OpenCloudOS-Kernel/drivers/net/ethernet/atheros/alx/main.c

1558 lines
36 KiB
C

/*
* Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
*
* This file is free software: you may copy, redistribute and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 2 of the License, or (at your
* option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* This file incorporates work covered by the following copyright and
* permission notice:
*
* Copyright (c) 2012 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
#include <linux/mdio.h>
#include <linux/aer.h>
#include <linux/bitops.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <net/ip6_checksum.h>
#include <linux/crc32.h>
#include "alx.h"
#include "hw.h"
#include "reg.h"
const char alx_drv_name[] = "alx";
static void alx_free_txbuf(struct alx_priv *alx, int entry)
{
struct alx_buffer *txb = &alx->txq.bufs[entry];
if (dma_unmap_len(txb, size)) {
dma_unmap_single(&alx->hw.pdev->dev,
dma_unmap_addr(txb, dma),
dma_unmap_len(txb, size),
DMA_TO_DEVICE);
dma_unmap_len_set(txb, size, 0);
}
if (txb->skb) {
dev_kfree_skb_any(txb->skb);
txb->skb = NULL;
}
}
static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
{
struct alx_rx_queue *rxq = &alx->rxq;
struct sk_buff *skb;
struct alx_buffer *cur_buf;
dma_addr_t dma;
u16 cur, next, count = 0;
next = cur = rxq->write_idx;
if (++next == alx->rx_ringsz)
next = 0;
cur_buf = &rxq->bufs[cur];
while (!cur_buf->skb && next != rxq->read_idx) {
struct alx_rfd *rfd = &rxq->rfd[cur];
skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp);
if (!skb)
break;
dma = dma_map_single(&alx->hw.pdev->dev,
skb->data, alx->rxbuf_size,
DMA_FROM_DEVICE);
if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
dev_kfree_skb(skb);
break;
}
/* Unfortunately, RX descriptor buffers must be 4-byte
* aligned, so we can't use IP alignment.
*/
if (WARN_ON(dma & 3)) {
dev_kfree_skb(skb);
break;
}
cur_buf->skb = skb;
dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
dma_unmap_addr_set(cur_buf, dma, dma);
rfd->addr = cpu_to_le64(dma);
cur = next;
if (++next == alx->rx_ringsz)
next = 0;
cur_buf = &rxq->bufs[cur];
count++;
}
if (count) {
/* flush all updates before updating hardware */
wmb();
rxq->write_idx = cur;
alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
}
return count;
}
static inline int alx_tpd_avail(struct alx_priv *alx)
{
struct alx_tx_queue *txq = &alx->txq;
if (txq->write_idx >= txq->read_idx)
return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
return txq->read_idx - txq->write_idx - 1;
}
static bool alx_clean_tx_irq(struct alx_priv *alx)
{
struct alx_tx_queue *txq = &alx->txq;
u16 hw_read_idx, sw_read_idx;
unsigned int total_bytes = 0, total_packets = 0;
int budget = ALX_DEFAULT_TX_WORK;
sw_read_idx = txq->read_idx;
hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
if (sw_read_idx != hw_read_idx) {
while (sw_read_idx != hw_read_idx && budget > 0) {
struct sk_buff *skb;
skb = txq->bufs[sw_read_idx].skb;
if (skb) {
total_bytes += skb->len;
total_packets++;
budget--;
}
alx_free_txbuf(alx, sw_read_idx);
if (++sw_read_idx == alx->tx_ringsz)
sw_read_idx = 0;
}
txq->read_idx = sw_read_idx;
netdev_completed_queue(alx->dev, total_packets, total_bytes);
}
if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
alx_tpd_avail(alx) > alx->tx_ringsz/4)
netif_wake_queue(alx->dev);
return sw_read_idx == hw_read_idx;
}
static void alx_schedule_link_check(struct alx_priv *alx)
{
schedule_work(&alx->link_check_wk);
}
static void alx_schedule_reset(struct alx_priv *alx)
{
schedule_work(&alx->reset_wk);
}
static bool alx_clean_rx_irq(struct alx_priv *alx, int budget)
{
struct alx_rx_queue *rxq = &alx->rxq;
struct alx_rrd *rrd;
struct alx_buffer *rxb;
struct sk_buff *skb;
u16 length, rfd_cleaned = 0;
while (budget > 0) {
rrd = &rxq->rrd[rxq->rrd_read_idx];
if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
break;
rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
RRD_SI) != rxq->read_idx ||
ALX_GET_FIELD(le32_to_cpu(rrd->word0),
RRD_NOR) != 1) {
alx_schedule_reset(alx);
return 0;
}
rxb = &rxq->bufs[rxq->read_idx];
