OpenCloudOS-Kernel/include/linux/blkdev.h

1837 lines
52 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_BLKDEV_H
#define _LINUX_BLKDEV_H
#include <linux/sched.h>
#include <linux/sched/clock.h>
#ifdef CONFIG_BLOCK
#include <linux/major.h>
#include <linux/genhd.h>
#include <linux/list.h>
#include <linux/llist.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/pagemap.h>
#include <linux/backing-dev-defs.h>
#include <linux/wait.h>
#include <linux/mempool.h>
#include <linux/pfn.h>
#include <linux/bio.h>
#include <linux/stringify.h>
#include <linux/gfp.h>
#include <linux/bsg.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/percpu-refcount.h>
#include <linux/scatterlist.h>
#include <linux/blkzoned.h>
struct module;
struct scsi_ioctl_command;
struct request_queue;
struct elevator_queue;
struct blk_trace;
struct request;
struct sg_io_hdr;
struct bsg_job;
struct blkcg_gq;
struct blk_flush_queue;
struct pr_ops;
struct rq_qos;
struct blk_queue_stats;
struct blk_stat_callback;
#define BLKDEV_MIN_RQ 4
#define BLKDEV_MAX_RQ 128 /* Default maximum */
/* Must be consistent with blk_mq_poll_stats_bkt() */
#define BLK_MQ_POLL_STATS_BKTS 16
/* Doing classic polling */
#define BLK_MQ_POLL_CLASSIC -1
/*
* Maximum number of blkcg policies allowed to be registered concurrently.
* Defined here to simplify include dependency.
*/
#define BLKCG_MAX_POLS 5
typedef void (rq_end_io_fn)(struct request *, blk_status_t);
/*
* request flags */
typedef __u32 __bitwise req_flags_t;
/* elevator knows about this request */
#define RQF_SORTED ((__force req_flags_t)(1 << 0))
/* drive already may have started this one */
#define RQF_STARTED ((__force req_flags_t)(1 << 1))
/* may not be passed by ioscheduler */
#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
/* request for flush sequence */
#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
/* merge of different types, fail separately */
#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
/* track inflight for MQ */
#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
/* don't call prep for this one */
#define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
/* set for "ide_preempt" requests and also for requests for which the SCSI
"quiesce" state must be ignored. */
#define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
/* contains copies of user pages */
#define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
/* vaguely specified driver internal error. Ignored by the block layer */
#define RQF_FAILED ((__force req_flags_t)(1 << 10))
/* don't warn about errors */
#define RQF_QUIET ((__force req_flags_t)(1 << 11))
/* elevator private data attached */
#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
/* account into disk and partition IO statistics */
#define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
/* request came from our alloc pool */
#define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
/* runtime pm request */
#define RQF_PM ((__force req_flags_t)(1 << 15))
/* on IO scheduler merge hash */
#define RQF_HASHED ((__force req_flags_t)(1 << 16))
/* track IO completion time */
#define RQF_STATS ((__force req_flags_t)(1 << 17))
/* Look at ->special_vec for the actual data payload instead of the
bio chain. */
#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
/* The per-zone write lock is held for this request */
#define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
/* already slept for hybrid poll */
#define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
/* ->timeout has been called, don't expire again */
#define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
/* flags that prevent us from merging requests: */
#define RQF_NOMERGE_FLAGS \
(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
/*
* Request state for blk-mq.
*/
enum mq_rq_state {
MQ_RQ_IDLE = 0,
MQ_RQ_IN_FLIGHT = 1,
MQ_RQ_COMPLETE = 2,
};
/*
* Try to put the fields that are referenced together in the same cacheline.
*
* If you modify this structure, make sure to update blk_rq_init() and
* especially blk_mq_rq_ctx_init() to take care of the added fields.
*/
struct request {
struct request_queue *q;
struct blk_mq_ctx *mq_ctx;
struct blk_mq_hw_ctx *mq_hctx;
unsigned int cmd_flags; /* op and common flags */
req_flags_t rq_flags;
int tag;
int internal_tag;
/* the following two fields are internal, NEVER access directly */
unsigned int __data_len; /* total data len */
sector_t __sector; /* sector cursor */
struct bio *bio;
struct bio *biotail;
struct list_head queuelist;
/*
* The hash is used inside the scheduler, and killed once the
* request reaches the dispatch list. The ipi_list is only used
* to queue the request for softirq completion, which is long
* after the request has been unhashed (and even removed from
* the dispatch list).
*/
union {
struct hlist_node hash; /* merge hash */
struct list_head ipi_list;
};
/*
* The rb_node is only used inside the io scheduler, requests
* are pruned when moved to the dispatch queue. So let the
* completion_data share space with the rb_node.
*/
union {
struct rb_node rb_node; /* sort/lookup */
struct bio_vec special_vec;
void *completion_data;
int error_count; /* for legacy drivers, don't use */
};
/*
* Three pointers are available for the IO schedulers, if they need
* more they have to dynamically allocate it. Flush requests are
* never put on the IO scheduler. So let the flush fields share
* space with the elevator data.
