out;
}
if (zbr->len == 0)
/* Only dirty zbranch may have no on-flash nodes */
if (!ubifs_zn_dirty(znode)) {
err = 4;
goto out;
}
if (ubifs_zn_dirty(znode)) {
/*
* If znode is dirty, its parent has to be dirty as well. The
* order of the operation is important, so we have to have
* memory barriers.
*/
smp_mb();
if (zp && !ubifs_zn_dirty(zp)) {
/*
* The dirty flag is atomic and is cleared outside the
* TNC mutex, so znode's dirty flag may now have
* been cleared. The child is always cleared before the
* parent, so we just need to check again.
*/
smp_mb();
if (ubifs_zn_dirty(znode)) {
err = 5;
goto out;
}
}
}
if (zp) {
const union ubifs_key *min, *max;
if (znode->level != zp->level - 1) {
err = 6;
goto out;
}
/* Make sure the 'parent' pointer in our znode is correct */
err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
if (!err) {
/* This zbranch does not exist in the parent */
err = 7;
goto out;
}
if (znode->iip >= zp->child_cnt) {
err = 8;
goto out;
}
if (znode->iip != n) {
/* This may happen only in case of collisions */
if (keys_cmp(c, &zp->zbranch[n].key,
&zp->zbranch[znode->iip].key)) {
err = 9;
goto out;
}
n = znode->iip;
}
/*
* Make sure that the first key in our znode is greater than or
* equal to the key in the pointing zbranch.
*/
min = &zbr->key;
cmp = keys_cmp(c, min, &znode->zbranch[0].key);
if (cmp == 1) {
err = 10;
goto out;
}
if (n + 1 < zp->child_cnt) {
max = &zp->zbranch[n + 1].key;
/*
* Make sure the last key in our znode is less or
* equivalent than the key in the zbranch which goes
* after our pointing zbranch.
*/
cmp = keys_cmp(c, max,
&znode->zbranch[znode->child_cnt - 1].key);
if (cmp == -1) {
err = 11;
goto out;
}
}
} else {
/* This may only be root znode */
if (zbr != &c->zroot) {
err = 12;
goto out;
}
}
/*
* Make sure that next key is greater or equivalent then the previous
* one.
*/
for (n = 1; n < znode->child_cnt; n++) {
cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
&znode->zbranch[n].key);
if (cmp > 0) {
err = 13;
goto out;
}
if (cmp == 0) {
/* This can only be keys with colliding hash */
if (!is_hash_key(c, &znode->zbranch[n].key)) {
err = 14;
goto out;
}
if (znode->level != 0 || c->replaying)
continue;
/*
* Colliding keys should follow binary order of
* corresponding xentry/dentry names.
*/
err = dbg_check_key_order(c, &znode->zbranch[n - 1],
&znode->zbranch[n]);
if (err < 0)
return err;
if (err) {
err = 15;
goto out;
}
}
}
for (n = 0; n < znode->child_cnt; n++) {
if (!znode->zbranch[n].znode &&
(znode->zbranch[n].lnum == 0 ||
znode->zbranch[n].len == 0)) {
err = 16;
goto out;
}
if (znode->zbranch[n].lnum != 0 &&
znode->zbranch[n].len == 0) {
err = 17;
goto out;
}
if (znode->zbranch[n].lnum == 0 &&
znode->zbranch[n].len != 0) {
err = 18;
goto out;
}
if (znode->zbranch[n].lnum == 0 &&
znode->zbranch[n].offs != 0) {
err = 19;
goto out;
}
if (znode->level != 0 && znode->zbranch[n].znode)
if (znode->zbranch[n].znode->parent != znode) {
err = 20;
goto out;
}
}
return 0;
out:
ubifs_err("failed, error %d", err);
ubifs_msg("dump of the znode");
dbg_dump_znode(c, znode);
if (zp) {
ubifs_msg("dump of the parent znode");
dbg_dump_znode(c, zp);
}
dump_stack();
return -EINVAL;
}
/**
* dbg_check_tnc - check TNC tree.
* @c: UBIFS file-system description object
* @extra: do extra checks that are possible at start commit
*
* This function traverses whole TNC tree and checks every znode. Returns zero
* if everything is all right and %-EINVAL if something is wrong with TNC.