dma_unmap_single(&alx->hw.pdev->dev,
dma_unmap_addr(rxb, dma),
dma_unmap_len(rxb, size),
DMA_FROM_DEVICE);
dma_unmap_len_set(rxb, size, 0);
skb = rxb->skb;
rxb->skb = NULL;
if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
rrd->word3 = 0;
dev_kfree_skb_any(skb);
goto next_pkt;
}
length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
RRD_PKTLEN) - ETH_FCS_LEN;
skb_put(skb, length);
skb->protocol = eth_type_trans(skb, alx->dev);
skb_checksum_none_assert(skb);
if (alx->dev->features & NETIF_F_RXCSUM &&
!(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
RRD_PID)) {
case RRD_PID_IPV6UDP:
case RRD_PID_IPV4UDP:
case RRD_PID_IPV4TCP:
case RRD_PID_IPV6TCP:
skb->ip_summed = CHECKSUM_UNNECESSARY;
break;
}
}
napi_gro_receive(&alx->napi, skb);
budget--;
next_pkt:
if (++rxq->read_idx == alx->rx_ringsz)
rxq->read_idx = 0;
if (++rxq->rrd_read_idx == alx->rx_ringsz)
rxq->rrd_read_idx = 0;
if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
}
if (rfd_cleaned)
alx_refill_rx_ring(alx, GFP_ATOMIC);
return budget > 0;
}
static int alx_poll(struct napi_struct *napi, int budget)
{
struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
struct alx_hw *hw = &alx->hw;
bool complete = true;
unsigned long flags;
complete = alx_clean_tx_irq(alx) &&
alx_clean_rx_irq(alx, budget);
if (!complete)
return 1;
napi_complete(&alx->napi);
/* enable interrupt */
spin_lock_irqsave(&alx->irq_lock, flags);
alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
spin_unlock_irqrestore(&alx->irq_lock, flags);
alx_post_write(hw);
return 0;
}
static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
{
struct alx_hw *hw = &alx->hw;
bool write_int_mask = false;
spin_lock(&alx->irq_lock);
/* ACK interrupt */
alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
intr &= alx->int_mask;
if (intr & ALX_ISR_FATAL) {
netif_warn(alx, hw, alx->dev,
"fatal interrupt 0x%x, resetting\n", intr);
alx_schedule_reset(alx);
goto out;
}
if (intr & ALX_ISR_ALERT)
netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
if (intr & ALX_ISR_PHY) {
/* suppress PHY interrupt, because the source
* is from PHY internal. only the internal status
* is cleared, the interrupt status could be cleared.
*/
alx->int_mask &= ~ALX_ISR_PHY;
write_int_mask = true;
alx_schedule_link_check(alx);
}
if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
napi_schedule(&alx->napi);
/* mask rx/tx interrupt, enable them when napi complete */
alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
write_int_mask = true;
}
if (write_int_mask)
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
alx_write_mem32(hw, ALX_ISR, 0);
out:
spin_unlock(&alx->irq_lock);
return IRQ_HANDLED;
}
static irqreturn_t alx_intr_msi(int irq, void *data)
{
struct alx_priv *alx = data;
return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
}
static irqreturn_t alx_intr_legacy(int irq, void *data)
{
struct alx_priv *alx = data;
struct alx_hw *hw = &alx->hw;
u32 intr;
intr = alx_read_mem32(hw, ALX_ISR);
if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
return IRQ_NONE;
return alx_intr_handle(alx, intr);
}
static void alx_init_ring_ptrs(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
alx->rxq.read_idx = 0;
alx->rxq.write_idx = 0;
alx->rxq.rrd_read_idx = 0;
alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
alx->txq.read_idx = 0;
alx->txq.write_idx = 0;
alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
/* load these pointers into the chip */
alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
}
static void alx_free_txring_buf(struct alx_priv *alx)
{
struct alx_tx_queue *txq = &alx->txq;
int i;
if (!txq->bufs)
return;
for (i = 0; i < alx->tx_ringsz; i++)
alx_free_txbuf(alx, i);
memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
txq->write_idx = 0;
txq->read_idx = 0;
netdev_reset_queue(alx->dev);
}
static void alx_free_rxring_buf(struct alx_priv *alx)
{
struct alx_rx_queue *rxq = &alx->rxq;
struct alx_buffer *cur_buf;
u16 i;
if (rxq == NULL)
return;
for (i = 0; i < alx->rx_ringsz; i++) {
cur_buf = rxq->bufs + i;
if (cur_buf->skb) {
dma_unmap_single(&alx->hw.pdev->dev,
