857 lines
24 KiB
C
857 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* sonic.c
|
|
*
|
|
* (C) 2005 Finn Thain
|
|
*
|
|
* Converted to DMA API, added zero-copy buffer handling, and
|
|
* (from the mac68k project) introduced dhd's support for 16-bit cards.
|
|
*
|
|
* (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
|
|
*
|
|
* This driver is based on work from Andreas Busse, but most of
|
|
* the code is rewritten.
|
|
*
|
|
* (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
|
|
*
|
|
* Core code included by system sonic drivers
|
|
*
|
|
* And... partially rewritten again by David Huggins-Daines in order
|
|
* to cope with screwed up Macintosh NICs that may or may not use
|
|
* 16-bit DMA.
|
|
*
|
|
* (C) 1999 David Huggins-Daines <dhd@debian.org>
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
|
|
* National Semiconductors data sheet for the DP83932B Sonic Ethernet
|
|
* controller, and the files "8390.c" and "skeleton.c" in this directory.
|
|
*
|
|
* Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
|
|
* Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
|
|
* the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
|
|
*/
|
|
|
|
static unsigned int version_printed;
|
|
|
|
static int sonic_debug = -1;
|
|
module_param(sonic_debug, int, 0);
|
|
MODULE_PARM_DESC(sonic_debug, "debug message level");
|
|
|
|
static void sonic_msg_init(struct net_device *dev)
|
|
{
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
|
|
lp->msg_enable = netif_msg_init(sonic_debug, 0);
|
|
|
|
if (version_printed++ == 0)
|
|
netif_dbg(lp, drv, dev, "%s", version);
|
|
}
|
|
|
|
static int sonic_alloc_descriptors(struct net_device *dev)
|
|
{
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
|
|
/* Allocate a chunk of memory for the descriptors. Note that this
|
|
* must not cross a 64K boundary. It is smaller than one page which
|
|
* means that page alignment is a sufficient condition.
|
|
*/
|
|
lp->descriptors =
|
|
dma_alloc_coherent(lp->device,
|
|
SIZEOF_SONIC_DESC *
|
|
SONIC_BUS_SCALE(lp->dma_bitmode),
|
|
&lp->descriptors_laddr, GFP_KERNEL);
|
|
|
|
if (!lp->descriptors)
|
|
return -ENOMEM;
|
|
|
|
lp->cda = lp->descriptors;
|
|
lp->tda = lp->cda + SIZEOF_SONIC_CDA *
|
|
SONIC_BUS_SCALE(lp->dma_bitmode);
|
|
lp->rda = lp->tda + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
|
|
SONIC_BUS_SCALE(lp->dma_bitmode);
|
|
lp->rra = lp->rda + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
|
|
SONIC_BUS_SCALE(lp->dma_bitmode);
|
|
|
|
lp->cda_laddr = lp->descriptors_laddr;
|
|
lp->tda_laddr = lp->cda_laddr + SIZEOF_SONIC_CDA *
|
|
SONIC_BUS_SCALE(lp->dma_bitmode);
|
|
lp->rda_laddr = lp->tda_laddr + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
|
|
SONIC_BUS_SCALE(lp->dma_bitmode);
|
|
lp->rra_laddr = lp->rda_laddr + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
|
|
SONIC_BUS_SCALE(lp->dma_bitmode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Open/initialize the SONIC controller.
|
|
*
|
|
* This routine should set everything up anew at each open, even
|
|
* registers that "should" only need to be set once at boot, so that
|
|
* there is non-reboot way to recover if something goes wrong.