*/
int dbg_check_tnc(struct ubifs_info *c, int extra)
{
struct ubifs_znode *znode;
long clean_cnt = 0, dirty_cnt = 0;
int err, last;
if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
return 0;
ubifs_assert(mutex_is_locked(&c->tnc_mutex));
if (!c->zroot.znode)
return 0;
znode = ubifs_tnc_postorder_first(c->zroot.znode);
while (1) {
struct ubifs_znode *prev;
struct ubifs_zbranch *zbr;
if (!znode->parent)
zbr = &c->zroot;
else
zbr = &znode->parent->zbranch[znode->iip];
err = dbg_check_znode(c, zbr);
if (err)
return err;
if (extra) {
if (ubifs_zn_dirty(znode))
dirty_cnt += 1;
else
clean_cnt += 1;
}
prev = znode;
znode = ubifs_tnc_postorder_next(znode);
if (!znode)
break;
/*
* If the last key of this znode is equivalent to the first key
* of the next znode (collision), then check order of the keys.
*/
last = prev->child_cnt - 1;
if (prev->level == 0 && znode->level == 0 && !c->replaying &&
!keys_cmp(c, &prev->zbranch[last].key,
&znode->zbranch[0].key)) {
err = dbg_check_key_order(c, &prev->zbranch[last],
&znode->zbranch[0]);
if (err < 0)
return err;
if (err) {
ubifs_msg("first znode");
dbg_dump_znode(c, prev);
ubifs_msg("second znode");
dbg_dump_znode(c, znode);
return -EINVAL;
}
}
}
if (extra) {
if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
atomic_long_read(&c->clean_zn_cnt),
clean_cnt);
return -EINVAL;
}
if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
atomic_long_read(&c->dirty_zn_cnt),
dirty_cnt);
return -EINVAL;
}
}
return 0;
}
/**
* dbg_walk_index - walk the on-flash index.
* @c: UBIFS file-system description object
* @leaf_cb: called for each leaf node
* @znode_cb: called for each indexing node
* @priv: private data which is passed to callbacks
*
* This function walks the UBIFS index and calls the @leaf_cb for each leaf
* node and @znode_cb for each indexing node. Returns zero in case of success
* and a negative error code in case of failure.
*
* It would be better if this function removed every znode it pulled to into
* the TNC, so that the behavior more closely matched the non-debugging
* behavior.
*/
int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
dbg_znode_callback znode_cb, void *priv)
{
int err;
struct ubifs_zbranch *zbr;
struct ubifs_znode *znode, *child;
mutex_lock(&c->tnc_mutex);
/* If the root indexing node is not in TNC - pull it */
if (!c->zroot.znode) {
c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
if (IS_ERR(c->zroot.znode)) {
err = PTR_ERR(c->zroot.znode);
c->zroot.znode = NULL;
goto out_unlock;
}
}
/*
* We are going to traverse the indexing tree in the postorder manner.
* Go down and find the leftmost indexing node where we are going to
* start from.
*/
znode = c->zroot.znode;
while (znode->level > 0) {
zbr = &znode->zbranch[0];
child = zbr->znode;
if (!child) {
child = ubifs_load_znode(c, zbr, znode, 0);
if (IS_ERR(child)) {
err = PTR_ERR(child);
goto out_unlock;
}
zbr->znode = child;
}
znode = child;
}
/* Iterate over all indexing nodes */
while (1) {
int idx;
cond_resched();
if (znode_cb) {
err = znode_cb(c, znode, priv);
if (err) {
ubifs_err("znode checking function returned "
"error %d", err);
dbg_dump_znode(c, znode);
goto out_dump;
}
}
if (leaf_cb && znode->level == 0) {
for (idx = 0; idx < znode->child_cnt; idx++) {
zbr = &znode->zbranch[idx];
err = leaf_cb(c, zbr, priv);
if (err) {
ubifs_err("leaf checking function "
"returned error %d, for leaf "
"at LEB %d:%d",
err, zbr->lnum, zbr->offs);
goto out_dump;
}
}
}
if (!znode->parent)
break;
idx = znode->iip + 1;
znode = znode->parent;
if (idx < znode->child_cnt) {
/* Switch to the next index in the parent */
zbr = &znode->zbranch[idx];
child = zbr->znode;
if (!child) {
child = ubifs_load_znode(c, zbr, znode, idx);
if (IS_ERR(child)) {
err = PTR_ERR(child);
goto out_unlock;
}
zbr->znode = child;
}
znode = child;
} else
/*
* This is the last child, switch to the parent and
* continue.
*/
continue;
/* Go to the lowest leftmost znode in the new sub-tree */
while (znode->level > 0) {
zbr = &znode->zbranch[0];
child = zbr->znode;
if (!child) {
child = ubifs_load_znode(c, zbr, znode, 0);
if (IS_ERR(child)) {
err = PTR_ERR(child);
goto out_unlock;
}
zbr->znode = child;
}
znode = child;
}
}
mutex_unlock(&c->tnc_mutex);
return 0;
out_dump:
if (znode->parent)
zbr = &znode->parent->zbranch[znode->iip];
else
zbr = &c->zroot;
ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
dbg_dump_znode(c, znode);
out_unlock:
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* add_size - add znode size to partially calculated index size.