dma_unmap_addr(cur_buf, dma),
dma_unmap_len(cur_buf, size),
DMA_FROM_DEVICE);
dev_kfree_skb(cur_buf->skb);
cur_buf->skb = NULL;
dma_unmap_len_set(cur_buf, size, 0);
dma_unmap_addr_set(cur_buf, dma, 0);
}
}
rxq->write_idx = 0;
rxq->read_idx = 0;
rxq->rrd_read_idx = 0;
}
static void alx_free_buffers(struct alx_priv *alx)
{
alx_free_txring_buf(alx);
alx_free_rxring_buf(alx);
}
static int alx_reinit_rings(struct alx_priv *alx)
{
alx_free_buffers(alx);
alx_init_ring_ptrs(alx);
if (!alx_refill_rx_ring(alx, GFP_KERNEL))
return -ENOMEM;
return 0;
}
static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
{
u32 crc32, bit, reg;
crc32 = ether_crc(ETH_ALEN, addr);
reg = (crc32 >> 31) & 0x1;
bit = (crc32 >> 26) & 0x1F;
mc_hash[reg] |= BIT(bit);
}
static void __alx_set_rx_mode(struct net_device *netdev)
{
struct alx_priv *alx = netdev_priv(netdev);
struct alx_hw *hw = &alx->hw;
struct netdev_hw_addr *ha;
u32 mc_hash[2] = {};
if (!(netdev->flags & IFF_ALLMULTI)) {
netdev_for_each_mc_addr(ha, netdev)
alx_add_mc_addr(hw, ha->addr, mc_hash);
alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
}
hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
if (netdev->flags & IFF_PROMISC)
hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
if (netdev->flags & IFF_ALLMULTI)
hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
}
static void alx_set_rx_mode(struct net_device *netdev)
{
__alx_set_rx_mode(netdev);
}
static int alx_set_mac_address(struct net_device *netdev, void *data)
{
struct alx_priv *alx = netdev_priv(netdev);
struct alx_hw *hw = &alx->hw;
struct sockaddr *addr = data;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (netdev->addr_assign_type & NET_ADDR_RANDOM)
netdev->addr_assign_type ^= NET_ADDR_RANDOM;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
alx_set_macaddr(hw, hw->mac_addr);
return 0;
}
static int alx_alloc_descriptors(struct alx_priv *alx)
{
alx->txq.bufs = kcalloc(alx->tx_ringsz,
sizeof(struct alx_buffer),
GFP_KERNEL);
if (!alx->txq.bufs)
return -ENOMEM;
alx->rxq.bufs = kcalloc(alx->rx_ringsz,
sizeof(struct alx_buffer),
GFP_KERNEL);
if (!alx->rxq.bufs)
goto out_free;
/* physical tx/rx ring descriptors
*
* Allocate them as a single chunk because they must not cross a
* 4G boundary (hardware has a single register for high 32 bits
* of addresses only)
*/
alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
sizeof(struct alx_rrd) * alx->rx_ringsz +
sizeof(struct alx_rfd) * alx->rx_ringsz;
alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
alx->descmem.size,
&alx->descmem.dma,
GFP_KERNEL);
if (!alx->descmem.virt)
goto out_free;
alx->txq.tpd = alx->descmem.virt;
alx->txq.tpd_dma = alx->descmem.dma;
/* alignment requirement for next block */
BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
alx->rxq.rrd =
(void *)((u8 *)alx->descmem.virt +
sizeof(struct alx_txd) * alx->tx_ringsz);
alx->rxq.rrd_dma = alx->descmem.dma +
sizeof(struct alx_txd) * alx->tx_ringsz;
/* alignment requirement for next block */
BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
alx->rxq.rfd =
(void *)((u8 *)alx->descmem.virt +
sizeof(struct alx_txd) * alx->tx_ringsz +
sizeof(struct alx_rrd) * alx->rx_ringsz);
alx->rxq.rfd_dma = alx->descmem.dma +
sizeof(struct alx_txd) * alx->tx_ringsz +
sizeof(struct alx_rrd) * alx->rx_ringsz;
return 0;
out_free:
kfree(alx->txq.bufs);
kfree(alx->rxq.bufs);
return -ENOMEM;
}
static int alx_alloc_rings(struct alx_priv *alx)
{
int err;
err = alx_alloc_descriptors(alx);
if (err)
return err;
alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
alx->tx_ringsz = alx->tx_ringsz;
netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
alx_reinit_rings(alx);
return 0;
}
static void alx_free_rings(struct alx_priv *alx)
{
netif_napi_del(&alx->napi);
alx_free_buffers(alx);
kfree(alx->txq.bufs);
kfree(alx->rxq.bufs);
dma_free_coherent(&alx->hw.pdev->dev,
alx->descmem.size,
alx->descmem.virt,
alx->descmem.dma);
}
static void alx_config_vector_mapping(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
}
static void alx_irq_enable(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
