OpenCloudOS-Kernel/drivers/spi/spi-intel.c

1432 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel PCH/PCU SPI flash driver.
*
* Copyright (C) 2016 - 2022, Intel Corporation
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
*/
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/spi/flash.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include "spi-intel.h"
/* Offsets are from @ispi->base */
#define BFPREG 0x00
#define HSFSTS_CTL 0x04
#define HSFSTS_CTL_FSMIE BIT(31)
#define HSFSTS_CTL_FDBC_SHIFT 24
#define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
#define HSFSTS_CTL_FCYCLE_SHIFT 17
#define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
/* HW sequencer opcodes */
#define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
#define HSFSTS_CTL_FGO BIT(16)
#define HSFSTS_CTL_FLOCKDN BIT(15)
#define HSFSTS_CTL_FDV BIT(14)
#define HSFSTS_CTL_SCIP BIT(5)
#define HSFSTS_CTL_AEL BIT(2)
#define HSFSTS_CTL_FCERR BIT(1)
#define HSFSTS_CTL_FDONE BIT(0)
#define FADDR 0x08
#define DLOCK 0x0c
#define FDATA(n) (0x10 + ((n) * 4))
#define FRACC 0x50
#define FREG(n) (0x54 + ((n) * 4))
#define FREG_BASE_MASK 0x3fff
#define FREG_LIMIT_SHIFT 16
#define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT)
/* Offset is from @ispi->pregs */
#define PR(n) ((n) * 4)
#define PR_WPE BIT(31)
#define PR_LIMIT_SHIFT 16
#define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT)
#define PR_RPE BIT(15)
#define PR_BASE_MASK 0x3fff
/* Offsets are from @ispi->sregs */
#define SSFSTS_CTL 0x00
#define SSFSTS_CTL_FSMIE BIT(23)
#define SSFSTS_CTL_DS BIT(22)
#define SSFSTS_CTL_DBC_SHIFT 16
#define SSFSTS_CTL_SPOP BIT(11)
#define SSFSTS_CTL_ACS BIT(10)
#define SSFSTS_CTL_SCGO BIT(9)
#define SSFSTS_CTL_COP_SHIFT 12
#define SSFSTS_CTL_FRS BIT(7)
#define SSFSTS_CTL_DOFRS BIT(6)
#define SSFSTS_CTL_AEL BIT(4)
#define SSFSTS_CTL_FCERR BIT(3)
#define SSFSTS_CTL_FDONE BIT(2)
#define SSFSTS_CTL_SCIP BIT(0)
#define PREOP_OPTYPE 0x04
#define OPMENU0 0x08
#define OPMENU1 0x0c
#define OPTYPE_READ_NO_ADDR 0
#define OPTYPE_WRITE_NO_ADDR 1
#define OPTYPE_READ_WITH_ADDR 2
#define OPTYPE_WRITE_WITH_ADDR 3
/* CPU specifics */
#define BYT_PR 0x74
#define BYT_SSFSTS_CTL 0x90
#define BYT_FREG_NUM 5
#define BYT_PR_NUM 5
#define LPT_PR 0x74
#define LPT_SSFSTS_CTL 0x90
#define LPT_FREG_NUM 5
#define LPT_PR_NUM 5
#define BXT_PR 0x84
#define BXT_SSFSTS_CTL 0xa0
#define BXT_FREG_NUM 12
#define BXT_PR_NUM 6
#define CNL_PR 0x84
#define CNL_FREG_NUM 6
#define CNL_PR_NUM 5
#define LVSCC 0xc4
#define UVSCC 0xc8
#define ERASE_OPCODE_SHIFT 8
#define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
#define ERASE_64K_OPCODE_SHIFT 16
#define ERASE_64K_OPCODE_MASK (0xff << ERASE_64K_OPCODE_SHIFT)
/* Flash descriptor fields */
#define FLVALSIG_MAGIC 0x0ff0a55a
#define FLMAP0_NC_MASK GENMASK(9, 8)
#define FLMAP0_NC_SHIFT 8
#define FLMAP0_FCBA_MASK GENMASK(7, 0)
#define FLCOMP_C0DEN_MASK GENMASK(3, 0)
#define FLCOMP_C0DEN_512K 0x00
#define FLCOMP_C0DEN_1M 0x01
#define FLCOMP_C0DEN_2M 0x02
#define FLCOMP_C0DEN_4M 0x03
#define FLCOMP_C0DEN_8M 0x04
#define FLCOMP_C0DEN_16M 0x05
#define FLCOMP_C0DEN_32M 0x06
#define FLCOMP_C0DEN_64M 0x07
#define INTEL_SPI_TIMEOUT 5000 /* ms */
#define INTEL_SPI_FIFO_SZ 64
/**
* struct intel_spi - Driver private data
* @dev: Device pointer
* @info: Pointer to board specific info
* @base: Beginning of MMIO space
* @pregs: Start of protection registers
* @sregs: Start of software sequencer registers
* @master: Pointer to the SPI controller structure
* @nregions: Maximum number of regions
* @pr_num: Maximum number of protected range registers
* @chip0_size: Size of the first flash chip in bytes
* @locked: Is SPI setting locked
* @swseq_reg: Use SW sequencer in register reads/writes
* @swseq_erase: Use SW sequencer in erase operation
* @atomic_preopcode: Holds preopcode when atomic sequence is requested
* @opcodes: Opcodes which are supported. This are programmed by BIOS
* before it locks down the controller.
