OpenCloudOS-Kernel/drivers/gpu/drm/i915/gvt/cfg_space.c

455 lines
12 KiB
C

/*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eddie Dong <eddie.dong@intel.com>
* Jike Song <jike.song@intel.com>
*
* Contributors:
* Zhi Wang <zhi.a.wang@intel.com>
* Min He <min.he@intel.com>
* Bing Niu <bing.niu@intel.com>
*
*/
#include "i915_drv.h"
#include "gvt.h"
enum {
INTEL_GVT_PCI_BAR_GTTMMIO = 0,
INTEL_GVT_PCI_BAR_APERTURE,
INTEL_GVT_PCI_BAR_PIO,
INTEL_GVT_PCI_BAR_MAX,
};
/* bitmap for writable bits (RW or RW1C bits, but cannot co-exist in one
* byte) byte by byte in standard pci configuration space. (not the full
* 256 bytes.)
*/
static const u8 pci_cfg_space_rw_bmp[PCI_INTERRUPT_LINE + 4] = {
[PCI_COMMAND] = 0xff, 0x07,
[PCI_STATUS] = 0x00, 0xf9, /* the only one RW1C byte */
[PCI_CACHE_LINE_SIZE] = 0xff,
[PCI_BASE_ADDRESS_0 ... PCI_CARDBUS_CIS - 1] = 0xff,
[PCI_ROM_ADDRESS] = 0x01, 0xf8, 0xff, 0xff,
[PCI_INTERRUPT_LINE] = 0xff,
};
/**
* vgpu_pci_cfg_mem_write - write virtual cfg space memory
* @vgpu: target vgpu
* @off: offset
* @src: src ptr to write
* @bytes: number of bytes
*
* Use this function to write virtual cfg space memory.
* For standard cfg space, only RW bits can be changed,
* and we emulates the RW1C behavior of PCI_STATUS register.
*/
static void vgpu_pci_cfg_mem_write(struct intel_vgpu *vgpu, unsigned int off,
u8 *src, unsigned int bytes)
{
u8 *cfg_base = vgpu_cfg_space(vgpu);
u8 mask, new, old;
pci_power_t pwr;
int i = 0;
for (; i < bytes && (off + i < sizeof(pci_cfg_space_rw_bmp)); i++) {
mask = pci_cfg_space_rw_bmp[off + i];
old = cfg_base[off + i];
new = src[i] & mask;
/**
* The PCI_STATUS high byte has RW1C bits, here
* emulates clear by writing 1 for these bits.
* Writing a 0b to RW1C bits has no effect.
*/
if (off + i == PCI_STATUS + 1)
new = (~new & old) & mask;
cfg_base[off + i] = (old & ~mask) | new;
}
/* For other configuration space directly copy as it is. */
if (i < bytes)
memcpy(cfg_base + off + i, src + i, bytes - i);
if (off == vgpu->cfg_space.pmcsr_off && vgpu->cfg_space.pmcsr_off) {
pwr = (pci_power_t __force)(*(u16*)(&vgpu_cfg_space(vgpu)[off])
& PCI_PM_CTRL_STATE_MASK);
if (pwr == PCI_D3hot)
vgpu->d3_entered = true;
gvt_dbg_core("vgpu-%d power status changed to %d\n",
vgpu->id, pwr);
}
}
/**
* intel_vgpu_emulate_cfg_read - emulate vGPU configuration space read
* @vgpu: target vgpu
* @offset: offset
* @p_data: return data ptr
* @bytes: number of bytes to read
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_emulate_cfg_read(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
if (drm_WARN_ON(&i915->drm, bytes > 4))
return -EINVAL;
if (drm_WARN_ON(&i915->drm,
offset + bytes > vgpu->gvt->device_info.cfg_space_size))
return -EINVAL;
memcpy(p_data, vgpu_cfg_space(vgpu) + offset, bytes);
return 0;
}
static int map_aperture(struct intel_vgpu *vgpu, bool map)
{
phys_addr_t aperture_pa = vgpu_aperture_pa_base(vgpu);
unsigned long aperture_sz = vgpu_aperture_sz(vgpu);
u64 first_gfn;
u64 val;
int ret;
if (map == vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_APERTURE].tracked)
return 0;
val = vgpu_cfg_space(vgpu)[PCI_BASE_ADDRESS_2];
if (val & PCI_BASE_ADDRESS_MEM_TYPE_64)
val = *(u64 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_2);
else
val = *(u32 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_2);
first_gfn = (val + vgpu_aperture_offset(vgpu)) >> PAGE_SHIFT;
ret = intel_gvt_hypervisor_map_gfn_to_mfn(vgpu, first_gfn,
aperture_pa >> PAGE_SHIFT,
aperture_sz >> PAGE_SHIFT,
map);
if (ret)
return ret;
vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_APERTURE].tracked = map;
return 0;
}
static int trap_gttmmio(struct intel_vgpu *vgpu, bool trap)
{