*/
union {
struct {
struct io_cq *icq;
void *priv[2];
} elv;
struct {
unsigned int seq;
struct list_head list;
rq_end_io_fn *saved_end_io;
} flush;
};
struct gendisk *rq_disk;
struct hd_struct *part;
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
/* Time that the first bio started allocating this request. */
u64 alloc_time_ns;
#endif
/* Time that this request was allocated for this IO. */
u64 start_time_ns;
/* Time that I/O was submitted to the device. */
u64 io_start_time_ns;
#ifdef CONFIG_BLK_WBT
unsigned short wbt_flags;
#endif
/*
* rq sectors used for blk stats. It has the same value
* with blk_rq_sectors(rq), except that it never be zeroed
* by completion.
*/
unsigned short stats_sectors;
/*
* Number of scatter-gather DMA addr+len pairs after
* physical address coalescing is performed.
*/
unsigned short nr_phys_segments;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
unsigned short nr_integrity_segments;
#endif
unsigned short write_hint;
unsigned short ioprio;
unsigned int extra_len; /* length of alignment and padding */
enum mq_rq_state state;
refcount_t ref;
unsigned int timeout;
unsigned long deadline;
union {
struct __call_single_data csd;
u64 fifo_time;
};
/*
* completion callback.
*/
rq_end_io_fn *end_io;
void *end_io_data;
};
static inline bool blk_op_is_scsi(unsigned int op)
{
return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
}
static inline bool blk_op_is_private(unsigned int op)
{
return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
}
static inline bool blk_rq_is_scsi(struct request *rq)
{
return blk_op_is_scsi(req_op(rq));
}
static inline bool blk_rq_is_private(struct request *rq)
{
return blk_op_is_private(req_op(rq));
}
static inline bool blk_rq_is_passthrough(struct request *rq)
{
return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
}
static inline bool bio_is_passthrough(struct bio *bio)
{
unsigned op = bio_op(bio);
return blk_op_is_scsi(op) || blk_op_is_private(op);
}
static inline unsigned short req_get_ioprio(struct request *req)
{
return req->ioprio;
}
#include <linux/elevator.h>
struct blk_queue_ctx;
typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
struct bio_vec;
typedef int (dma_drain_needed_fn)(struct request *);
enum blk_eh_timer_return {
BLK_EH_DONE, /* drivers has completed the command */
BLK_EH_RESET_TIMER, /* reset timer and try again */
};
enum blk_queue_state {
Queue_down,
Queue_up,
};
#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
#define BLK_SCSI_MAX_CMDS (256)
#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
/*
* Zoned block device models (zoned limit).
*/
enum blk_zoned_model {
BLK_ZONED_NONE, /* Regular block device */
BLK_ZONED_HA, /* Host-aware zoned block device */
BLK_ZONED_HM, /* Host-managed zoned block device */
};
struct queue_limits {
unsigned long bounce_pfn;
unsigned long seg_boundary_mask;
unsigned long virt_boundary_mask;
unsigned int max_hw_sectors;
unsigned int max_dev_sectors;
unsigned int chunk_sectors;
unsigned int max_sectors;
unsigned int max_segment_size;
unsigned int physical_block_size;
unsigned int alignment_offset;
unsigned int io_min;
unsigned int io_opt;
unsigned int max_discard_sectors;
unsigned int max_hw_discard_sectors;
unsigned int max_write_same_sectors;
unsigned int max_write_zeroes_sectors;
unsigned int discard_granularity;
unsigned int discard_alignment;
unsigned short logical_block_size;
unsigned short max_segments;
unsigned short max_integrity_segments;
unsigned short max_discard_segments;
unsigned char misaligned;
unsigned char discard_misaligned;
unsigned char raid_partial_stripes_expensive;
enum blk_zoned_model zoned;
};
#ifdef CONFIG_BLK_DEV_ZONED
/*
* Maximum number of zones to report with a single report zones command.
*/
#define BLK_ZONED_REPORT_MAX_ZONES 8192U
extern unsigned int blkdev_nr_zones(struct block_device *bdev);
extern int blkdev_report_zones(struct block_device *bdev,
sector_t sector, struct blk_zone *zones,
unsigned int *nr_zones);
extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
sector_t nr_sectors, gfp_t gfp_mask);
extern int blk_revalidate_disk_zones(struct gendisk *disk);
extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg);
extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg);
#else /* CONFIG_BLK_DEV_ZONED */
static inline unsigned int blkdev_nr_zones(struct block_device *bdev)
{
return 0;
}
static inline int blk_revalidate_disk_zones(struct gendisk *disk)
{
return 0;
}
static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
fmode_t mode, unsigned int cmd,
unsigned long arg)
{
return -ENOTTY;
}
static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
fmode_t mode, unsigned int cmd,
unsigned long arg)
{
return -ENOTTY;
}
#endif /* CONFIG_BLK_DEV_ZONED */
struct request_queue {
struct request *last_merge;
struct elevator_queue *elevator;
struct blk_queue_stats *stats;
struct rq_qos *rq_qos;
make_request_fn *make_request_fn;
dma_drain_needed_fn *dma_drain_needed;
const struct blk_mq_ops *mq_ops;
/* sw queues */
struct blk_mq_ctx __percpu *queue_ctx;
unsigned int nr_queues;
unsigned int queue_depth;
/* hw dispatch queues */
struct blk_mq_hw_ctx **queue_hw_ctx;
unsigned int nr_hw_queues;
struct backing_dev_info *backing_dev_info;
/*
* The queue owner gets to use this for whatever they like.