/* level-1 interrupt switch */
alx_write_mem32(hw, ALX_ISR, 0);
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
alx_post_write(hw);
}
static void alx_irq_disable(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
alx_write_mem32(hw, ALX_IMR, 0);
alx_post_write(hw);
synchronize_irq(alx->hw.pdev->irq);
}
static int alx_request_irq(struct alx_priv *alx)
{
struct pci_dev *pdev = alx->hw.pdev;
struct alx_hw *hw = &alx->hw;
int err;
u32 msi_ctrl;
msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
if (!pci_enable_msi(alx->hw.pdev)) {
alx->msi = true;
alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
msi_ctrl | ALX_MSI_MASK_SEL_LINE);
err = request_irq(pdev->irq, alx_intr_msi, 0,
alx->dev->name, alx);
if (!err)
goto out;
/* fall back to legacy interrupt */
pci_disable_msi(alx->hw.pdev);
}
alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
alx->dev->name, alx);
out:
if (!err)
alx_config_vector_mapping(alx);
return err;
}
static void alx_free_irq(struct alx_priv *alx)
{
struct pci_dev *pdev = alx->hw.pdev;
free_irq(pdev->irq, alx);
if (alx->msi) {
pci_disable_msi(alx->hw.pdev);
alx->msi = false;
}
}
static int alx_identify_hw(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
int rev = alx_hw_revision(hw);
if (rev > ALX_REV_C0)
return -EINVAL;
hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
return 0;
}
static int alx_init_sw(struct alx_priv *alx)
{
struct pci_dev *pdev = alx->hw.pdev;
struct alx_hw *hw = &alx->hw;
int err;
err = alx_identify_hw(alx);
if (err) {
dev_err(&pdev->dev, "unrecognized chip, aborting\n");
return err;
}
alx->hw.lnk_patch =
pdev->device == ALX_DEV_ID_AR8161 &&
pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
pdev->subsystem_device == 0x0091 &&
pdev->revision == 0;
hw->smb_timer = 400;
hw->mtu = alx->dev->mtu;
alx->rxbuf_size = ALIGN(ALX_RAW_MTU(hw->mtu), 8);
alx->tx_ringsz = 256;
alx->rx_ringsz = 512;
hw->imt = 200;
alx->int_mask = ALX_ISR_MISC;
hw->dma_chnl = hw->max_dma_chnl;
hw->ith_tpd = alx->tx_ringsz / 3;
hw->link_speed = SPEED_UNKNOWN;
hw->duplex = DUPLEX_UNKNOWN;
hw->adv_cfg = ADVERTISED_Autoneg |
ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_1000baseT_Full;
hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
ALX_MAC_CTRL_MHASH_ALG_HI5B |
ALX_MAC_CTRL_BRD_EN |
ALX_MAC_CTRL_PCRCE |
ALX_MAC_CTRL_CRCE |
ALX_MAC_CTRL_RXFC_EN |
ALX_MAC_CTRL_TXFC_EN |
7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
return err;
}
static netdev_features_t alx_fix_features(struct net_device *netdev,
netdev_features_t features)
{
if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
return features;
}
static void alx_netif_stop(struct alx_priv *alx)
{
alx->dev->trans_start = jiffies;
if (netif_carrier_ok(alx->dev)) {
netif_carrier_off(alx->dev);
netif_tx_disable(alx->dev);
napi_disable(&alx->napi);
}
}
static void alx_halt(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
alx_netif_stop(alx);
hw->link_speed = SPEED_UNKNOWN;
hw->duplex = DUPLEX_UNKNOWN;
alx_reset_mac(hw);
/* disable l0s/l1 */
alx_enable_aspm(hw, false, false);
alx_irq_disable(alx);
alx_free_buffers(alx);
}
static void alx_configure(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
alx_configure_basic(hw);
alx_disable_rss(hw);
__alx_set_rx_mode(alx->dev);
alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
}
static void alx_activate(struct alx_priv *alx)
{
/* hardware setting lost, restore it */
alx_reinit_rings(alx);
alx_configure(alx);
/* clear old interrupts */
alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
alx_irq_enable(alx);
alx_schedule_link_check(alx);
}
static void alx_reinit(struct alx_priv *alx)
{
ASSERT_RTNL();
alx_halt(alx);
alx_activate(alx);
}
static int alx_change_mtu(struct net_device *netdev, int mtu)
{
struct alx_priv *alx = netdev_priv(netdev);
int max_frame = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
if ((max_frame < ALX_MIN_FRAME_SIZE) ||
(max_frame > ALX_MAX_FRAME_SIZE))
return -EINVAL;
if (netdev->mtu == mtu)
return 0;
netdev->mtu = mtu;
alx->hw.mtu = mtu;
alx->rxbuf_size = mtu > ALX_DEF_RXBUF_SIZE ?