u64 start, end;
u64 val;
int ret;
if (trap == vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_GTTMMIO].tracked)
return 0;
val = vgpu_cfg_space(vgpu)[PCI_BASE_ADDRESS_0];
if (val & PCI_BASE_ADDRESS_MEM_TYPE_64)
start = *(u64 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_0);
else
start = *(u32 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_0);
start &= ~GENMASK(3, 0);
end = start + vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_GTTMMIO].size - 1;
ret = intel_gvt_hypervisor_set_trap_area(vgpu, start, end, trap);
if (ret)
return ret;
vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_GTTMMIO].tracked = trap;
return 0;
}
static int emulate_pci_command_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u8 old = vgpu_cfg_space(vgpu)[offset];
u8 new = *(u8 *)p_data;
u8 changed = old ^ new;
int ret;
vgpu_pci_cfg_mem_write(vgpu, offset, p_data, bytes);
if (!(changed & PCI_COMMAND_MEMORY))
return 0;
if (old & PCI_COMMAND_MEMORY) {
ret = trap_gttmmio(vgpu, false);
if (ret)
return ret;
ret = map_aperture(vgpu, false);
if (ret)
return ret;
} else {
ret = trap_gttmmio(vgpu, true);
if (ret)
return ret;
ret = map_aperture(vgpu, true);
if (ret)
return ret;
}
return 0;
}
static int emulate_pci_rom_bar_write(struct intel_vgpu *vgpu,
unsigned int offset, void *p_data, unsigned int bytes)
{
u32 *pval = (u32 *)(vgpu_cfg_space(vgpu) + offset);
u32 new = *(u32 *)(p_data);
if ((new & PCI_ROM_ADDRESS_MASK) == PCI_ROM_ADDRESS_MASK)
/* We don't have rom, return size of 0. */
*pval = 0;
else
vgpu_pci_cfg_mem_write(vgpu, offset, p_data, bytes);
return 0;
}
static int emulate_pci_bar_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
u32 new = *(u32 *)(p_data);
bool lo = IS_ALIGNED(offset, 8);
u64 size;
int ret = 0;
bool mmio_enabled =
vgpu_cfg_space(vgpu)[PCI_COMMAND] & PCI_COMMAND_MEMORY;
struct intel_vgpu_pci_bar *bars = vgpu->cfg_space.bar;
/*
* Power-up software can determine how much address
* space the device requires by writing a value of
* all 1's to the register and then reading the value
* back. The device will return 0's in all don't-care
* address bits.
*/
if (new == 0xffffffff) {
switch (offset) {
case PCI_BASE_ADDRESS_0:
case PCI_BASE_ADDRESS_1:
size = ~(bars[INTEL_GVT_PCI_BAR_GTTMMIO].size -1);
intel_vgpu_write_pci_bar(vgpu, offset,
size >> (lo ? 0 : 32), lo);
/*
* Untrap the BAR, since guest hasn't configured a
* valid GPA
*/
ret = trap_gttmmio(vgpu, false);
break;
case PCI_BASE_ADDRESS_2:
case PCI_BASE_ADDRESS_3:
size = ~(bars[INTEL_GVT_PCI_BAR_APERTURE].size -1);
intel_vgpu_write_pci_bar(vgpu, offset,
size >> (lo ? 0 : 32), lo);
ret = map_aperture(vgpu, false);
break;
default:
/* Unimplemented BARs */
intel_vgpu_write_pci_bar(vgpu, offset, 0x0, false);
}
} else {
switch (offset) {
case PCI_BASE_ADDRESS_0:
case PCI_BASE_ADDRESS_1:
/*
* Untrap the old BAR first, since guest has
* re-configured the BAR
*/
trap_gttmmio(vgpu, false);
intel_vgpu_write_pci_bar(vgpu, offset, new, lo);
ret = trap_gttmmio(vgpu, mmio_enabled);
break;
case PCI_BASE_ADDRESS_2:
case PCI_BASE_ADDRESS_3:
map_aperture(vgpu, false);
intel_vgpu_write_pci_bar(vgpu, offset, new, lo);
ret = map_aperture(vgpu, mmio_enabled);
break;
default:
intel_vgpu_write_pci_bar(vgpu, offset, new, lo);
}
}
return ret;
}
/**
* intel_vgpu_emulate_cfg_read - emulate vGPU configuration space write
* @vgpu: target vgpu
* @offset: offset
* @p_data: write data ptr
* @bytes: number of bytes to write
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_emulate_cfg_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
int ret;
if (drm_WARN_ON(&i915->drm, bytes > 4))
return -EINVAL;
if (drm_WARN_ON(&i915->drm,