* @mem_ops: Pointer to SPI MEM ops supported by the controller
*/
struct intel_spi {
struct device *dev;
const struct intel_spi_boardinfo *info;
void __iomem *base;
void __iomem *pregs;
void __iomem *sregs;
struct spi_controller *master;
size_t nregions;
size_t pr_num;
size_t chip0_size;
bool locked;
bool swseq_reg;
bool swseq_erase;
u8 atomic_preopcode;
u8 opcodes[8];
const struct intel_spi_mem_op *mem_ops;
};
struct intel_spi_mem_op {
struct spi_mem_op mem_op;
u32 replacement_op;
int (*exec_op)(struct intel_spi *ispi,
const struct spi_mem *mem,
const struct intel_spi_mem_op *iop,
const struct spi_mem_op *op);
};
static bool writeable;
module_param(writeable, bool, 0);
MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
static void intel_spi_dump_regs(struct intel_spi *ispi)
{
u32 value;
int i;
dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
value = readl(ispi->base + HSFSTS_CTL);
dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
if (value & HSFSTS_CTL_FLOCKDN)
dev_dbg(ispi->dev, "-> Locked\n");
dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
for (i = 0; i < 16; i++)
dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
i, readl(ispi->base + FDATA(i)));
dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
for (i = 0; i < ispi->nregions; i++)
dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
readl(ispi->base + FREG(i)));
for (i = 0; i < ispi->pr_num; i++)
dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
readl(ispi->pregs + PR(i)));
if (ispi->sregs) {
value = readl(ispi->sregs + SSFSTS_CTL);
dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
readl(ispi->sregs + PREOP_OPTYPE));
dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
readl(ispi->sregs + OPMENU0));
dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
readl(ispi->sregs + OPMENU1));
}
dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
dev_dbg(ispi->dev, "Protected regions:\n");
for (i = 0; i < ispi->pr_num; i++) {
u32 base, limit;
value = readl(ispi->pregs + PR(i));
if (!(value & (PR_WPE | PR_RPE)))
continue;
limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
base = value & PR_BASE_MASK;
dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
i, base << 12, (limit << 12) | 0xfff,
value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
}
dev_dbg(ispi->dev, "Flash regions:\n");
for (i = 0; i < ispi->nregions; i++) {
u32 region, base, limit;
region = readl(ispi->base + FREG(i));
base = region & FREG_BASE_MASK;
limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
if (base >= limit || (i > 0 && limit == 0))
dev_dbg(ispi->dev, " %02d disabled\n", i);
else
dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
i, base << 12, (limit << 12) | 0xfff);
}
dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
ispi->swseq_reg ? 'S' : 'H');
dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
ispi->swseq_erase ? 'S' : 'H');
}
/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
{
size_t bytes;
int i = 0;
if (size > INTEL_SPI_FIFO_SZ)
return -EINVAL;
while (size > 0) {
bytes = min_t(size_t, size, 4);
memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
size -= bytes;
buf += bytes;
i++;
}
return 0;
}
/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
size_t size)
{
size_t bytes;
int i = 0;
if (size > INTEL_SPI_FIFO_SZ)
return -EINVAL;
while (size > 0) {
bytes = min_t(size_t, size, 4);
memcpy_toio(ispi->base + FDATA(i), buf, bytes);
size -= bytes;
buf += bytes;
i++;
}
return 0;
}
static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
{
u32 val;
return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
!(val & HSFSTS_CTL_SCIP), 0,
INTEL_SPI_TIMEOUT * 1000);
}
static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
{
u32 val;
return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
!(val & SSFSTS_CTL_SCIP), 0,
INTEL_SPI_TIMEOUT * 1000);
}