* @c: UBIFS file-system description object
* @znode: znode to add size for
* @priv: partially calculated index size
*
* This is a helper function for 'dbg_check_idx_size()' which is called for
* every indexing node and adds its size to the 'long long' variable pointed to
* by @priv.
*/
static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
{
long long *idx_size = priv;
int add;
add = ubifs_idx_node_sz(c, znode->child_cnt);
add = ALIGN(add, 8);
*idx_size += add;
return 0;
}
/**
* dbg_check_idx_size - check index size.
* @c: UBIFS file-system description object
* @idx_size: size to check
*
* This function walks the UBIFS index, calculates its size and checks that the
* size is equivalent to @idx_size. Returns zero in case of success and a
* negative error code in case of failure.
*/
int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
{
int err;
long long calc = 0;
if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
return 0;
err = dbg_walk_index(c, NULL, add_size, &calc);
if (err) {
ubifs_err("error %d while walking the index", err);
return err;
}
if (calc != idx_size) {
ubifs_err("index size check failed: calculated size is %lld, "
"should be %lld", calc, idx_size);
dump_stack();
return -EINVAL;
}
return 0;
}
/**
* struct fsck_inode - information about an inode used when checking the file-system.
* @rb: link in the RB-tree of inodes
* @inum: inode number
* @mode: inode type, permissions, etc
* @nlink: inode link count
* @xattr_cnt: count of extended attributes
* @references: how many directory/xattr entries refer this inode (calculated
* while walking the index)
* @calc_cnt: for directory inode count of child directories
* @size: inode size (read from on-flash inode)
* @xattr_sz: summary size of all extended attributes (read from on-flash
* inode)
* @calc_sz: for directories calculated directory size
* @calc_xcnt: count of extended attributes
* @calc_xsz: calculated summary size of all extended attributes
* @xattr_nms: sum of lengths of all extended attribute names belonging to this
* inode (read from on-flash inode)
* @calc_xnms: calculated sum of lengths of all extended attribute names
*/
struct fsck_inode {
struct rb_node rb;
ino_t inum;
umode_t mode;
unsigned int nlink;
unsigned int xattr_cnt;
int references;
int calc_cnt;
long long size;
unsigned int xattr_sz;
long long calc_sz;
long long calc_xcnt;
long long calc_xsz;
unsigned int xattr_nms;
long long calc_xnms;
};
/**
* struct fsck_data - private FS checking information.
* @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
*/
struct fsck_data {
struct rb_root inodes;
};
/**
* add_inode - add inode information to RB-tree of inodes.
* @c: UBIFS file-system description object
* @fsckd: FS checking information
* @ino: raw UBIFS inode to add
*
* This is a helper function for 'check_leaf()' which adds information about
* inode @ino to the RB-tree of inodes. Returns inode information pointer in
* case of success and a negative error code in case of failure.
*/
static struct fsck_inode *add_inode(struct ubifs_info *c,
struct fsck_data *fsckd,
struct ubifs_ino_node *ino)
{
struct rb_node **p, *parent = NULL;
struct fsck_inode *fscki;
ino_t inum = key_inum_flash(c, &ino->key);
p = &fsckd->inodes.rb_node;
while (*p) {
parent = *p;
fscki = rb_entry(parent, struct fsck_inode, rb);
if (inum < fscki->inum)
p = &(*p)->rb_left;
else if (inum > fscki->inum)
p = &(*p)->rb_right;
else
return fscki;
}
if (inum > c->highest_inum) {
ubifs_err("too high inode number, max. is %lu",
(unsigned long)c->highest_inum);
return ERR_PTR(-EINVAL);
}
fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
if (!fscki)
return ERR_PTR(-ENOMEM);
fscki->inum = inum;
fscki->nlink = le32_to_cpu(ino->nlink);
fscki->size = le64_to_cpu(ino->size);
fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
fscki->mode = le32_to_cpu(ino->mode);
if (S_ISDIR(fscki->mode)) {
fscki->calc_sz = UBIFS_INO_NODE_SZ;
fscki->calc_cnt = 2;
}
rb_link_node(&fscki->rb, parent, p);
rb_insert_color(&fscki->rb, &fsckd->inodes);
return fscki;
}
/**
* search_inode - search inode in the RB-tree of inodes.
* @fsckd: FS checking information
* @inum: inode number to search
*
* This is a helper function for 'check_leaf()' which searches inode @inum in
* the RB-tree of inodes and returns an inode information pointer or %NULL if
* the inode was not found.