* ll_rw_blk doesn't touch it.
*/
void *queuedata;
/*
* various queue flags, see QUEUE_* below
*/
unsigned long queue_flags;
/*
* Number of contexts that have called blk_set_pm_only(). If this
* counter is above zero then only RQF_PM and RQF_PREEMPT requests are
* processed.
*/
atomic_t pm_only;
/*
* ida allocated id for this queue. Used to index queues from
* ioctx.
*/
int id;
/*
* queue needs bounce pages for pages above this limit
*/
gfp_t bounce_gfp;
spinlock_t queue_lock;
/*
* queue kobject
*/
struct kobject kobj;
/*
* mq queue kobject
*/
struct kobject *mq_kobj;
#ifdef CONFIG_BLK_DEV_INTEGRITY
struct blk_integrity integrity;
#endif /* CONFIG_BLK_DEV_INTEGRITY */
#ifdef CONFIG_PM
struct device *dev;
int rpm_status;
unsigned int nr_pending;
#endif
/*
* queue settings
*/
unsigned long nr_requests; /* Max # of requests */
unsigned int dma_drain_size;
void *dma_drain_buffer;
unsigned int dma_pad_mask;
unsigned int dma_alignment;
unsigned int rq_timeout;
int poll_nsec;
struct blk_stat_callback *poll_cb;
struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
struct timer_list timeout;
struct work_struct timeout_work;
struct list_head icq_list;
#ifdef CONFIG_BLK_CGROUP
DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
struct blkcg_gq *root_blkg;
struct list_head blkg_list;
#endif
struct queue_limits limits;
unsigned int required_elevator_features;
#ifdef CONFIG_BLK_DEV_ZONED
/*
* Zoned block device information for request dispatch control.
* nr_zones is the total number of zones of the device. This is always
* 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
* bits which indicates if a zone is conventional (bit clear) or
* sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
* bits which indicates if a zone is write locked, that is, if a write
* request targeting the zone was dispatched. All three fields are
* initialized by the low level device driver (e.g. scsi/sd.c).
* Stacking drivers (device mappers) may or may not initialize
* these fields.
*
* Reads of this information must be protected with blk_queue_enter() /
* blk_queue_exit(). Modifying this information is only allowed while
* no requests are being processed. See also blk_mq_freeze_queue() and
* blk_mq_unfreeze_queue().
*/
unsigned int nr_zones;
unsigned long *seq_zones_bitmap;
unsigned long *seq_zones_wlock;
#endif /* CONFIG_BLK_DEV_ZONED */
/*
* sg stuff
*/
unsigned int sg_timeout;
unsigned int sg_reserved_size;
int node;
#ifdef CONFIG_BLK_DEV_IO_TRACE
struct blk_trace *blk_trace;
struct mutex blk_trace_mutex;
#endif
/*
* for flush operations
*/
struct blk_flush_queue *fq;
struct list_head requeue_list;
spinlock_t requeue_lock;
struct delayed_work requeue_work;
struct mutex sysfs_lock;
struct mutex sysfs_dir_lock;
/*
* for reusing dead hctx instance in case of updating
* nr_hw_queues
*/
struct list_head unused_hctx_list;
spinlock_t unused_hctx_lock;
int mq_freeze_depth;
#if defined(CONFIG_BLK_DEV_BSG)
struct bsg_class_device bsg_dev;
#endif
#ifdef CONFIG_BLK_DEV_THROTTLING
/* Throttle data */
struct throtl_data *td;
#endif
struct rcu_head rcu_head;
wait_queue_head_t mq_freeze_wq;
/*
* Protect concurrent access to q_usage_counter by
* percpu_ref_kill() and percpu_ref_reinit().
*/
struct mutex mq_freeze_lock;
struct percpu_ref q_usage_counter;
struct blk_mq_tag_set *tag_set;
struct list_head tag_set_list;
struct bio_set bio_split;
#ifdef CONFIG_BLK_DEBUG_FS
struct dentry *debugfs_dir;
struct dentry *sched_debugfs_dir;
struct dentry *rqos_debugfs_dir;
#endif
bool mq_sysfs_init_done;
size_t cmd_size;
struct work_struct release_work;
#define BLK_MAX_WRITE_HINTS 5
u64 write_hints[BLK_MAX_WRITE_HINTS];
};
#define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
#define QUEUE_FLAG_DYING 1 /* queue being torn down */
#define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
#define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
#define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
#define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
#define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
#define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
#define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
#define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
#define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
#define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
#define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
#define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
#define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
#define QUEUE_FLAG_WC 17 /* Write back caching */
#define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
#define QUEUE_FLAG_DAX 19 /* device supports DAX */
#define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
#define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
#define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
#define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
#define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
#define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
#define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
#define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
(1 << QUEUE_FLAG_SAME_COMP))
void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
#define blk_queue_noxmerges(q) \
test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
#define blk_queue_zone_resetall(q) \
test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
#define blk_queue_secure_erase(q) \
(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
#define blk_queue_scsi_passthrough(q) \
test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
#define blk_queue_pci_p2pdma(q) \
test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
#define blk_queue_rq_alloc_time(q) \
test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
#else
#define blk_queue_rq_alloc_time(q) false
#endif
#define blk_noretry_request(rq) \
((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
REQ_FAILFAST_DRIVER))
#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
#define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
extern void blk_set_pm_only(struct request_queue *q);
extern void blk_clear_pm_only(struct request_queue *q);