ALIGN(max_frame, 8) : ALX_DEF_RXBUF_SIZE;
netdev_update_features(netdev);
if (netif_running(netdev))
alx_reinit(alx);
return 0;
}
static void alx_netif_start(struct alx_priv *alx)
{
netif_tx_wake_all_queues(alx->dev);
napi_enable(&alx->napi);
netif_carrier_on(alx->dev);
}
static int __alx_open(struct alx_priv *alx, bool resume)
{
int err;
if (!resume)
netif_carrier_off(alx->dev);
err = alx_alloc_rings(alx);
if (err)
return err;
alx_configure(alx);
err = alx_request_irq(alx);
if (err)
goto out_free_rings;
/* clear old interrupts */
alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
alx_irq_enable(alx);
if (!resume)
netif_tx_start_all_queues(alx->dev);
alx_schedule_link_check(alx);
return 0;
out_free_rings:
alx_free_rings(alx);
return err;
}
static void __alx_stop(struct alx_priv *alx)
{
alx_halt(alx);
alx_free_irq(alx);
alx_free_rings(alx);
}
static const char *alx_speed_desc(struct alx_hw *hw)
{
switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
case ADVERTISED_1000baseT_Full:
return "1 Gbps Full";
case ADVERTISED_100baseT_Full:
return "100 Mbps Full";
case ADVERTISED_100baseT_Half:
return "100 Mbps Half";
case ADVERTISED_10baseT_Full:
return "10 Mbps Full";
case ADVERTISED_10baseT_Half:
return "10 Mbps Half";
default:
return "Unknown speed";
}
}
static void alx_check_link(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
unsigned long flags;
int old_speed;
u8 old_duplex;
int err;
/* clear PHY internal interrupt status, otherwise the main
* interrupt status will be asserted forever
*/
alx_clear_phy_intr(hw);
old_speed = hw->link_speed;
old_duplex = hw->duplex;
err = alx_read_phy_link(hw);
if (err < 0)
goto reset;
spin_lock_irqsave(&alx->irq_lock, flags);
alx->int_mask |= ALX_ISR_PHY;
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
spin_unlock_irqrestore(&alx->irq_lock, flags);
if (old_speed == hw->link_speed)
return;
if (hw->link_speed != SPEED_UNKNOWN) {
netif_info(alx, link, alx->dev,
"NIC Up: %s\n", alx_speed_desc(hw));
alx_post_phy_link(hw);
alx_enable_aspm(hw, true, true);
alx_start_mac(hw);
if (old_speed == SPEED_UNKNOWN)
alx_netif_start(alx);
} else {
/* link is now down */
alx_netif_stop(alx);
netif_info(alx, link, alx->dev, "Link Down\n");
err = alx_reset_mac(hw);
if (err)
goto reset;
alx_irq_disable(alx);
/* MAC reset causes all HW settings to be lost, restore all */
err = alx_reinit_rings(alx);
if (err)
goto reset;
alx_configure(alx);
alx_enable_aspm(hw, false, true);
alx_post_phy_link(hw);
alx_irq_enable(alx);
}
return;
reset:
alx_schedule_reset(alx);
}
static int alx_open(struct net_device *netdev)
{
return __alx_open(netdev_priv(netdev), false);
}
static int alx_stop(struct net_device *netdev)
{
__alx_stop(netdev_priv(netdev));
return 0;
}
static void alx_link_check(struct work_struct *work)
{
struct alx_priv *alx;
alx = container_of(work, struct alx_priv, link_check_wk);
rtnl_lock();
alx_check_link(alx);
rtnl_unlock();
}
static void alx_reset(struct work_struct *work)
{
struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
rtnl_lock();
alx_reinit(alx);
rtnl_unlock();
}
static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
{
u8 cso, css;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
cso = skb_checksum_start_offset(skb);
if (cso & 1)
return -EINVAL;
css = cso + skb->csum_offset;
first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
return 0;
}
static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
{
struct alx_tx_queue *txq = &alx->txq;
struct alx_txd *tpd, *first_tpd;
dma_addr_t dma;
int maplen, f, first_idx = txq->write_idx;
first_tpd = &txq->tpd[txq->write_idx];
tpd = first_tpd;
maplen = skb_headlen(skb);
dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