offset + bytes > vgpu->gvt->device_info.cfg_space_size))
return -EINVAL;
/* First check if it's PCI_COMMAND */
if (IS_ALIGNED(offset, 2) && offset == PCI_COMMAND) {
if (drm_WARN_ON(&i915->drm, bytes > 2))
return -EINVAL;
return emulate_pci_command_write(vgpu, offset, p_data, bytes);
}
switch (rounddown(offset, 4)) {
case PCI_ROM_ADDRESS:
if (drm_WARN_ON(&i915->drm, !IS_ALIGNED(offset, 4)))
return -EINVAL;
return emulate_pci_rom_bar_write(vgpu, offset, p_data, bytes);
case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_5:
if (drm_WARN_ON(&i915->drm, !IS_ALIGNED(offset, 4)))
return -EINVAL;
return emulate_pci_bar_write(vgpu, offset, p_data, bytes);
case INTEL_GVT_PCI_SWSCI:
if (drm_WARN_ON(&i915->drm, !IS_ALIGNED(offset, 4)))
return -EINVAL;
ret = intel_vgpu_emulate_opregion_request(vgpu, *(u32 *)p_data);
if (ret)
return ret;
break;
case INTEL_GVT_PCI_OPREGION:
if (drm_WARN_ON(&i915->drm, !IS_ALIGNED(offset, 4)))
return -EINVAL;
ret = intel_vgpu_opregion_base_write_handler(vgpu,
*(u32 *)p_data);
if (ret)
return ret;
vgpu_pci_cfg_mem_write(vgpu, offset, p_data, bytes);
break;
default:
vgpu_pci_cfg_mem_write(vgpu, offset, p_data, bytes);
break;
}
return 0;
}
/**
* intel_vgpu_init_cfg_space - init vGPU configuration space when create vGPU
*
* @vgpu: a vGPU
* @primary: is the vGPU presented as primary
*
*/
void intel_vgpu_init_cfg_space(struct intel_vgpu *vgpu,
bool primary)
{
struct intel_gvt *gvt = vgpu->gvt;
struct pci_dev *pdev = to_pci_dev(gvt->gt->i915->drm.dev);
const struct intel_gvt_device_info *info = &gvt->device_info;
u16 *gmch_ctl;
u8 next;
memcpy(vgpu_cfg_space(vgpu), gvt->firmware.cfg_space,
info->cfg_space_size);
if (!primary) {
vgpu_cfg_space(vgpu)[PCI_CLASS_DEVICE] =
INTEL_GVT_PCI_CLASS_VGA_OTHER;
vgpu_cfg_space(vgpu)[PCI_CLASS_PROG] =
INTEL_GVT_PCI_CLASS_VGA_OTHER;
}
/* Show guest that there isn't any stolen memory.*/
gmch_ctl = (u16 *)(vgpu_cfg_space(vgpu) + INTEL_GVT_PCI_GMCH_CONTROL);
*gmch_ctl &= ~(BDW_GMCH_GMS_MASK << BDW_GMCH_GMS_SHIFT);
intel_vgpu_write_pci_bar(vgpu, PCI_BASE_ADDRESS_2,
gvt_aperture_pa_base(gvt), true);
vgpu_cfg_space(vgpu)[PCI_COMMAND] &= ~(PCI_COMMAND_IO
| PCI_COMMAND_MEMORY
| PCI_COMMAND_MASTER);
/*
* Clear the bar upper 32bit and let guest to assign the new value
*/
memset(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_1, 0, 4);
memset(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_3, 0, 4);
memset(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_4, 0, 8);
memset(vgpu_cfg_space(vgpu) + INTEL_GVT_PCI_OPREGION, 0, 4);
vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_GTTMMIO].size =
pci_resource_len(pdev, 0);
vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_APERTURE].size =
pci_resource_len(pdev, 2);
memset(vgpu_cfg_space(vgpu) + PCI_ROM_ADDRESS, 0, 4);
/* PM Support */
vgpu->cfg_space.pmcsr_off = 0;
if (vgpu_cfg_space(vgpu)[PCI_STATUS] & PCI_STATUS_CAP_LIST) {
next = vgpu_cfg_space(vgpu)[PCI_CAPABILITY_LIST];
do {
if (vgpu_cfg_space(vgpu)[next + PCI_CAP_LIST_ID] == PCI_CAP_ID_PM) {
vgpu->cfg_space.pmcsr_off = next + PCI_PM_CTRL;
break;
}
next = vgpu_cfg_space(vgpu)[next + PCI_CAP_LIST_NEXT];
} while (next);
}
}
/**
* intel_vgpu_reset_cfg_space - reset vGPU configuration space
*
* @vgpu: a vGPU
*
*/
void intel_vgpu_reset_cfg_space(struct intel_vgpu *vgpu)
{
u8 cmd = vgpu_cfg_space(vgpu)[PCI_COMMAND];
bool primary = vgpu_cfg_space(vgpu)[PCI_CLASS_DEVICE] !=
INTEL_GVT_PCI_CLASS_VGA_OTHER;
if (cmd & PCI_COMMAND_MEMORY) {
trap_gttmmio(vgpu, false);
map_aperture(vgpu, false);
}
/**
* Currently we only do such reset when vGPU is not
* owned by any VM, so we simply restore entire cfg
* space to default value.
*/
intel_vgpu_init_cfg_space(vgpu, primary);
}