|
|
*/
|
|
static int sonic_open(struct net_device *dev)
|
|
{
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
int i;
|
|
|
|
netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
|
|
|
|
spin_lock_init(&lp->lock);
|
|
|
|
for (i = 0; i < SONIC_NUM_RRS; i++) {
|
|
struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
|
|
if (skb == NULL) {
|
|
while(i > 0) { /* free any that were allocated successfully */
|
|
i--;
|
|
dev_kfree_skb(lp->rx_skb[i]);
|
|
lp->rx_skb[i] = NULL;
|
|
}
|
|
printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
|
|
dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
/* align IP header unless DMA requires otherwise */
|
|
if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
|
|
skb_reserve(skb, 2);
|
|
lp->rx_skb[i] = skb;
|
|
}
|
|
|
|
for (i = 0; i < SONIC_NUM_RRS; i++) {
|
|
dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
|
|
SONIC_RBSIZE, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(lp->device, laddr)) {
|
|
while(i > 0) { /* free any that were mapped successfully */
|
|
i--;
|
|
dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
|
|
lp->rx_laddr[i] = (dma_addr_t)0;
|
|
}
|
|
for (i = 0; i < SONIC_NUM_RRS; i++) {
|
|
dev_kfree_skb(lp->rx_skb[i]);
|
|
lp->rx_skb[i] = NULL;
|
|
}
|
|
printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
|
|
dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
lp->rx_laddr[i] = laddr;
|
|
}
|
|
|
|
/*
|
|
* Initialize the SONIC
|
|
*/
|
|
sonic_init(dev);
|
|
|
|
netif_start_queue(dev);
|
|
|
|
netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Wait for the SONIC to become idle. */
|
|
static void sonic_quiesce(struct net_device *dev, u16 mask)
|
|
{
|
|
struct sonic_local * __maybe_unused lp = netdev_priv(dev);
|
|
int i;
|
|
u16 bits;
|
|
|
|
for (i = 0; i < 1000; ++i) {
|
|
bits = SONIC_READ(SONIC_CMD) & mask;
|
|
if (!bits)
|
|
return;
|
|
if (irqs_disabled() || in_interrupt())
|
|
udelay(20);
|
|
else
|
|
usleep_range(100, 200);
|
|
}
|
|
WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
|
|
}
|
|
|
|
/*
|
|
* Close the SONIC device
|
|
*/
|
|
static int sonic_close(struct net_device *dev)
|
|
{
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
int i;
|
|
|
|
netif_dbg(lp, ifdown, dev, "%s\n", __func__);
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
/*
|
|
* stop the SONIC, disable interrupts
|
|
*/
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
|
|
sonic_quiesce(dev, SONIC_CR_ALL);
|
|
|
|
SONIC_WRITE(SONIC_IMR, 0);
|
|
SONIC_WRITE(SONIC_ISR, 0x7fff);
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
|
|
|
|
/* unmap and free skbs that haven't been transmitted */
|
|
for (i = 0; i < SONIC_NUM_TDS; i++) {
|
|
if(lp->tx_laddr[i]) {
|
|
dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
|
|
lp->tx_laddr[i] = (dma_addr_t)0;
|
|
}
|
|
if(lp->tx_skb[i]) {
|
|
dev_kfree_skb(lp->tx_skb[i]);
|
|
lp->tx_skb[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* unmap and free the receive buffers */
|
|
for (i = 0; i < SONIC_NUM_RRS; i++) {
|
|
if(lp->rx_laddr[i]) {
|
|
dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
|
|
lp->rx_laddr[i] = (dma_addr_t)0;
|
|
}
|
|
if(lp->rx_skb[i]) {
|
|
dev_kfree_skb(lp->rx_skb[i]);
|
|
lp->rx_skb[i] = NULL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue)
|
|
{
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
int i;
|
|
/*
|
|
* put the Sonic into software-reset mode and
|
|
* disable all interrupts before releasing DMA buffers
|
|
*/
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
|
|
sonic_quiesce(dev, SONIC_CR_ALL);
|
|
|
|
SONIC_WRITE(SONIC_IMR, 0);
|
|
SONIC_WRITE(SONIC_ISR, 0x7fff);
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
|
|
/* We could resend the original skbs. Easier to re-initialise. */
|
|
for (i = 0; i < SONIC_NUM_TDS; i++) {
|
|
if(lp->tx_laddr[i]) {
|
|
dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
|
|
lp->tx_laddr[i] = (dma_addr_t)0;
|
|
}
|
|
if(lp->tx_skb[i]) {
|
|
dev_kfree_skb(lp->tx_skb[i]);
|
|
lp->tx_skb[i] = NULL;
|
|
}
|
|
}
|
|
/* Try to restart the adaptor. */
|
|
sonic_init(dev);
|
|
lp->stats.tx_errors++;
|
|
netif_trans_update(dev); /* prevent tx timeout */
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
/*
|
|
* transmit packet
|
|
*
|
|
* Appends new TD during transmission thus avoiding any TX interrupts
|
|
* until we run out of TDs.
|
|
* This routine interacts closely with the ISR in that it may,
|
|
* set tx_skb[i]
|
|
* reset the status flags of the new TD
|
|
* set and reset EOL flags
|
|
* stop the tx queue
|
|
* The ISR interacts with this routine in various ways. It may,
|
|
* reset tx_skb[i]
|
|
* test the EOL and status flags of the TDs
|
|
* wake the tx queue
|
|
* Concurrently with all of this, the SONIC is potentially writing to
|
|
* the status flags of the TDs.