*/
static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
{
struct rb_node *p;
struct fsck_inode *fscki;
p = fsckd->inodes.rb_node;
while (p) {
fscki = rb_entry(p, struct fsck_inode, rb);
if (inum < fscki->inum)
p = p->rb_left;
else if (inum > fscki->inum)
p = p->rb_right;
else
return fscki;
}
return NULL;
}
/**
* read_add_inode - read inode node and add it to RB-tree of inodes.
* @c: UBIFS file-system description object
* @fsckd: FS checking information
* @inum: inode number to read
*
* This is a helper function for 'check_leaf()' which finds inode node @inum in
* the index, reads it, and adds it to the RB-tree of inodes. Returns inode
* information pointer in case of success and a negative error code in case of
* failure.
*/
static struct fsck_inode *read_add_inode(struct ubifs_info *c,
struct fsck_data *fsckd, ino_t inum)
{
int n, err;
union ubifs_key key;
struct ubifs_znode *znode;
struct ubifs_zbranch *zbr;
struct ubifs_ino_node *ino;
struct fsck_inode *fscki;
fscki = search_inode(fsckd, inum);
if (fscki)
return fscki;
ino_key_init(c, &key, inum);
err = ubifs_lookup_level0(c, &key, &znode, &n);
if (!err) {
ubifs_err("inode %lu not found in index", (unsigned long)inum);
return ERR_PTR(-ENOENT);
} else if (err < 0) {
ubifs_err("error %d while looking up inode %lu",
err, (unsigned long)inum);
return ERR_PTR(err);
}
zbr = &znode->zbranch[n];
if (zbr->len < UBIFS_INO_NODE_SZ) {
ubifs_err("bad node %lu node length %d",
(unsigned long)inum, zbr->len);
return ERR_PTR(-EINVAL);
}
ino = kmalloc(zbr->len, GFP_NOFS);
if (!ino)
return ERR_PTR(-ENOMEM);
err = ubifs_tnc_read_node(c, zbr, ino);
if (err) {
ubifs_err("cannot read inode node at LEB %d:%d, error %d",
zbr->lnum, zbr->offs, err);
kfree(ino);
return ERR_PTR(err);
}
fscki = add_inode(c, fsckd, ino);
kfree(ino);
if (IS_ERR(fscki)) {
ubifs_err("error %ld while adding inode %lu node",
PTR_ERR(fscki), (unsigned long)inum);
return fscki;
}
return fscki;
}
/**
* check_leaf - check leaf node.
* @c: UBIFS file-system description object
* @zbr: zbranch of the leaf node to check
* @priv: FS checking information
*
* This is a helper function for 'dbg_check_filesystem()' which is called for
* every single leaf node while walking the indexing tree. It checks that the
* leaf node referred from the indexing tree exists, has correct CRC, and does
* some other basic validation. This function is also responsible for building
* an RB-tree of inodes - it adds all inodes into the RB-tree. It also
* calculates reference count, size, etc for each inode in order to later
* compare them to the information stored inside the inodes and detect possible
* inconsistencies. Returns zero in case of success and a negative error code
* in case of failure.
*/
static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
void *priv)
{
ino_t inum;
void *node;
struct ubifs_ch *ch;
int err, type = key_type(c, &zbr->key);
struct fsck_inode *fscki;
if (zbr->len < UBIFS_CH_SZ) {
ubifs_err("bad leaf length %d (LEB %d:%d)",
zbr->len, zbr->lnum, zbr->offs);
return -EINVAL;
}
node = kmalloc(zbr->len, GFP_NOFS);
if (!node)
return -ENOMEM;
err = ubifs_tnc_read_node(c, zbr, node);
if (err) {
ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
zbr->lnum, zbr->offs, err);
goto out_free;
}
/* If this is an inode node, add it to RB-tree of inodes */
if (type == UBIFS_INO_KEY) {
fscki = add_inode(c, priv, node);
if (IS_ERR(fscki)) {
err = PTR_ERR(fscki);
ubifs_err("error %d while adding inode node", err);
goto out_dump;
}
goto out;
}
if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
type != UBIFS_DATA_KEY) {
ubifs_err("unexpected node type %d at LEB %d:%d",
type, zbr->lnum, zbr->offs);
err = -EINVAL;
goto out_free;
}
ch = node;
if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
ubifs_err("too high sequence number, max. is %llu",
c->max_sqnum);
err = -EINVAL;
goto out_dump;
}
if (type == UBIFS_DATA_KEY) {
long long blk_offs;
struct ubifs_data_node *dn = node;
/*
* Search the inode node this data node belongs to and insert
* it to the RB-tree of inodes.
