OpenCloudOS-Kernel/drivers/phy/amlogic/phy-meson-axg-mipi-dphy.c

415 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Meson AXG MIPI DPHY driver
*
* Copyright (C) 2018 Amlogic, Inc. All rights reserved
* Copyright (C) 2020 BayLibre, SAS
* Author: Neil Armstrong <narmstrong@baylibre.com>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
/* [31] soft reset for the phy.
* 1: reset. 0: dessert the reset.
* [30] clock lane soft reset.
* [29] data byte lane 3 soft reset.
* [28] data byte lane 2 soft reset.
* [27] data byte lane 1 soft reset.
* [26] data byte lane 0 soft reset.
* [25] mipi dsi pll clock selection.
* 1: clock from fixed 850Mhz clock source. 0: from VID2 PLL.
* [12] mipi HSbyteclk enable.
* [11] mipi divider clk selection.
* 1: select the mipi DDRCLKHS from clock divider.
* 0: from PLL clock.
* [10] mipi clock divider control.
* 1: /4. 0: /2.
* [9] mipi divider output enable.
* [8] mipi divider counter enable.
* [7] PLL clock enable.
* [5] LPDT data endian.
* 1 = transfer the high bit first. 0 : transfer the low bit first.
* [4] HS data endian.
* [3] force data byte lane in stop mode.
* [2] force data byte lane 0 in receiver mode.
* [1] write 1 to sync the txclkesc input. the internal logic have to
* use txclkesc to decide Txvalid and Txready.
* [0] enalbe the MIPI DPHY TxDDRClk.
*/
#define MIPI_DSI_PHY_CTRL 0x0
/* [31] clk lane tx_hs_en control selection.
* 1: from register. 0: use clk lane state machine.
* [30] register bit for clock lane tx_hs_en.
* [29] clk lane tx_lp_en contrl selection.
* 1: from register. 0: from clk lane state machine.
* [28] register bit for clock lane tx_lp_en.
* [27] chan0 tx_hs_en control selection.
* 1: from register. 0: from chan0 state machine.
* [26] register bit for chan0 tx_hs_en.
* [25] chan0 tx_lp_en control selection.
* 1: from register. 0: from chan0 state machine.
* [24] register bit from chan0 tx_lp_en.
* [23] chan0 rx_lp_en control selection.
* 1: from register. 0: from chan0 state machine.
* [22] register bit from chan0 rx_lp_en.
* [21] chan0 contention detection enable control selection.
* 1: from register. 0: from chan0 state machine.
* [20] register bit from chan0 contention dectection enable.
* [19] chan1 tx_hs_en control selection.
* 1: from register. 0: from chan0 state machine.
* [18] register bit for chan1 tx_hs_en.
* [17] chan1 tx_lp_en control selection.
* 1: from register. 0: from chan0 state machine.
* [16] register bit from chan1 tx_lp_en.
* [15] chan2 tx_hs_en control selection.
* 1: from register. 0: from chan0 state machine.
* [14] register bit for chan2 tx_hs_en.
* [13] chan2 tx_lp_en control selection.
* 1: from register. 0: from chan0 state machine.
* [12] register bit from chan2 tx_lp_en.
* [11] chan3 tx_hs_en control selection.
* 1: from register. 0: from chan0 state machine.
* [10] register bit for chan3 tx_hs_en.
* [9] chan3 tx_lp_en control selection.
* 1: from register. 0: from chan0 state machine.
* [8] register bit from chan3 tx_lp_en.
* [4] clk chan power down. this bit is also used as the power down
* of the whole MIPI_DSI_PHY.
* [3] chan3 power down.
* [2] chan2 power down.
* [1] chan1 power down.
* [0] chan0 power down.
*/
#define MIPI_DSI_CHAN_CTRL 0x4
/* [24] rx turn watch dog triggered.
* [23] rx esc watchdog triggered.
* [22] mbias ready.
* [21] txclkesc synced and ready.
* [20:17] clk lane state. {mbias_ready, tx_stop, tx_ulps, tx_hs_active}
* [16:13] chan3 state{0, tx_stop, tx_ulps, tx_hs_active}
* [12:9] chan2 state.{0, tx_stop, tx_ulps, tx_hs_active}
* [8:5] chan1 state. {0, tx_stop, tx_ulps, tx_hs_active}
* [4:0] chan0 state. {TX_STOP, tx_ULPS, hs_active, direction, rxulpsesc}
*/
#define MIPI_DSI_CHAN_STS 0x8
/* [31:24] TCLK_PREPARE.