static inline bool blk_account_rq(struct request *rq)
{
return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
}
#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
#define rq_dma_dir(rq) \
(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
#define dma_map_bvec(dev, bv, dir, attrs) \
dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
(dir), (attrs))
static inline bool queue_is_mq(struct request_queue *q)
{
return q->mq_ops;
}
static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue *q)
{
return q->limits.zoned;
}
static inline bool blk_queue_is_zoned(struct request_queue *q)
{
switch (blk_queue_zoned_model(q)) {
case BLK_ZONED_HA:
case BLK_ZONED_HM:
return true;
default:
return false;
}
}
static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
{
return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
}
#ifdef CONFIG_BLK_DEV_ZONED
static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
{
return blk_queue_is_zoned(q) ? q->nr_zones : 0;
}
static inline unsigned int blk_queue_zone_no(struct request_queue *q,
sector_t sector)
{
if (!blk_queue_is_zoned(q))
return 0;
return sector >> ilog2(q->limits.chunk_sectors);
}
static inline bool blk_queue_zone_is_seq(struct request_queue *q,
sector_t sector)
{
if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
return false;
return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
}
#else /* CONFIG_BLK_DEV_ZONED */
static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
{
return 0;
}
#endif /* CONFIG_BLK_DEV_ZONED */
static inline bool rq_is_sync(struct request *rq)
{
return op_is_sync(rq->cmd_flags);
}
static inline bool rq_mergeable(struct request *rq)
{
if (blk_rq_is_passthrough(rq))
return false;
if (req_op(rq) == REQ_OP_FLUSH)
return false;
if (req_op(rq) == REQ_OP_WRITE_ZEROES)
return false;
if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
return false;
if (rq->rq_flags & RQF_NOMERGE_FLAGS)
return false;
return true;
}
static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
{
if (bio_page(a) == bio_page(b) &&
bio_offset(a) == bio_offset(b))
return true;
return false;
}
static inline unsigned int blk_queue_depth(struct request_queue *q)
{
if (q->queue_depth)
return q->queue_depth;
return q->nr_requests;
}
extern unsigned long blk_max_low_pfn, blk_max_pfn;
/*
* standard bounce addresses:
*
* BLK_BOUNCE_HIGH : bounce all highmem pages
* BLK_BOUNCE_ANY : don't bounce anything
* BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
*/
#if BITS_PER_LONG == 32
#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
#else
#define BLK_BOUNCE_HIGH -1ULL
#endif
#define BLK_BOUNCE_ANY (-1ULL)
#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
/*
* default timeout for SG_IO if none specified
*/
#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
#define BLK_MIN_SG_TIMEOUT (7 * HZ)
struct rq_map_data {
struct page **pages;
int page_order;
int nr_entries;
unsigned long offset;
int null_mapped;
int from_user;
};
struct req_iterator {
struct bvec_iter iter;
struct bio *bio;
};
/* This should not be used directly - use rq_for_each_segment */
#define for_each_bio(_bio) \
for (; _bio; _bio = _bio->bi_next)
#define __rq_for_each_bio(_bio, rq) \
if ((rq->bio)) \
for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
#define rq_for_each_segment(bvl, _rq, _iter) \
__rq_for_each_bio(_iter.bio, _rq) \
bio_for_each_segment(bvl, _iter.bio, _iter.iter)
#define rq_for_each_bvec(bvl, _rq, _iter) \
__rq_for_each_bio(_iter.bio, _rq) \
bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
#define rq_iter_last(bvec, _iter) \
(_iter.bio->bi_next == NULL && \
bio_iter_last(bvec, _iter.iter))
#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
#endif
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
extern void rq_flush_dcache_pages(struct request *rq);
#else
static inline void rq_flush_dcache_pages(struct request *rq)
{
}
#endif
extern int blk_register_queue(struct gendisk *disk);
extern void blk_unregister_queue(struct gendisk *disk);
extern blk_qc_t generic_make_request(struct bio *bio);
extern blk_qc_t direct_make_request(struct bio *bio);
extern void blk_rq_init(struct request_queue *q, struct request *rq);
extern void blk_put_request(struct request *);
extern struct request *blk_get_request(struct request_queue *, unsigned int op,
blk_mq_req_flags_t flags);
extern int blk_lld_busy(struct request_queue *q);
extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
struct bio_set *bs, gfp_t gfp_mask,
int (*bio_ctr)(struct bio *, struct bio *, void *),
void *data);
extern void blk_rq_unprep_clone(struct request *rq);
extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
struct request *rq);
extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
extern void blk_queue_split(struct request_queue *, struct bio **);
extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
unsigned int, void __user *);
extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
unsigned int, void __user *);
extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
struct scsi_ioctl_command __user *);
extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
extern void blk_queue_exit(struct request_queue *q);
extern void blk_sync_queue(struct request_queue *q);
extern int blk_rq_map_user(struct request_queue *, struct request *,
struct rq_map_data *, void __user *, unsigned long,
gfp_t);
extern int blk_rq_unmap_user(struct bio *);
extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
struct rq_map_data *, const struct iov_iter *,
gfp_t);
extern void blk_execute_rq(struct request_queue *, struct gendisk *,
struct request *, int);
extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
struct request *, int, rq_end_io_fn *);
/* Helper to convert REQ_OP_XXX to its string format XXX */
extern const char *blk_op_str(unsigned int op);
int blk_status_to_errno(blk_status_t status);
blk_status_t errno_to_blk_status(int errno);
int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
{
return bdev->bd_disk->queue; /* this is never NULL */
}
/*
* The basic unit of block I/O is a sector. It is used in a number of contexts
* in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
* bytes. Variables of type sector_t represent an offset or size that is a
* multiple of 512 bytes. Hence these two constants.