|
|
*/
|
|
|
|
static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
dma_addr_t laddr;
|
|
int length;
|
|
int entry;
|
|
unsigned long flags;
|
|
|
|
netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
|
|
|
|
length = skb->len;
|
|
if (length < ETH_ZLEN) {
|
|
if (skb_padto(skb, ETH_ZLEN))
|
|
return NETDEV_TX_OK;
|
|
length = ETH_ZLEN;
|
|
}
|
|
|
|
/*
|
|
* Map the packet data into the logical DMA address space
|
|
*/
|
|
|
|
laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
|
|
if (!laddr) {
|
|
pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
spin_lock_irqsave(&lp->lock, flags);
|
|
|
|
entry = lp->next_tx;
|
|
|
|
sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */
|
|
sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */
|
|
sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
|
|
sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
|
|
sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
|
|
sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
|
|
sonic_tda_put(dev, entry, SONIC_TD_LINK,
|
|
sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
|
|
|
|
wmb();
|
|
lp->tx_len[entry] = length;
|
|
lp->tx_laddr[entry] = laddr;
|
|
lp->tx_skb[entry] = skb;
|
|
|
|
wmb();
|
|
sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK,
|
|
sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL);
|
|
lp->eol_tx = entry;
|
|
|
|
lp->next_tx = (entry + 1) & SONIC_TDS_MASK;
|
|
if (lp->tx_skb[lp->next_tx] != NULL) {
|
|
/* The ring is full, the ISR has yet to process the next TD. */
|
|
netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
|
|
netif_stop_queue(dev);
|
|
/* after this packet, wait for ISR to free up some TDAs */
|
|
} else netif_start_queue(dev);
|
|
|
|
netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
|
|
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
|
|
|
|
spin_unlock_irqrestore(&lp->lock, flags);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/*
|
|
* The typical workload of the driver:
|
|
* Handle the network interface interrupts.
|
|
*/
|
|
static irqreturn_t sonic_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
int status;
|
|
unsigned long flags;
|
|
|
|
/* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
|
|
* with sonic_send_packet() so that the two functions can share state.
|
|
* Secondly, it makes sonic_interrupt() re-entrant, as that is required
|
|
* by macsonic which must use two IRQs with different priority levels.
|
|
*/
|
|
spin_lock_irqsave(&lp->lock, flags);
|
|
|
|
status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
|
|
if (!status) {
|
|
spin_unlock_irqrestore(&lp->lock, flags);
|
|
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
do {
|
|
SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */
|
|
|
|
if (status & SONIC_INT_PKTRX) {
|
|
netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
|
|
sonic_rx(dev); /* got packet(s) */
|
|
}
|
|
|
|
if (status & SONIC_INT_TXDN) {
|
|
int entry = lp->cur_tx;
|
|
int td_status;
|
|
int freed_some = 0;
|
|
|
|
/* The state of a Transmit Descriptor may be inferred
|
|
* from { tx_skb[entry], td_status } as follows.
|
|
* { clear, clear } => the TD has never been used
|
|
* { set, clear } => the TD was handed to SONIC
|
|
* { set, set } => the TD was handed back
|
|
* { clear, set } => the TD is available for re-use
|
|
*/
|
|
|
|
netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
|
|
|
|
while (lp->tx_skb[entry] != NULL) {
|
|
if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
|
|
break;
|
|
|
|
if (td_status & SONIC_TCR_PTX) {
|
|
lp->stats.tx_packets++;
|
|
lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
|
|
} else {
|
|
if (td_status & (SONIC_TCR_EXD |
|
|
SONIC_TCR_EXC | SONIC_TCR_BCM))
|
|
lp->stats.tx_aborted_errors++;
|
|
if (td_status &
|
|
(SONIC_TCR_NCRS | SONIC_TCR_CRLS))
|
|
lp->stats.tx_carrier_errors++;
|
|
if (td_status & SONIC_TCR_OWC)
|
|
lp->stats.tx_window_errors++;
|
|
if (td_status & SONIC_TCR_FU)
|
|
lp->stats.tx_fifo_errors++;
|
|
}
|
|
|
|
/* We must free the original skb */
|
|
dev_consume_skb_irq(lp->tx_skb[entry]);
|
|
lp->tx_skb[entry] = NULL;
|
|