* [23:16] TCLK_ZERO.
* [15:8] TCLK_POST.
* [7:0] TCLK_TRAIL.
*/
#define MIPI_DSI_CLK_TIM 0xc
/* [31:24] THS_PREPARE.
* [23:16] THS_ZERO.
* [15:8] THS_TRAIL.
* [7:0] THS_EXIT.
*/
#define MIPI_DSI_HS_TIM 0x10
/* [31:24] tTA_GET.
* [23:16] tTA_GO.
* [15:8] tTA_SURE.
* [7:0] tLPX.
*/
#define MIPI_DSI_LP_TIM 0x14
/* wait time to MIPI DIS analog ready. */
#define MIPI_DSI_ANA_UP_TIM 0x18
/* TINIT. */
#define MIPI_DSI_INIT_TIM 0x1c
/* TWAKEUP. */
#define MIPI_DSI_WAKEUP_TIM 0x20
/* when in RxULPS check state, after the the logic enable the analog,
* how long we should wait to check the lP state .
*/
#define MIPI_DSI_LPOK_TIM 0x24
/* Watchdog for RX low power state no finished. */
#define MIPI_DSI_LP_WCHDOG 0x28
/* tMBIAS, after send power up signals to analog,
* how long we should wait for analog powered up.
*/
#define MIPI_DSI_ANA_CTRL 0x2c
/* [31:8] reserved for future.
* [7:0] tCLK_PRE.
*/
#define MIPI_DSI_CLK_TIM1 0x30
/* watchdog for turn around waiting time. */
#define MIPI_DSI_TURN_WCHDOG 0x34
/* When in RxULPS state, how frequency we should to check
* if the TX side out of ULPS state.
*/
#define MIPI_DSI_ULPS_CHECK 0x38
#define MIPI_DSI_TEST_CTRL0 0x3c
#define MIPI_DSI_TEST_CTRL1 0x40
struct phy_meson_axg_mipi_dphy_priv {
struct device *dev;
struct regmap *regmap;
struct clk *clk;
struct reset_control *reset;
struct phy *analog;
struct phy_configure_opts_mipi_dphy config;
};
static const struct regmap_config phy_meson_axg_mipi_dphy_regmap_conf = {
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = MIPI_DSI_TEST_CTRL1,
};
static int phy_meson_axg_mipi_dphy_init(struct phy *phy)
{
struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_init(priv->analog);
if (ret)
return ret;
ret = reset_control_reset(priv->reset);
if (ret)
return ret;
return 0;
}
static int phy_meson_axg_mipi_dphy_configure(struct phy *phy,
union phy_configure_opts *opts)
{
struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
if (ret)
return ret;
ret = phy_configure(priv->analog, opts);
if (ret)
return ret;
memcpy(&priv->config, opts, sizeof(priv->config));
return 0;
}
static int phy_meson_axg_mipi_dphy_power_on(struct phy *phy)
{
struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
unsigned long temp;
ret = phy_power_on(priv->analog);
if (ret)
return ret;
/* enable phy clock */
regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL, 0x1);
regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL,
BIT(0) | /* enable the DSI PLL clock . */
BIT(7) | /* enable pll clock which connected to DDR clock path */
BIT(8)); /* enable the clock divider counter */
/* enable the divider clock out */
regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(9), BIT(9));
/* enable the byte clock generation. */
regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(12), BIT(12));
regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31), BIT(31));
regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31), 0);
/* Calculate lanebyteclk period in ps */
temp = (1000000 * 100) / (priv->config.hs_clk_rate / 1000);
temp = temp * 8 * 10;
regmap_write(priv->regmap, MIPI_DSI_CLK_TIM,
DIV_ROUND_UP(priv->config.clk_trail, temp) |
(DIV_ROUND_UP(priv->config.clk_post +
priv->config.hs_trail, temp) << 8) |
(DIV_ROUND_UP(priv->config.clk_zero, temp) << 16) |
(DIV_ROUND_UP(priv->config.clk_prepare, temp) << 24));
regmap_write(priv->regmap, MIPI_DSI_CLK_TIM1,
DIV_ROUND_UP(priv->config.clk_pre, BITS_PER_BYTE));
regmap_write(priv->regmap, MIPI_DSI_HS_TIM,
DIV_ROUND_UP(priv->config.hs_exit, temp) |
(DIV_ROUND_UP(priv->config.hs_trail, temp) << 8) |
(DIV_ROUND_UP(priv->config.hs_zero, temp) << 16) |
(DIV_ROUND_UP(priv->config.hs_prepare, temp) << 24));