*/
#ifndef SECTOR_SHIFT
#define SECTOR_SHIFT 9
#endif
#ifndef SECTOR_SIZE
#define SECTOR_SIZE (1 << SECTOR_SHIFT)
#endif
/*
* blk_rq_pos() : the current sector
* blk_rq_bytes() : bytes left in the entire request
* blk_rq_cur_bytes() : bytes left in the current segment
* blk_rq_err_bytes() : bytes left till the next error boundary
* blk_rq_sectors() : sectors left in the entire request
* blk_rq_cur_sectors() : sectors left in the current segment
* blk_rq_stats_sectors() : sectors of the entire request used for stats
*/
static inline sector_t blk_rq_pos(const struct request *rq)
{
return rq->__sector;
}
static inline unsigned int blk_rq_bytes(const struct request *rq)
{
return rq->__data_len;
}
static inline int blk_rq_cur_bytes(const struct request *rq)
{
return rq->bio ? bio_cur_bytes(rq->bio) : 0;
}
extern unsigned int blk_rq_err_bytes(const struct request *rq);
static inline unsigned int blk_rq_sectors(const struct request *rq)
{
return blk_rq_bytes(rq) >> SECTOR_SHIFT;
}
static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
{
return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
}
static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
{
return rq->stats_sectors;
}
#ifdef CONFIG_BLK_DEV_ZONED
static inline unsigned int blk_rq_zone_no(struct request *rq)
{
return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
}
static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
{
return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
}
#endif /* CONFIG_BLK_DEV_ZONED */
/*
* Some commands like WRITE SAME have a payload or data transfer size which
* is different from the size of the request. Any driver that supports such
* commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
* calculate the data transfer size.
*/
static inline unsigned int blk_rq_payload_bytes(struct request *rq)
{
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
return rq->special_vec.bv_len;
return blk_rq_bytes(rq);
}
/*
* Return the first full biovec in the request. The caller needs to check that
* there are any bvecs before calling this helper.
*/
static inline struct bio_vec req_bvec(struct request *rq)
{
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
return rq->special_vec;
return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
}
static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
int op)
{
if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
return min(q->limits.max_discard_sectors,
UINT_MAX >> SECTOR_SHIFT);
if (unlikely(op == REQ_OP_WRITE_SAME))
return q->limits.max_write_same_sectors;
if (unlikely(op == REQ_OP_WRITE_ZEROES))
return q->limits.max_write_zeroes_sectors;
return q->limits.max_sectors;
}
/*
* Return maximum size of a request at given offset. Only valid for
* file system requests.
*/
static inline unsigned int blk_max_size_offset(struct request_queue *q,
sector_t offset)
{
if (!q->limits.chunk_sectors)
return q->limits.max_sectors;
return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
(offset & (q->limits.chunk_sectors - 1))));
}
static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
sector_t offset)
{
struct request_queue *q = rq->q;
if (blk_rq_is_passthrough(rq))
return q->limits.max_hw_sectors;
if (!q->limits.chunk_sectors ||
req_op(rq) == REQ_OP_DISCARD ||
req_op(rq) == REQ_OP_SECURE_ERASE)
return blk_queue_get_max_sectors(q, req_op(rq));
return min(blk_max_size_offset(q, offset),
blk_queue_get_max_sectors(q, req_op(rq)));
}
static inline unsigned int blk_rq_count_bios(struct request *rq)
{
unsigned int nr_bios = 0;
struct bio *bio;
__rq_for_each_bio(bio, rq)
nr_bios++;
return nr_bios;
}
void blk_steal_bios(struct bio_list *list, struct request *rq);
/*
* Request completion related functions.
*
* blk_update_request() completes given number of bytes and updates
* the request without completing it.
*/
extern bool blk_update_request(struct request *rq, blk_status_t error,
unsigned int nr_bytes);
extern void __blk_complete_request(struct request *);
extern void blk_abort_request(struct request *);
/*
* Access functions for manipulating queue properties
*/
extern void blk_cleanup_queue(struct request_queue *);
extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
extern void blk_queue_bounce_limit(struct request_queue *, u64);
extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
extern void blk_queue_max_segments(struct request_queue *, unsigned short);
extern void blk_queue_max_discard_segments(struct request_queue *,
unsigned short);
extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
extern void blk_queue_max_discard_sectors(struct request_queue *q,
unsigned int max_discard_sectors);
extern void blk_queue_max_write_same_sectors(struct request_queue *q,
unsigned int max_write_same_sectors);
extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
unsigned int max_write_same_sectors);
extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
extern void blk_queue_alignment_offset(struct request_queue *q,
unsigned int alignment);
extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
extern void blk_set_default_limits(struct queue_limits *lim);
extern void blk_set_stacking_limits(struct queue_limits *lim);
extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
sector_t offset);
extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
sector_t offset);
extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
sector_t offset);
extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
extern int blk_queue_dma_drain(struct request_queue *q,
dma_drain_needed_fn *dma_drain_needed,
void *buf, unsigned int size);
extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
extern void blk_queue_dma_alignment(struct request_queue *, int);
extern void blk_queue_update_dma_alignment(struct request_queue *, int);
extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
extern void blk_queue_required_elevator_features(struct request_queue *q,
unsigned int features);
extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
struct device *dev);
/*
* Number of physical segments as sent to the device.