static bool intel_spi_set_writeable(struct intel_spi *ispi)
{
if (!ispi->info->set_writeable)
return false;
return ispi->info->set_writeable(ispi->base, ispi->info->data);
}
static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
{
int i;
int preop;
if (ispi->locked) {
for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
if (ispi->opcodes[i] == opcode)
return i;
return -EINVAL;
}
/* The lock is off, so just use index 0 */
writel(opcode, ispi->sregs + OPMENU0);
preop = readw(ispi->sregs + PREOP_OPTYPE);
writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
return 0;
}
static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
{
u32 val, status;
int ret;
val = readl(ispi->base + HSFSTS_CTL);
val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
switch (opcode) {
case SPINOR_OP_RDID:
val |= HSFSTS_CTL_FCYCLE_RDID;
break;
case SPINOR_OP_WRSR:
val |= HSFSTS_CTL_FCYCLE_WRSR;
break;
case SPINOR_OP_RDSR:
val |= HSFSTS_CTL_FCYCLE_RDSR;
break;
default:
return -EINVAL;
}
if (len > INTEL_SPI_FIFO_SZ)
return -EINVAL;
val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
val |= HSFSTS_CTL_FGO;
writel(val, ispi->base + HSFSTS_CTL);
ret = intel_spi_wait_hw_busy(ispi);
if (ret)
return ret;
status = readl(ispi->base + HSFSTS_CTL);
if (status & HSFSTS_CTL_FCERR)
return -EIO;
else if (status & HSFSTS_CTL_AEL)
return -EACCES;
return 0;
}
static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
int optype)
{
u32 val = 0, status;
u8 atomic_preopcode;
int ret;
ret = intel_spi_opcode_index(ispi, opcode, optype);
if (ret < 0)
return ret;
if (len > INTEL_SPI_FIFO_SZ)
return -EINVAL;
/*
* Always clear it after each SW sequencer operation regardless
* of whether it is successful or not.
*/
atomic_preopcode = ispi->atomic_preopcode;
ispi->atomic_preopcode = 0;
/* Only mark 'Data Cycle' bit when there is data to be transferred */
if (len > 0)
val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
val |= ret << SSFSTS_CTL_COP_SHIFT;
val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
val |= SSFSTS_CTL_SCGO;
if (atomic_preopcode) {
u16 preop;
switch (optype) {
case OPTYPE_WRITE_NO_ADDR:
case OPTYPE_WRITE_WITH_ADDR:
/* Pick matching preopcode for the atomic sequence */
preop = readw(ispi->sregs + PREOP_OPTYPE);
if ((preop & 0xff) == atomic_preopcode)
; /* Do nothing */
else if ((preop >> 8) == atomic_preopcode)
val |= SSFSTS_CTL_SPOP;
else
return -EINVAL;
/* Enable atomic sequence */
val |= SSFSTS_CTL_ACS;
break;
default:
return -EINVAL;
}
}
writel(val, ispi->sregs + SSFSTS_CTL);
ret = intel_spi_wait_sw_busy(ispi);
if (ret)
return ret;
status = readl(ispi->sregs + SSFSTS_CTL);
if (status & SSFSTS_CTL_FCERR)
return -EIO;
else if (status & SSFSTS_CTL_AEL)
return -EACCES;
return 0;
}
static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
const struct spi_mem *mem)
{
/* Pick up the correct start address */
if (!mem)
return 0;
return mem->spi->chip_select == 1 ? ispi->chip0_size : 0;
}
static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
const struct intel_spi_mem_op *iop,
const struct spi_mem_op *op)
{
size_t nbytes = op->data.nbytes;
u8 opcode = op->cmd.opcode;
int ret;
writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR);
if (ispi->swseq_reg)
ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
OPTYPE_READ_NO_ADDR);
else
ret = intel_spi_hw_cycle(ispi, opcode, nbytes);
if (ret)
return ret;
return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
}
static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
const struct intel_spi_mem_op *iop,
const struct spi_mem_op *op)
{
size_t nbytes = op->data.nbytes;
u8 opcode = op->cmd.opcode;
int ret;
/*
* This is handled with atomic operation and preop code in Intel
* controller so we only verify that it is available. If the
* controller is not locked, program the opcode to the PREOP
* register for later use.