regmap_write(priv->regmap, MIPI_DSI_LP_TIM,
DIV_ROUND_UP(priv->config.lpx, temp) |
(DIV_ROUND_UP(priv->config.ta_sure, temp) << 8) |
(DIV_ROUND_UP(priv->config.ta_go, temp) << 16) |
(DIV_ROUND_UP(priv->config.ta_get, temp) << 24));
regmap_write(priv->regmap, MIPI_DSI_ANA_UP_TIM, 0x0100);
regmap_write(priv->regmap, MIPI_DSI_INIT_TIM,
DIV_ROUND_UP(priv->config.init * NSEC_PER_MSEC, temp));
regmap_write(priv->regmap, MIPI_DSI_WAKEUP_TIM,
DIV_ROUND_UP(priv->config.wakeup * NSEC_PER_MSEC, temp));
regmap_write(priv->regmap, MIPI_DSI_LPOK_TIM, 0x7C);
regmap_write(priv->regmap, MIPI_DSI_ULPS_CHECK, 0x927C);
regmap_write(priv->regmap, MIPI_DSI_LP_WCHDOG, 0x1000);
regmap_write(priv->regmap, MIPI_DSI_TURN_WCHDOG, 0x1000);
/* Powerup the analog circuit */
switch (priv->config.lanes) {
case 1:
regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xe);
break;
case 2:
regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xc);
break;
case 3:
regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0x8);
break;
case 4:
default:
regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0);
break;
}
/* Trigger a sync active for esc_clk */
regmap_update_bits(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(1), BIT(1));
return 0;
}
static int phy_meson_axg_mipi_dphy_power_off(struct phy *phy)
{
struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy);
regmap_write(priv->regmap, MIPI_DSI_CHAN_CTRL, 0xf);
regmap_write(priv->regmap, MIPI_DSI_PHY_CTRL, BIT(31));
phy_power_off(priv->analog);
return 0;
}
static int phy_meson_axg_mipi_dphy_exit(struct phy *phy)
{
struct phy_meson_axg_mipi_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = phy_exit(priv->analog);
if (ret)
return ret;
return reset_control_reset(priv->reset);
}
static const struct phy_ops phy_meson_axg_mipi_dphy_ops = {
.configure = phy_meson_axg_mipi_dphy_configure,
.init = phy_meson_axg_mipi_dphy_init,
.exit = phy_meson_axg_mipi_dphy_exit,
.power_on = phy_meson_axg_mipi_dphy_power_on,
.power_off = phy_meson_axg_mipi_dphy_power_off,
.owner = THIS_MODULE,
};
static int phy_meson_axg_mipi_dphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct resource *res;
struct phy_meson_axg_mipi_dphy_priv *priv;
struct phy *phy;
void __iomem *base;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
platform_set_drvdata(pdev, priv);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
priv->regmap = devm_regmap_init_mmio(dev, base,
&phy_meson_axg_mipi_dphy_regmap_conf);
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
priv->clk = devm_clk_get(dev, "pclk");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
priv->reset = devm_reset_control_get(dev, "phy");
if (IS_ERR(priv->reset))
return PTR_ERR(priv->reset);
priv->analog = devm_phy_get(dev, "analog");
if (IS_ERR(priv->analog))
return PTR_ERR(priv->analog);
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
ret = reset_control_deassert(priv->reset);
if (ret)
return ret;
phy = devm_phy_create(dev, NULL, &phy_meson_axg_mipi_dphy_ops);
if (IS_ERR(phy)) {
ret = PTR_ERR(phy);
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to create PHY\n");
return ret;
}
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id phy_meson_axg_mipi_dphy_of_match[] = {
{ .compatible = "amlogic,axg-mipi-dphy", },
{ },
};
MODULE_DEVICE_TABLE(of, phy_meson_axg_mipi_dphy_of_match);
static struct platform_driver phy_meson_axg_mipi_dphy_driver = {
.probe = phy_meson_axg_mipi_dphy_probe,
.driver = {
.name = "phy-meson-axg-mipi-dphy",
.of_match_table = phy_meson_axg_mipi_dphy_of_match,
},
};
module_platform_driver(phy_meson_axg_mipi_dphy_driver);
MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
MODULE_DESCRIPTION("Meson AXG MIPI DPHY driver");
MODULE_LICENSE("GPL v2");