*
* Normally this is the number of discontiguous data segments sent by the
* submitter. But for data-less command like discard we might have no
* actual data segments submitted, but the driver might have to add it's
* own special payload. In that case we still return 1 here so that this
* special payload will be mapped.
*/
static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
{
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
return 1;
return rq->nr_phys_segments;
}
/*
* Number of discard segments (or ranges) the driver needs to fill in.
* Each discard bio merged into a request is counted as one segment.
*/
static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
{
return max_t(unsigned short, rq->nr_phys_segments, 1);
}
extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
extern void blk_dump_rq_flags(struct request *, char *);
extern long nr_blockdev_pages(void);
bool __must_check blk_get_queue(struct request_queue *);
struct request_queue *blk_alloc_queue(gfp_t);
struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
extern void blk_put_queue(struct request_queue *);
extern void blk_set_queue_dying(struct request_queue *);
/*
* blk_plug permits building a queue of related requests by holding the I/O
* fragments for a short period. This allows merging of sequential requests
* into single larger request. As the requests are moved from a per-task list to
* the device's request_queue in a batch, this results in improved scalability
* as the lock contention for request_queue lock is reduced.
*
* It is ok not to disable preemption when adding the request to the plug list
* or when attempting a merge, because blk_schedule_flush_list() will only flush
* the plug list when the task sleeps by itself. For details, please see
* schedule() where blk_schedule_flush_plug() is called.
*/
struct blk_plug {
struct list_head mq_list; /* blk-mq requests */
struct list_head cb_list; /* md requires an unplug callback */
unsigned short rq_count;
bool multiple_queues;
};
#define BLK_MAX_REQUEST_COUNT 16
#define BLK_PLUG_FLUSH_SIZE (128 * 1024)
struct blk_plug_cb;
typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
struct blk_plug_cb {
struct list_head list;
blk_plug_cb_fn callback;
void *data;
};
extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
void *data, int size);
extern void blk_start_plug(struct blk_plug *);
extern void blk_finish_plug(struct blk_plug *);
extern void blk_flush_plug_list(struct blk_plug *, bool);
static inline void blk_flush_plug(struct task_struct *tsk)
{
struct blk_plug *plug = tsk->plug;
if (plug)
blk_flush_plug_list(plug, false);
}
static inline void blk_schedule_flush_plug(struct task_struct *tsk)
{
struct blk_plug *plug = tsk->plug;
if (plug)
blk_flush_plug_list(plug, true);
}
static inline bool blk_needs_flush_plug(struct task_struct *tsk)
{
struct blk_plug *plug = tsk->plug;
return plug &&
(!list_empty(&plug->mq_list) ||
!list_empty(&plug->cb_list));
}
extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, struct page *page);
#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, int flags,
struct bio **biop);
#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
unsigned flags);
extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
static inline int sb_issue_discard(struct super_block *sb, sector_t block,
sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
{
return blkdev_issue_discard(sb->s_bdev,
block << (sb->s_blocksize_bits -
SECTOR_SHIFT),
nr_blocks << (sb->s_blocksize_bits -
SECTOR_SHIFT),
gfp_mask, flags);
}
static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
sector_t nr_blocks, gfp_t gfp_mask)
{
return blkdev_issue_zeroout(sb->s_bdev,
block << (sb->s_blocksize_bits -
SECTOR_SHIFT),
nr_blocks << (sb->s_blocksize_bits -
SECTOR_SHIFT),
gfp_mask, 0);
}
extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
enum blk_default_limits {
BLK_MAX_SEGMENTS = 128,
BLK_SAFE_MAX_SECTORS = 255,
BLK_DEF_MAX_SECTORS = 2560,
BLK_MAX_SEGMENT_SIZE = 65536,
BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
};
static inline unsigned long queue_segment_boundary(const struct request_queue *q)
{
return q->limits.seg_boundary_mask;
}
static inline unsigned long queue_virt_boundary(const struct request_queue *q)
{
return q->limits.virt_boundary_mask;
}
static inline unsigned int queue_max_sectors(const struct request_queue *q)
{
return q->limits.max_sectors;
}
static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
{
return q->limits.max_hw_sectors;
}
static inline unsigned short queue_max_segments(const struct request_queue *q)
{
return q->limits.max_segments;
}
static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
{
return q->limits.max_discard_segments;
}
static inline unsigned int queue_max_segment_size(const struct request_queue *q)
{
return q->limits.max_segment_size;
}
static inline unsigned short queue_logical_block_size(const struct request_queue *q)
{
int retval = 512;
if (q && q->limits.logical_block_size)
retval = q->limits.logical_block_size;
return retval;
}
static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
{
return queue_logical_block_size(bdev_get_queue(bdev));
}
static inline unsigned int queue_physical_block_size(const struct request_queue *q)
{
return q->limits.physical_block_size;
}
static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
{
return queue_physical_block_size(bdev_get_queue(bdev));
}
static inline unsigned int queue_io_min(const struct request_queue *q)
{
return q->limits.io_min;
}
static inline int bdev_io_min(struct block_device *bdev)
{
return queue_io_min(bdev_get_queue(bdev));
}
static inline unsigned int queue_io_opt(const struct request_queue *q)