/* and unmap DMA buffer */
|
|
dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
|
|
lp->tx_laddr[entry] = (dma_addr_t)0;
|
|
freed_some = 1;
|
|
|
|
if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
|
|
entry = (entry + 1) & SONIC_TDS_MASK;
|
|
break;
|
|
}
|
|
entry = (entry + 1) & SONIC_TDS_MASK;
|
|
}
|
|
|
|
if (freed_some || lp->tx_skb[entry] == NULL)
|
|
netif_wake_queue(dev); /* The ring is no longer full */
|
|
lp->cur_tx = entry;
|
|
}
|
|
|
|
/*
|
|
* check error conditions
|
|
*/
|
|
if (status & SONIC_INT_RFO) {
|
|
netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
|
|
__func__);
|
|
}
|
|
if (status & SONIC_INT_RDE) {
|
|
netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
|
|
__func__);
|
|
}
|
|
if (status & SONIC_INT_RBAE) {
|
|
netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
|
|
__func__);
|
|
}
|
|
|
|
/* counter overruns; all counters are 16bit wide */
|
|
if (status & SONIC_INT_FAE)
|
|
lp->stats.rx_frame_errors += 65536;
|
|
if (status & SONIC_INT_CRC)
|
|
lp->stats.rx_crc_errors += 65536;
|
|
if (status & SONIC_INT_MP)
|
|
lp->stats.rx_missed_errors += 65536;
|
|
|
|
/* transmit error */
|
|
if (status & SONIC_INT_TXER) {
|
|
u16 tcr = SONIC_READ(SONIC_TCR);
|
|
|
|
netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
|
|
__func__, tcr);
|
|
|
|
if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
|
|
SONIC_TCR_FU | SONIC_TCR_BCM)) {
|
|
/* Aborted transmission. Try again. */
|
|
netif_stop_queue(dev);
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
|
|
}
|
|
}
|
|
|
|
/* bus retry */
|
|
if (status & SONIC_INT_BR) {
|
|
printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
|
|
dev->name);
|
|
/* ... to help debug DMA problems causing endless interrupts. */
|
|
/* Bounce the eth interface to turn on the interrupt again. */
|
|
SONIC_WRITE(SONIC_IMR, 0);
|
|
}
|
|
|
|
status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
|
|
} while (status);
|
|
|
|
spin_unlock_irqrestore(&lp->lock, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Return the array index corresponding to a given Receive Buffer pointer. */
|
|
static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
|
|
unsigned int last)
|
|
{
|
|
unsigned int i = last;
|
|
|
|
do {
|
|
i = (i + 1) & SONIC_RRS_MASK;
|
|
if (addr == lp->rx_laddr[i])
|
|
return i;
|
|
} while (i != last);
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Allocate and map a new skb to be used as a receive buffer. */
|
|
static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
|
|
struct sk_buff **new_skb, dma_addr_t *new_addr)
|
|
{
|
|
*new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
|
|
if (!*new_skb)
|
|
return false;
|
|
|
|
if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
|
|
skb_reserve(*new_skb, 2);
|
|
|
|
*new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
|
|
SONIC_RBSIZE, DMA_FROM_DEVICE);
|
|
if (!*new_addr) {
|
|
dev_kfree_skb(*new_skb);
|
|
*new_skb = NULL;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Place a new receive resource in the Receive Resource Area and update RWP. */
|
|
static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
|
|
dma_addr_t old_addr, dma_addr_t new_addr)
|
|
{
|
|
unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
|
|
unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
|
|
u32 buf;
|
|
|
|
/* The resources in the range [RRP, RWP) belong to the SONIC. This loop
|
|
* scans the other resources in the RRA, those in the range [RWP, RRP).
|
|
*/
|
|
do {
|
|
buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
|
|
sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);
|
|
|
|
if (buf == old_addr)
|
|
break;
|
|
|
|
entry = (entry + 1) & SONIC_RRS_MASK;
|
|
} while (entry != end);
|
|
|
|
WARN_ONCE(buf != old_addr, "failed to find resource!\n");
|
|
|
|
sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
|
|
sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);
|
|
|
|
entry = (entry + 1) & SONIC_RRS_MASK;
|
|
|
|
SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
|
|
}
|
|
|
|
/*
|
|
* We have a good packet(s), pass it/them up the network stack.