DMA_TO_DEVICE);
if (dma_mapping_error(&alx->hw.pdev->dev, dma))
goto err_dma;
dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
tpd->adrl.addr = cpu_to_le64(dma);
tpd->len = cpu_to_le16(maplen);
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[f];
if (++txq->write_idx == alx->tx_ringsz)
txq->write_idx = 0;
tpd = &txq->tpd[txq->write_idx];
tpd->word1 = first_tpd->word1;
maplen = skb_frag_size(frag);
dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
maplen, DMA_TO_DEVICE);
if (dma_mapping_error(&alx->hw.pdev->dev, dma))
goto err_dma;
dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
tpd->adrl.addr = cpu_to_le64(dma);
tpd->len = cpu_to_le16(maplen);
}
/* last TPD, set EOP flag and store skb */
tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
txq->bufs[txq->write_idx].skb = skb;
if (++txq->write_idx == alx->tx_ringsz)
txq->write_idx = 0;
return 0;
err_dma:
f = first_idx;
while (f != txq->write_idx) {
alx_free_txbuf(alx, f);
if (++f == alx->tx_ringsz)
f = 0;
}
return -ENOMEM;
}
static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct alx_priv *alx = netdev_priv(netdev);
struct alx_tx_queue *txq = &alx->txq;
struct alx_txd *first;
int tpdreq = skb_shinfo(skb)->nr_frags + 1;
if (alx_tpd_avail(alx) < tpdreq) {
netif_stop_queue(alx->dev);
goto drop;
}
first = &txq->tpd[txq->write_idx];
memset(first, 0, sizeof(*first));
if (alx_tx_csum(skb, first))
goto drop;
if (alx_map_tx_skb(alx, skb) < 0)
goto drop;
netdev_sent_queue(alx->dev, skb->len);
/* flush updates before updating hardware */
wmb();
alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
netif_stop_queue(alx->dev);
return NETDEV_TX_OK;
drop:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static void alx_tx_timeout(struct net_device *dev)
{
struct alx_priv *alx = netdev_priv(dev);
alx_schedule_reset(alx);
}
static int alx_mdio_read(struct net_device *netdev,
int prtad, int devad, u16 addr)
{
struct alx_priv *alx = netdev_priv(netdev);
struct alx_hw *hw = &alx->hw;
u16 val;
int err;
if (prtad != hw->mdio.prtad)
return -EINVAL;
if (devad == MDIO_DEVAD_NONE)
err = alx_read_phy_reg(hw, addr, &val);
else
err = alx_read_phy_ext(hw, devad, addr, &val);
if (err)
return err;
return val;
}
static int alx_mdio_write(struct net_device *netdev,
int prtad, int devad, u16 addr, u16 val)
{
struct alx_priv *alx = netdev_priv(netdev);
struct alx_hw *hw = &alx->hw;
if (prtad != hw->mdio.prtad)
return -EINVAL;
if (devad == MDIO_DEVAD_NONE)
return alx_write_phy_reg(hw, addr, val);
return alx_write_phy_ext(hw, devad, addr, val);
}
static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct alx_priv *alx = netdev_priv(netdev);
if (!netif_running(netdev))
return -EAGAIN;
return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void alx_poll_controller(struct net_device *netdev)
{
struct alx_priv *alx = netdev_priv(netdev);
if (alx->msi)
alx_intr_msi(0, alx);
else
alx_intr_legacy(0, alx);
}
#endif
static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *net_stats)
{
struct alx_priv *alx = netdev_priv(dev);
struct alx_hw_stats *hw_stats = &alx->hw.stats;
spin_lock(&alx->stats_lock);
alx_update_hw_stats(&alx->hw);
net_stats->tx_bytes = hw_stats->tx_byte_cnt;
net_stats->rx_bytes = hw_stats->rx_byte_cnt;
net_stats->multicast = hw_stats->rx_mcast;
net_stats->collisions = hw_stats->tx_single_col +
hw_stats->tx_multi_col +
hw_stats->tx_late_col +
hw_stats->tx_abort_col;
net_stats->rx_errors = hw_stats->rx_frag +
hw_stats->rx_fcs_err +
hw_stats->rx_len_err +
hw_stats->rx_ov_sz +
hw_stats->rx_ov_rrd +
hw_stats->rx_align_err +
hw_stats->rx_ov_rxf;
net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf;
net_stats->rx_length_errors = hw_stats->rx_len_err;