*/
inum = key_inum_flash(c, &dn->key);
fscki = read_add_inode(c, priv, inum);
if (IS_ERR(fscki)) {
err = PTR_ERR(fscki);
ubifs_err("error %d while processing data node and "
"trying to find inode node %lu",
err, (unsigned long)inum);
goto out_dump;
}
/* Make sure the data node is within inode size */
blk_offs = key_block_flash(c, &dn->key);
blk_offs <<= UBIFS_BLOCK_SHIFT;
blk_offs += le32_to_cpu(dn->size);
if (blk_offs > fscki->size) {
ubifs_err("data node at LEB %d:%d is not within inode "
"size %lld", zbr->lnum, zbr->offs,
fscki->size);
err = -EINVAL;
goto out_dump;
}
} else {
int nlen;
struct ubifs_dent_node *dent = node;
struct fsck_inode *fscki1;
err = ubifs_validate_entry(c, dent);
if (err)
goto out_dump;
/*
* Search the inode node this entry refers to and the parent
* inode node and insert them to the RB-tree of inodes.
*/
inum = le64_to_cpu(dent->inum);
fscki = read_add_inode(c, priv, inum);
if (IS_ERR(fscki)) {
err = PTR_ERR(fscki);
ubifs_err("error %d while processing entry node and "
"trying to find inode node %lu",
err, (unsigned long)inum);
goto out_dump;
}
/* Count how many direntries or xentries refers this inode */
fscki->references += 1;
inum = key_inum_flash(c, &dent->key);
fscki1 = read_add_inode(c, priv, inum);
if (IS_ERR(fscki1)) {
err = PTR_ERR(fscki);
ubifs_err("error %d while processing entry node and "
"trying to find parent inode node %lu",
err, (unsigned long)inum);
goto out_dump;
}
nlen = le16_to_cpu(dent->nlen);
if (type == UBIFS_XENT_KEY) {
fscki1->calc_xcnt += 1;
fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
fscki1->calc_xnms += nlen;
} else {
fscki1->calc_sz += CALC_DENT_SIZE(nlen);
if (dent->type == UBIFS_ITYPE_DIR)
fscki1->calc_cnt += 1;
}
}
out:
kfree(node);
return 0;
out_dump:
ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
dbg_dump_node(c, node);
out_free:
kfree(node);
return err;
}
/**
* free_inodes - free RB-tree of inodes.
* @fsckd: FS checking information
*/
static void free_inodes(struct fsck_data *fsckd)
{
struct rb_node *this = fsckd->inodes.rb_node;
struct fsck_inode *fscki;
while (this) {
if (this->rb_left)
this = this->rb_left;
else if (this->rb_right)
this = this->rb_right;
else {
fscki = rb_entry(this, struct fsck_inode, rb);
this = rb_parent(this);
if (this) {
if (this->rb_left == &fscki->rb)
this->rb_left = NULL;
else
this->rb_right = NULL;
}
kfree(fscki);
}
}
}
/**
* check_inodes - checks all inodes.
* @c: UBIFS file-system description object
* @fsckd: FS checking information
*
* This is a helper function for 'dbg_check_filesystem()' which walks the
* RB-tree of inodes after the index scan has been finished, and checks that
* inode nlink, size, etc are correct. Returns zero if inodes are fine,
* %-EINVAL if not, and a negative error code in case of failure.
*/
static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
{
int n, err;
union ubifs_key key;
struct ubifs_znode *znode;
struct ubifs_zbranch *zbr;
struct ubifs_ino_node *ino;
struct fsck_inode *fscki;
struct rb_node *this = rb_first(&fsckd->inodes);
while (this) {
fscki = rb_entry(this, struct fsck_inode, rb);
this = rb_next(this);
if (S_ISDIR(fscki->mode)) {
/*
* Directories have to have exactly one reference (they
* cannot have hardlinks), although root inode is an
* exception.