{
return q->limits.io_opt;
}
static inline int bdev_io_opt(struct block_device *bdev)
{
return queue_io_opt(bdev_get_queue(bdev));
}
static inline int queue_alignment_offset(const struct request_queue *q)
{
if (q->limits.misaligned)
return -1;
return q->limits.alignment_offset;
}
static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
{
unsigned int granularity = max(lim->physical_block_size, lim->io_min);
unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
<< SECTOR_SHIFT;
return (granularity + lim->alignment_offset - alignment) % granularity;
}
static inline int bdev_alignment_offset(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (q->limits.misaligned)
return -1;
if (bdev != bdev->bd_contains)
return bdev->bd_part->alignment_offset;
return q->limits.alignment_offset;
}
static inline int queue_discard_alignment(const struct request_queue *q)
{
if (q->limits.discard_misaligned)
return -1;
return q->limits.discard_alignment;
}
static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
{
unsigned int alignment, granularity, offset;
if (!lim->max_discard_sectors)
return 0;
/* Why are these in bytes, not sectors? */
alignment = lim->discard_alignment >> SECTOR_SHIFT;
granularity = lim->discard_granularity >> SECTOR_SHIFT;
if (!granularity)
return 0;
/* Offset of the partition start in 'granularity' sectors */
offset = sector_div(sector, granularity);
/* And why do we do this modulus *again* in blkdev_issue_discard()? */
offset = (granularity + alignment - offset) % granularity;
/* Turn it back into bytes, gaah */
return offset << SECTOR_SHIFT;
}
static inline int bdev_discard_alignment(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (bdev != bdev->bd_contains)
return bdev->bd_part->discard_alignment;
return q->limits.discard_alignment;
}
static inline unsigned int bdev_write_same(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (q)
return q->limits.max_write_same_sectors;
return 0;
}
static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (q)
return q->limits.max_write_zeroes_sectors;
return 0;
}
static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (q)
return blk_queue_zoned_model(q);
return BLK_ZONED_NONE;
}
static inline bool bdev_is_zoned(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (q)
return blk_queue_is_zoned(q);
return false;
}
static inline sector_t bdev_zone_sectors(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (q)
return blk_queue_zone_sectors(q);
return 0;
}
static inline int queue_dma_alignment(const struct request_queue *q)
{
return q ? q->dma_alignment : 511;
}
static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
unsigned int len)
{
unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
return !(addr & alignment) && !(len & alignment);
}
/* assumes size > 256 */
static inline unsigned int blksize_bits(unsigned int size)
{
unsigned int bits = 8;
do {
bits++;
size >>= 1;
} while (size > 256);
return bits;
}
static inline unsigned int block_size(struct block_device *bdev)
{
return bdev->bd_block_size;
}
typedef struct {struct page *v;} Sector;
unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
static inline void put_dev_sector(Sector p)
{
put_page(p.v);
}
int kblockd_schedule_work(struct work_struct *work);
int kblockd_schedule_work_on(int cpu, struct work_struct *work);
int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
#define MODULE_ALIAS_BLOCKDEV(major,minor) \
MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
MODULE_ALIAS("block-major-" __stringify(major) "-*")
#if defined(CONFIG_BLK_DEV_INTEGRITY)
enum blk_integrity_flags {
BLK_INTEGRITY_VERIFY = 1 << 0,
BLK_INTEGRITY_GENERATE = 1 << 1,
BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
};
struct blk_integrity_iter {
void *prot_buf;
void *data_buf;
sector_t seed;
unsigned int data_size;
unsigned short interval;
const char *disk_name;
};
typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
typedef void (integrity_prepare_fn) (struct request *);
typedef void (integrity_complete_fn) (struct request *, unsigned int);
struct blk_integrity_profile {
integrity_processing_fn *generate_fn;
integrity_processing_fn *verify_fn;
integrity_prepare_fn *prepare_fn;
integrity_complete_fn *complete_fn;
const char *name;
};
extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
extern void blk_integrity_unregister(struct gendisk *);
extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
struct scatterlist *);
extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
struct request *);
extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
struct bio *);
static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
{
struct blk_integrity *bi = &disk->queue->integrity;
if (!bi->profile)
return NULL;
return bi;
}
static inline
struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
{
return blk_get_integrity(bdev->bd_disk);
}
static inline bool blk_integrity_rq(struct request *rq)
{
return rq->cmd_flags & REQ_INTEGRITY;
}
static inline void blk_queue_max_integrity_segments(struct request_queue *q,
unsigned int segs)
{
q->limits.max_integrity_segments = segs;
}
static inline unsigned short
queue_max_integrity_segments(const struct request_queue *q)
{
return q->limits.max_integrity_segments;
}
/**
* bio_integrity_intervals - Return number of integrity intervals for a bio
* @bi: blk_integrity profile for device
* @sectors: Size of the bio in 512-byte sectors
*
* Description: The block layer calculates everything in 512 byte
* sectors but integrity metadata is done in terms of the data integrity
* interval size of the storage device. Convert the block layer sectors
* to the appropriate number of integrity intervals.