net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
net_stats->rx_frame_errors = hw_stats->rx_align_err;
net_stats->rx_dropped = hw_stats->rx_ov_rrd;
net_stats->tx_errors = hw_stats->tx_late_col +
hw_stats->tx_abort_col +
hw_stats->tx_underrun +
hw_stats->tx_trunc;
net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
net_stats->tx_fifo_errors = hw_stats->tx_underrun;
net_stats->tx_window_errors = hw_stats->tx_late_col;
net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
spin_unlock(&alx->stats_lock);
return net_stats;
}
static const struct net_device_ops alx_netdev_ops = {
.ndo_open = alx_open,
.ndo_stop = alx_stop,
.ndo_start_xmit = alx_start_xmit,
.ndo_get_stats64 = alx_get_stats64,
.ndo_set_rx_mode = alx_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = alx_set_mac_address,
.ndo_change_mtu = alx_change_mtu,
.ndo_do_ioctl = alx_ioctl,
.ndo_tx_timeout = alx_tx_timeout,
.ndo_fix_features = alx_fix_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = alx_poll_controller,
#endif
};
static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct alx_priv *alx;
struct alx_hw *hw;
bool phy_configured;
int bars, err;
err = pci_enable_device_mem(pdev);
if (err)
return err;
/* The alx chip can DMA to 64-bit addresses, but it uses a single
* shared register for the high 32 bits, so only a single, aligned,
* 4 GB physical address range can be used for descriptors.
*/
if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
} else {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "No usable DMA config, aborting\n");
goto out_pci_disable;
}
}
bars = pci_select_bars(pdev, IORESOURCE_MEM);
err = pci_request_selected_regions(pdev, bars, alx_drv_name);
if (err) {
dev_err(&pdev->dev,
"pci_request_selected_regions failed(bars:%d)\n", bars);
goto out_pci_disable;
}
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
if (!pdev->pm_cap) {
dev_err(&pdev->dev,
"Can't find power management capability, aborting\n");
err = -EIO;
goto out_pci_release;
}
netdev = alloc_etherdev(sizeof(*alx));
if (!netdev) {
err = -ENOMEM;
goto out_pci_release;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
alx = netdev_priv(netdev);
spin_lock_init(&alx->hw.mdio_lock);
spin_lock_init(&alx->irq_lock);
spin_lock_init(&alx->stats_lock);
alx->dev = netdev;
alx->hw.pdev = pdev;
alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
hw = &alx->hw;
pci_set_drvdata(pdev, alx);
hw->hw_addr = pci_ioremap_bar(pdev, 0);
if (!hw->hw_addr) {
dev_err(&pdev->dev, "cannot map device registers\n");
err = -EIO;
goto out_free_netdev;
}
netdev->netdev_ops = &alx_netdev_ops;
netdev->ethtool_ops = &alx_ethtool_ops;
netdev->irq = pdev->irq;
netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
err = alx_init_sw(alx);
if (err) {
dev_err(&pdev->dev, "net device private data init failed\n");
goto out_unmap;
}
alx_reset_pcie(hw);
phy_configured = alx_phy_configured(hw);
if (!phy_configured)
alx_reset_phy(hw);
err = alx_reset_mac(hw);
if (err) {
dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
goto out_unmap;
}
/* setup link to put it in a known good starting state */
if (!phy_configured) {
err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
if (err) {
dev_err(&pdev->dev,
"failed to configure PHY speed/duplex (err=%d)\n",
err);
goto out_unmap;
}
}
netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
dev_warn(&pdev->dev,
"Invalid permanent address programmed, using random one\n");
eth_hw_addr_random(netdev);
memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
}
memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
hw->mdio.prtad = 0;
hw->mdio.mmds = 0;
hw->mdio.dev = netdev;
hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