*/
if (fscki->inum != UBIFS_ROOT_INO &&
fscki->references != 1) {
ubifs_err("directory inode %lu has %d "
"direntries which refer it, but "
"should be 1",
(unsigned long)fscki->inum,
fscki->references);
goto out_dump;
}
if (fscki->inum == UBIFS_ROOT_INO &&
fscki->references != 0) {
ubifs_err("root inode %lu has non-zero (%d) "
"direntries which refer it",
(unsigned long)fscki->inum,
fscki->references);
goto out_dump;
}
if (fscki->calc_sz != fscki->size) {
ubifs_err("directory inode %lu size is %lld, "
"but calculated size is %lld",
(unsigned long)fscki->inum,
fscki->size, fscki->calc_sz);
goto out_dump;
}
if (fscki->calc_cnt != fscki->nlink) {
ubifs_err("directory inode %lu nlink is %d, "
"but calculated nlink is %d",
(unsigned long)fscki->inum,
fscki->nlink, fscki->calc_cnt);
goto out_dump;
}
} else {
if (fscki->references != fscki->nlink) {
ubifs_err("inode %lu nlink is %d, but "
"calculated nlink is %d",
(unsigned long)fscki->inum,
fscki->nlink, fscki->references);
goto out_dump;
}
}
if (fscki->xattr_sz != fscki->calc_xsz) {
ubifs_err("inode %lu has xattr size %u, but "
"calculated size is %lld",
(unsigned long)fscki->inum, fscki->xattr_sz,
fscki->calc_xsz);
goto out_dump;
}
if (fscki->xattr_cnt != fscki->calc_xcnt) {
ubifs_err("inode %lu has %u xattrs, but "
"calculated count is %lld",
(unsigned long)fscki->inum,
fscki->xattr_cnt, fscki->calc_xcnt);
goto out_dump;
}
if (fscki->xattr_nms != fscki->calc_xnms) {
ubifs_err("inode %lu has xattr names' size %u, but "
"calculated names' size is %lld",
(unsigned long)fscki->inum, fscki->xattr_nms,
fscki->calc_xnms);
goto out_dump;
}
}
return 0;
out_dump:
/* Read the bad inode and dump it */
ino_key_init(c, &key, fscki->inum);
err = ubifs_lookup_level0(c, &key, &znode, &n);
if (!err) {
ubifs_err("inode %lu not found in index",
(unsigned long)fscki->inum);
return -ENOENT;
} else if (err < 0) {
ubifs_err("error %d while looking up inode %lu",
err, (unsigned long)fscki->inum);
return err;
}
zbr = &znode->zbranch[n];
ino = kmalloc(zbr->len, GFP_NOFS);
if (!ino)
return -ENOMEM;
err = ubifs_tnc_read_node(c, zbr, ino);
if (err) {
ubifs_err("cannot read inode node at LEB %d:%d, error %d",
zbr->lnum, zbr->offs, err);
kfree(ino);
return err;
}
ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
(unsigned long)fscki->inum, zbr->lnum, zbr->offs);
dbg_dump_node(c, ino);
kfree(ino);
return -EINVAL;
}
/**
* dbg_check_filesystem - check the file-system.
* @c: UBIFS file-system description object
*
* This function checks the file system, namely:
* o makes sure that all leaf nodes exist and their CRCs are correct;
* o makes sure inode nlink, size, xattr size/count are correct (for all
* inodes).
*
* The function reads whole indexing tree and all nodes, so it is pretty
* heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
* not, and a negative error code in case of failure.
*/
int dbg_check_filesystem(struct ubifs_info *c)
{
int err;
struct fsck_data fsckd;
if (!(ubifs_chk_flags & UBIFS_CHK_FS))
return 0;
fsckd.inodes = RB_ROOT;
err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
if (err)
goto out_free;
err = check_inodes(c, &fsckd);
if (err)
goto out_free;
free_inodes(&fsckd);
return 0;
out_free:
ubifs_err("file-system check failed with error %d", err);
dump_stack();
free_inodes(&fsckd);
return err;
}
static int invocation_cnt;
int dbg_force_in_the_gaps(void)
{
if (!dbg_force_in_the_gaps_enabled)
return 0;
/* Force in-the-gaps every 8th commit */
return !((invocation_cnt++) & 0x7);
}
/* Failure mode for recovery testing */
#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
struct failure_mode_info {
struct list_head list;
struct ubifs_info *c;
};
static LIST_HEAD(fmi_list);
static DEFINE_SPINLOCK(fmi_lock);
static unsigned int next;
static int simple_rand(void)
{
if (next == 0)
next = current->pid;
next = next * 1103515245 + 12345;
return (next >> 16) & 32767;
}
static void failure_mode_init(struct ubifs_info *c)
{
struct failure_mode_info *fmi;
fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
if (!fmi) {
ubifs_err("Failed to register failure mode - no memory");
return;
}
fmi->c = c;
spin_lock(&fmi_lock);
list_add_tail(&fmi->list, &fmi_list);
spin_unlock(&fmi_lock);
}
static void failure_mode_exit(struct ubifs_info *c)
{
struct failure_mode_info *fmi, *tmp;
spin_lock(&fmi_lock);
list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
if (fmi->c == c) {
list_del(&fmi->list);
kfree(fmi);
}
spin_unlock(&fmi_lock);
}
static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
{
struct failure_mode_info *fmi;
spin_lock(&fmi_lock);