|
|
*/
|
|
static void sonic_rx(struct net_device *dev)
|
|
{
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
int entry = lp->cur_rx;
|
|
int prev_entry = lp->eol_rx;
|
|
bool rbe = false;
|
|
|
|
while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
|
|
u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
|
|
|
|
/* If the RD has LPKT set, the chip has finished with the RB */
|
|
if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
|
|
struct sk_buff *new_skb;
|
|
dma_addr_t new_laddr;
|
|
u32 addr = (sonic_rda_get(dev, entry,
|
|
SONIC_RD_PKTPTR_H) << 16) |
|
|
sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
|
|
int i = index_from_addr(lp, addr, entry);
|
|
|
|
if (i < 0) {
|
|
WARN_ONCE(1, "failed to find buffer!\n");
|
|
break;
|
|
}
|
|
|
|
if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
|
|
struct sk_buff *used_skb = lp->rx_skb[i];
|
|
int pkt_len;
|
|
|
|
/* Pass the used buffer up the stack */
|
|
dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
|
|
DMA_FROM_DEVICE);
|
|
|
|
pkt_len = sonic_rda_get(dev, entry,
|
|
SONIC_RD_PKTLEN);
|
|
skb_trim(used_skb, pkt_len);
|
|
used_skb->protocol = eth_type_trans(used_skb,
|
|
dev);
|
|
netif_rx(used_skb);
|
|
lp->stats.rx_packets++;
|
|
lp->stats.rx_bytes += pkt_len;
|
|
|
|
lp->rx_skb[i] = new_skb;
|
|
lp->rx_laddr[i] = new_laddr;
|
|
} else {
|
|
/* Failed to obtain a new buffer so re-use it */
|
|
new_laddr = addr;
|
|
lp->stats.rx_dropped++;
|
|
}
|
|
/* If RBE is already asserted when RWP advances then
|
|
* it's safe to clear RBE after processing this packet.
|
|
*/
|
|
rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
|
|
sonic_update_rra(dev, lp, addr, new_laddr);
|
|
}
|
|
/*
|
|
* give back the descriptor
|
|
*/
|
|
sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
|
|
sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
|
|
|
|
prev_entry = entry;
|
|
entry = (entry + 1) & SONIC_RDS_MASK;
|
|
}
|
|
|
|
lp->cur_rx = entry;
|
|
|
|
if (prev_entry != lp->eol_rx) {
|
|
/* Advance the EOL flag to put descriptors back into service */
|
|
sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
|
|
sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
|
|
sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
|
|
sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
|
|
lp->eol_rx = prev_entry;
|
|
}
|
|
|
|
if (rbe)
|
|
SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get the current statistics.
|
|
* This may be called with the device open or closed.
|
|
*/
|
|
static struct net_device_stats *sonic_get_stats(struct net_device *dev)
|
|
{
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
|
|
/* read the tally counter from the SONIC and reset them */
|
|
lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
|
|
SONIC_WRITE(SONIC_CRCT, 0xffff);
|
|
lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
|
|
SONIC_WRITE(SONIC_FAET, 0xffff);
|
|
lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
|
|
SONIC_WRITE(SONIC_MPT, 0xffff);
|
|
|
|
return &lp->stats;
|
|
}
|
|
|
|
|
|
/*
|
|
* Set or clear the multicast filter for this adaptor.
|
|
*/
|
|
static void sonic_multicast_list(struct net_device *dev)
|
|
{
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
unsigned int rcr;
|
|
struct netdev_hw_addr *ha;
|
|
unsigned char *addr;
|
|
int i;
|
|
|
|
rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
|
|
rcr |= SONIC_RCR_BRD; /* accept broadcast packets */
|
|
|
|
if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
|
|
rcr |= SONIC_RCR_PRO;
|
|
} else {
|
|
if ((dev->flags & IFF_ALLMULTI) ||
|
|
(netdev_mc_count(dev) > 15)) {
|
|
rcr |= SONIC_RCR_AMC;
|
|
} else {
|
|
unsigned long flags;
|
|
|
|
netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
|
|
netdev_mc_count(dev));
|
|
sonic_set_cam_enable(dev, 1); /* always enable our own address */
|
|
i = 1;
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
addr = ha->addr;
|
|
sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
|
|
sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
|
|
sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
|
|
sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
|
|
i++;
|
|
}
|
|
SONIC_WRITE(SONIC_CDC, 16);
|
|
SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
|
|
|
|
/* LCAM and TXP commands can't be used simultaneously */
|
|
spin_lock_irqsave(&lp->lock, flags);
|
|
sonic_quiesce(dev, SONIC_CR_TXP);
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
|
|
sonic_quiesce(dev, SONIC_CR_LCAM);
|
|
spin_unlock_irqrestore(&lp->lock, flags);
|
|
}
|
|
}
|
|
|
|
netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
|
|
|
|
SONIC_WRITE(SONIC_RCR, rcr);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize the SONIC ethernet controller.