MDIO_SUPPORTS_C22 |
MDIO_EMULATE_C22;
hw->mdio.mdio_read = alx_mdio_read;
hw->mdio.mdio_write = alx_mdio_write;
if (!alx_get_phy_info(hw)) {
dev_err(&pdev->dev, "failed to identify PHY\n");
err = -EIO;
goto out_unmap;
}
INIT_WORK(&alx->link_check_wk, alx_link_check);
INIT_WORK(&alx->reset_wk, alx_reset);
netif_carrier_off(netdev);
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "register netdevice failed\n");
goto out_unmap;
}
netdev_info(netdev,
"Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
netdev->dev_addr);
return 0;
out_unmap:
iounmap(hw->hw_addr);
out_free_netdev:
free_netdev(netdev);
out_pci_release:
pci_release_selected_regions(pdev, bars);
out_pci_disable:
pci_disable_device(pdev);
return err;
}
static void alx_remove(struct pci_dev *pdev)
{
struct alx_priv *alx = pci_get_drvdata(pdev);
struct alx_hw *hw = &alx->hw;
cancel_work_sync(&alx->link_check_wk);
cancel_work_sync(&alx->reset_wk);
/* restore permanent mac address */
alx_set_macaddr(hw, hw->perm_addr);
unregister_netdev(alx->dev);
iounmap(hw->hw_addr);
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
free_netdev(alx->dev);
}
#ifdef CONFIG_PM_SLEEP
static int alx_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct alx_priv *alx = pci_get_drvdata(pdev);
if (!netif_running(alx->dev))
return 0;
netif_device_detach(alx->dev);
__alx_stop(alx);
return 0;
}
static int alx_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct alx_priv *alx = pci_get_drvdata(pdev);
struct alx_hw *hw = &alx->hw;
alx_reset_phy(hw);
if (!netif_running(alx->dev))
return 0;
netif_device_attach(alx->dev);
return __alx_open(alx, true);
}
static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
#define ALX_PM_OPS (&alx_pm_ops)
#else
#define ALX_PM_OPS NULL
#endif
static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct alx_priv *alx = pci_get_drvdata(pdev);
struct net_device *netdev = alx->dev;
pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
dev_info(&pdev->dev, "pci error detected\n");
rtnl_lock();
if (netif_running(netdev)) {
netif_device_detach(netdev);
alx_halt(alx);
}
if (state == pci_channel_io_perm_failure)
rc = PCI_ERS_RESULT_DISCONNECT;
else
pci_disable_device(pdev);
rtnl_unlock();
return rc;
}
static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
{
struct alx_priv *alx = pci_get_drvdata(pdev);
struct alx_hw *hw = &alx->hw;
pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
dev_info(&pdev->dev, "pci error slot reset\n");
rtnl_lock();
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
goto out;
}
pci_set_master(pdev);
alx_reset_pcie(hw);
if (!alx_reset_mac(hw))
rc = PCI_ERS_RESULT_RECOVERED;
out:
pci_cleanup_aer_uncorrect_error_status(pdev);
rtnl_unlock();
return rc;
}
static void alx_pci_error_resume(struct pci_dev *pdev)
{
struct alx_priv *alx = pci_get_drvdata(pdev);
struct net_device *netdev = alx->dev;
dev_info(&pdev->dev, "pci error resume\n");
rtnl_lock();
if (netif_running(netdev)) {
alx_activate(alx);
netif_device_attach(netdev);
}
rtnl_unlock();
}
static const struct pci_error_handlers alx_err_handlers = {
.error_detected = alx_pci_error_detected,
.slot_reset = alx_pci_error_slot_reset,
.resume = alx_pci_error_resume,
};
static const struct pci_device_id alx_pci_tbl[] = {
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
{}
};
static struct pci_driver alx_driver = {
.name = alx_drv_name,
.id_table = alx_pci_tbl,
.probe = alx_probe,
.remove = alx_remove,
.err_handler = &alx_err_handlers,
.driver.pm = ALX_PM_OPS,
};
module_pci_driver(alx_driver);
MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
MODULE_DESCRIPTION(
"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
MODULE_LICENSE("GPL");