list_for_each_entry(fmi, &fmi_list, list)
if (fmi->c->ubi == desc) {
struct ubifs_info *c = fmi->c;
spin_unlock(&fmi_lock);
return c;
}
spin_unlock(&fmi_lock);
return NULL;
}
static int in_failure_mode(struct ubi_volume_desc *desc)
{
struct ubifs_info *c = dbg_find_info(desc);
if (c && dbg_failure_mode)
return c->dbg->failure_mode;
return 0;
}
static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
{
struct ubifs_info *c = dbg_find_info(desc);
struct ubifs_debug_info *d;
if (!c || !dbg_failure_mode)
return 0;
d = c->dbg;
if (d->failure_mode)
return 1;
if (!d->fail_cnt) {
/* First call - decide delay to failure */
if (chance(1, 2)) {
unsigned int delay = 1 << (simple_rand() >> 11);
if (chance(1, 2)) {
d->fail_delay = 1;
d->fail_timeout = jiffies +
msecs_to_jiffies(delay);
dbg_rcvry("failing after %ums", delay);
} else {
d->fail_delay = 2;
d->fail_cnt_max = delay;
dbg_rcvry("failing after %u calls", delay);
}
}
d->fail_cnt += 1;
}
/* Determine if failure delay has expired */
if (d->fail_delay == 1) {
if (time_before(jiffies, d->fail_timeout))
return 0;
} else if (d->fail_delay == 2)
if (d->fail_cnt++ < d->fail_cnt_max)
return 0;
if (lnum == UBIFS_SB_LNUM) {
if (write) {
if (chance(1, 2))
return 0;
} else if (chance(19, 20))
return 0;
dbg_rcvry("failing in super block LEB %d", lnum);
} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
if (chance(19, 20))
return 0;
dbg_rcvry("failing in master LEB %d", lnum);
} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
if (write) {
if (chance(99, 100))
return 0;
} else if (chance(399, 400))
return 0;
dbg_rcvry("failing in log LEB %d", lnum);
} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
if (write) {
if (chance(7, 8))
return 0;
} else if (chance(19, 20))
return 0;
dbg_rcvry("failing in LPT LEB %d", lnum);
} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
if (write) {
if (chance(1, 2))
return 0;
} else if (chance(9, 10))
return 0;
dbg_rcvry("failing in orphan LEB %d", lnum);
} else if (lnum == c->ihead_lnum) {
if (chance(99, 100))
return 0;
dbg_rcvry("failing in index head LEB %d", lnum);
} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
if (chance(9, 10))
return 0;
dbg_rcvry("failing in GC head LEB %d", lnum);
} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
!ubifs_search_bud(c, lnum)) {
if (chance(19, 20))
return 0;
dbg_rcvry("failing in non-bud LEB %d", lnum);
} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
c->cmt_state == COMMIT_RUNNING_REQUIRED) {
if (chance(999, 1000))
return 0;
dbg_rcvry("failing in bud LEB %d commit running", lnum);
} else {
if (chance(9999, 10000))
return 0;
dbg_rcvry("failing in bud LEB %d commit not running", lnum);
}
ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
d->failure_mode = 1;
dump_stack();
return 1;
}
static void cut_data(const void *buf, int len)
{
int flen, i;
unsigned char *p = (void *)buf;
flen = (len * (long long)simple_rand()) >> 15;
for (i = flen; i < len; i++)
p[i] = 0xff;
}
int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
int len, int check)
{
if (in_failure_mode(desc))
return -EIO;
return ubi_leb_read(desc, lnum, buf, offset, len, check);
}
int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
int offset, int len, int dtype)
{
int err, failing;
if (in_failure_mode(desc))
return -EIO;
failing = do_fail(desc, lnum, 1);
if (failing)
cut_data(buf, len);
err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
if (err)
return err;
if (failing)
return -EIO;
return 0;
}
int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
int len, int dtype)
{
int err;
if (do_fail(desc, lnum, 1))
return -EIO;
err = ubi_leb_change(desc, lnum, buf, len, dtype);
if (err)
return err;
if (do_fail(desc, lnum, 1))
return -EIO;
return 0;
}
int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
{
int err;
if (do_fail(desc, lnum, 0))
return -EIO;
err = ubi_leb_erase(desc, lnum);
if (err)
return err;
if (do_fail(desc, lnum, 0))
return -EIO;
return 0;
}
int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
{
int err;
if (do_fail(desc, lnum, 0))
return -EIO;
err = ubi_leb_unmap(desc, lnum);
if (err)
return err;
if (do_fail(desc, lnum, 0))
return -EIO;
return 0;
}
int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
{
if (in_failure_mode(desc))
return -EIO;
return ubi_is_mapped(desc, lnum);
}
int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
{
int err;
if (do_fail(desc, lnum, 0))
return -EIO;
err = ubi_leb_map(desc, lnum, dtype);
if (err)
return err;
if (do_fail(desc, lnum, 0))
return -EIO;
return 0;
}
/**
* ubifs_debugging_init - initialize UBIFS debugging.