|
|
*/
|
|
static int sonic_init(struct net_device *dev)
|
|
{
|
|
struct sonic_local *lp = netdev_priv(dev);
|
|
int i;
|
|
|
|
/*
|
|
* put the Sonic into software-reset mode and
|
|
* disable all interrupts
|
|
*/
|
|
SONIC_WRITE(SONIC_IMR, 0);
|
|
SONIC_WRITE(SONIC_ISR, 0x7fff);
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
|
|
|
|
/* While in reset mode, clear CAM Enable register */
|
|
SONIC_WRITE(SONIC_CE, 0);
|
|
|
|
/*
|
|
* clear software reset flag, disable receiver, clear and
|
|
* enable interrupts, then completely initialize the SONIC
|
|
*/
|
|
SONIC_WRITE(SONIC_CMD, 0);
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
|
|
sonic_quiesce(dev, SONIC_CR_ALL);
|
|
|
|
/*
|
|
* initialize the receive resource area
|
|
*/
|
|
netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
|
|
__func__);
|
|
|
|
for (i = 0; i < SONIC_NUM_RRS; i++) {
|
|
u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
|
|
u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
|
|
sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
|
|
sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
|
|
sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
|
|
sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
|
|
}
|
|
|
|
/* initialize all RRA registers */
|
|
SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
|
|
SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
|
|
SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
|
|
SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
|
|
SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
|
|
SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
|
|
|
|
/* load the resource pointers */
|
|
netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
|
|
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
|
|
sonic_quiesce(dev, SONIC_CR_RRRA);
|
|
|
|
/*
|
|
* Initialize the receive descriptors so that they
|
|
* become a circular linked list, ie. let the last
|
|
* descriptor point to the first again.
|
|
*/
|
|
netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
|
|
__func__);
|
|
|
|
for (i=0; i<SONIC_NUM_RDS; i++) {
|
|
sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
|
|
sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
|
|
sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
|
|
sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
|
|
sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
|
|
sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
|
|
sonic_rda_put(dev, i, SONIC_RD_LINK,
|
|
lp->rda_laddr +
|
|
((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
|
|
}
|
|
/* fix last descriptor */
|
|
sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
|
|
(lp->rda_laddr & 0xffff) | SONIC_EOL);
|
|
lp->eol_rx = SONIC_NUM_RDS - 1;
|
|
lp->cur_rx = 0;
|
|
SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
|
|
SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
|
|
|
|
/*
|
|
* initialize transmit descriptors
|
|
*/
|
|
netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
|
|
__func__);
|
|
|
|
for (i = 0; i < SONIC_NUM_TDS; i++) {
|
|
sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
|
|
sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
|
|
sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
|
|
sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
|
|
sonic_tda_put(dev, i, SONIC_TD_LINK,
|
|
(lp->tda_laddr & 0xffff) +
|
|
(i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
|
|
lp->tx_skb[i] = NULL;
|
|
}
|
|
/* fix last descriptor */
|
|
sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
|
|
(lp->tda_laddr & 0xffff));
|
|
|
|
SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
|
|
SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
|
|
lp->cur_tx = lp->next_tx = 0;
|
|
lp->eol_tx = SONIC_NUM_TDS - 1;
|
|
|
|
/*
|
|
* put our own address to CAM desc[0]
|
|
*/
|
|
sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
|
|
sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
|
|
sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
|
|
sonic_set_cam_enable(dev, 1);
|
|
|
|
for (i = 0; i < 16; i++)
|
|
sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
|
|
|
|
/*
|
|
* initialize CAM registers
|
|
*/
|
|
SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
|
|
SONIC_WRITE(SONIC_CDC, 16);
|
|
|
|
/*
|
|
* load the CAM
|
|
*/
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
|
|
sonic_quiesce(dev, SONIC_CR_LCAM);
|
|
|
|
/*
|
|
* enable receiver, disable loopback
|
|
* and enable all interrupts
|
|
*/
|
|
SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
|
|
SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
|
|
SONIC_WRITE(SONIC_ISR, 0x7fff);
|
|
SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
|
|
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);
|
|
|
|
netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
|
|
SONIC_READ(SONIC_CMD));
|
|
|
|
return 0;
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|