*/
static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
unsigned int sectors)
{
return sectors >> (bi->interval_exp - 9);
}
static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
unsigned int sectors)
{
return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
}
/*
* Return the first bvec that contains integrity data. Only drivers that are
* limited to a single integrity segment should use this helper.
*/
static inline struct bio_vec *rq_integrity_vec(struct request *rq)
{
if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
return NULL;
return rq->bio->bi_integrity->bip_vec;
}
#else /* CONFIG_BLK_DEV_INTEGRITY */
struct bio;
struct block_device;
struct gendisk;
struct blk_integrity;
static inline int blk_integrity_rq(struct request *rq)
{
return 0;
}
static inline int blk_rq_count_integrity_sg(struct request_queue *q,
struct bio *b)
{
return 0;
}
static inline int blk_rq_map_integrity_sg(struct request_queue *q,
struct bio *b,
struct scatterlist *s)
{
return 0;
}
static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
{
return NULL;
}
static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
{
return NULL;
}
static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
{
return 0;
}
static inline void blk_integrity_register(struct gendisk *d,
struct blk_integrity *b)
{
}
static inline void blk_integrity_unregister(struct gendisk *d)
{
}
static inline void blk_queue_max_integrity_segments(struct request_queue *q,
unsigned int segs)
{
}
static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
{
return 0;
}
static inline bool blk_integrity_merge_rq(struct request_queue *rq,
struct request *r1,
struct request *r2)
{
return true;
}
static inline bool blk_integrity_merge_bio(struct request_queue *rq,
struct request *r,
struct bio *b)
{
return true;
}
static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
unsigned int sectors)
{
return 0;
}
static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
unsigned int sectors)
{
return 0;
}
static inline struct bio_vec *rq_integrity_vec(struct request *rq)
{
return NULL;
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
struct block_device_operations {
int (*open) (struct block_device *, fmode_t);
void (*release) (struct gendisk *, fmode_t);
int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
unsigned int (*check_events) (struct gendisk *disk,
unsigned int clearing);
/* ->media_changed() is DEPRECATED, use ->check_events() instead */
int (*media_changed) (struct gendisk *);
void (*unlock_native_capacity) (struct gendisk *);
int (*revalidate_disk) (struct gendisk *);
int (*getgeo)(struct block_device *, struct hd_geometry *);
/* this callback is with swap_lock and sometimes page table lock held */
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
int (*report_zones)(struct gendisk *, sector_t sector,
struct blk_zone *zones, unsigned int *nr_zones);
struct module *owner;
const struct pr_ops *pr_ops;
};
extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
unsigned long);
extern int bdev_read_page(struct block_device *, sector_t, struct page *);
extern int bdev_write_page(struct block_device *, sector_t, struct page *,
struct writeback_control *);
#ifdef CONFIG_BLK_DEV_ZONED
bool blk_req_needs_zone_write_lock(struct request *rq);
void __blk_req_zone_write_lock(struct request *rq);
void __blk_req_zone_write_unlock(struct request *rq);
static inline void blk_req_zone_write_lock(struct request *rq)
{
if (blk_req_needs_zone_write_lock(rq))
__blk_req_zone_write_lock(rq);
}
static inline void blk_req_zone_write_unlock(struct request *rq)
{
if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
__blk_req_zone_write_unlock(rq);
}
static inline bool blk_req_zone_is_write_locked(struct request *rq)
{
return rq->q->seq_zones_wlock &&
test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
}
static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
{
if (!blk_req_needs_zone_write_lock(rq))
return true;
return !blk_req_zone_is_write_locked(rq);
}
#else
static inline bool blk_req_needs_zone_write_lock(struct request *rq)
{
return false;
}
static inline void blk_req_zone_write_lock(struct request *rq)
{
}
static inline void blk_req_zone_write_unlock(struct request *rq)
{
}
static inline bool blk_req_zone_is_write_locked(struct request *rq)
{
return false;
}
static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
{
return true;
}
#endif /* CONFIG_BLK_DEV_ZONED */
#else /* CONFIG_BLOCK */
struct block_device;
/*
* stubs for when the block layer is configured out
*/
#define buffer_heads_over_limit 0
static inline long nr_blockdev_pages(void)
{
return 0;
}
struct blk_plug {
};
static inline void blk_start_plug(struct blk_plug *plug)
{
}
static inline void blk_finish_plug(struct blk_plug *plug)
{
}
static inline void blk_flush_plug(struct task_struct *task)
{
}
static inline void blk_schedule_flush_plug(struct task_struct *task)
{
}
static inline bool blk_needs_flush_plug(struct task_struct *tsk)
{
return false;
}
static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
sector_t *error_sector)
{
return 0;
}
#endif /* CONFIG_BLOCK */
static inline void blk_wake_io_task(struct task_struct *waiter)
{
/*
* If we're polling, the task itself is doing the completions. For
* that case, we don't need to signal a wakeup, it's enough to just
* mark us as RUNNING.
*/
if (waiter == current)
__set_current_state(TASK_RUNNING);
else
wake_up_process(waiter);
}
#endif