* @c: UBIFS file-system description object
*
* This function initializes debugging-related data for the file system.
* Returns zero in case of success and a negative error code in case of
* failure.
*/
int ubifs_debugging_init(struct ubifs_info *c)
{
c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
if (!c->dbg)
return -ENOMEM;
c->dbg->buf = vmalloc(c->leb_size);
if (!c->dbg->buf)
goto out;
failure_mode_init(c);
return 0;
out:
kfree(c->dbg);
return -ENOMEM;
}
/**
* ubifs_debugging_exit - free debugging data.
* @c: UBIFS file-system description object
*/
void ubifs_debugging_exit(struct ubifs_info *c)
{
failure_mode_exit(c);
vfree(c->dbg->buf);
kfree(c->dbg);
}
/*
* Root directory for UBIFS stuff in debugfs. Contains sub-directories which
* contain the stuff specific to particular file-system mounts.
*/
static struct dentry *dfs_rootdir;
/**
* dbg_debugfs_init - initialize debugfs file-system.
*
* UBIFS uses debugfs file-system to expose various debugging knobs to
* user-space. This function creates "ubifs" directory in the debugfs
* file-system. Returns zero in case of success and a negative error code in
* case of failure.
*/
int dbg_debugfs_init(void)
{
dfs_rootdir = debugfs_create_dir("ubifs", NULL);
if (IS_ERR(dfs_rootdir)) {
int err = PTR_ERR(dfs_rootdir);
ubifs_err("cannot create \"ubifs\" debugfs directory, "
"error %d\n", err);
return err;
}
return 0;
}
/**
* dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
*/
void dbg_debugfs_exit(void)
{
debugfs_remove(dfs_rootdir);
}
static int open_debugfs_file(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct ubifs_info *c = file->private_data;
struct ubifs_debug_info *d = c->dbg;
if (file->f_path.dentry == d->dfs_dump_lprops)
dbg_dump_lprops(c);
else if (file->f_path.dentry == d->dfs_dump_budg) {
spin_lock(&c->space_lock);
dbg_dump_budg(c);
spin_unlock(&c->space_lock);
} else if (file->f_path.dentry == d->dfs_dump_tnc) {
mutex_lock(&c->tnc_mutex);
dbg_dump_tnc(c);
mutex_unlock(&c->tnc_mutex);
} else
return -EINVAL;
*ppos += count;
return count;
}
static const struct file_operations dfs_fops = {
.open = open_debugfs_file,
.write = write_debugfs_file,
.owner = THIS_MODULE,
};
/**
* dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
* @c: UBIFS file-system description object
*
* This function creates all debugfs files for this instance of UBIFS. Returns
* zero in case of success and a negative error code in case of failure.
*
* Note, the only reason we have not merged this function with the
* 'ubifs_debugging_init()' function is because it is better to initialize
* debugfs interfaces at the very end of the mount process, and remove them at
* the very beginning of the mount process.
*/
int dbg_debugfs_init_fs(struct ubifs_info *c)
{
int err;
const char *fname;
struct dentry *dent;
struct ubifs_debug_info *d = c->dbg;
sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
if (IS_ERR(d->dfs_dir)) {
err = PTR_ERR(d->dfs_dir);
ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
d->dfs_dir_name, err);
goto out;
}
fname = "dump_lprops";
dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
if (IS_ERR(dent))
goto out_remove;
d->dfs_dump_lprops = dent;
fname = "dump_budg";
dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
if (IS_ERR(dent))
goto out_remove;
d->dfs_dump_budg = dent;
fname = "dump_tnc";
dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
if (IS_ERR(dent))
goto out_remove;
d->dfs_dump_tnc = dent;
return 0;
out_remove:
err = PTR_ERR(dent);
ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
fname, err);
debugfs_remove_recursive(d->dfs_dir);
out:
return err;
}
/**
* dbg_debugfs_exit_fs - remove all debugfs files.
* @c: UBIFS file-system description object
*/
void dbg_debugfs_exit_fs(struct ubifs_info *c)
{
debugfs_remove_recursive(c->dbg->dfs_dir);
}
#endif /* CONFIG_UBIFS_FS_DEBUG */