*
* When hardware sequencer is used there is no need to program
* any opcodes (it handles them automatically as part of a command).
*/
if (opcode == SPINOR_OP_WREN) {
u16 preop;
if (!ispi->swseq_reg)
return 0;
preop = readw(ispi->sregs + PREOP_OPTYPE);
if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
if (ispi->locked)
return -EINVAL;
writel(opcode, ispi->sregs + PREOP_OPTYPE);
}
/*
* This enables atomic sequence on next SW sycle. Will
* be cleared after next operation.
*/
ispi->atomic_preopcode = opcode;
return 0;
}
/*
* We hope that HW sequencer will do the right thing automatically and
* with the SW sequencer we cannot use preopcode anyway, so just ignore
* the Write Disable operation and pretend it was completed
* successfully.
*/
if (opcode == SPINOR_OP_WRDI)
return 0;
writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR);
/* Write the value beforehand */
ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
if (ret)
return ret;
if (ispi->swseq_reg)
return intel_spi_sw_cycle(ispi, opcode, nbytes,
OPTYPE_WRITE_NO_ADDR);
return intel_spi_hw_cycle(ispi, opcode, nbytes);
}
static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
const struct intel_spi_mem_op *iop,
const struct spi_mem_op *op)
{
u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
size_t block_size, nbytes = op->data.nbytes;
void *read_buf = op->data.buf.in;
u32 val, status;
int ret;
/*
* Atomic sequence is not expected with HW sequencer reads. Make
* sure it is cleared regardless.
*/
if (WARN_ON_ONCE(ispi->atomic_preopcode))
ispi->atomic_preopcode = 0;
while (nbytes > 0) {
block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
/* Read cannot cross 4K boundary */
block_size = min_t(loff_t, addr + block_size,
round_up(addr + 1, SZ_4K)) - addr;
writel(addr, ispi->base + FADDR);
val = readl(ispi->base + HSFSTS_CTL);
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
val |= HSFSTS_CTL_FCYCLE_READ;
val |= HSFSTS_CTL_FGO;
writel(val, ispi->base + HSFSTS_CTL);
ret = intel_spi_wait_hw_busy(ispi);
if (ret)
return ret;
status = readl(ispi->base + HSFSTS_CTL);
if (status & HSFSTS_CTL_FCERR)
ret = -EIO;
else if (status & HSFSTS_CTL_AEL)
ret = -EACCES;
if (ret < 0) {
dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
return ret;
}
ret = intel_spi_read_block(ispi, read_buf, block_size);
if (ret)
return ret;
nbytes -= block_size;
addr += block_size;
read_buf += block_size;
}
return 0;
}
static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
const struct intel_spi_mem_op *iop,
const struct spi_mem_op *op)
{
u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
size_t block_size, nbytes = op->data.nbytes;
const void *write_buf = op->data.buf.out;
u32 val, status;
int ret;
/* Not needed with HW sequencer write, make sure it is cleared */
ispi->atomic_preopcode = 0;
while (nbytes > 0) {
block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
/* Write cannot cross 4K boundary */
block_size = min_t(loff_t, addr + block_size,
round_up(addr + 1, SZ_4K)) - addr;
writel(addr, ispi->base + FADDR);
val = readl(ispi->base + HSFSTS_CTL);
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
val |= HSFSTS_CTL_FCYCLE_WRITE;
ret = intel_spi_write_block(ispi, write_buf, block_size);
if (ret) {
dev_err(ispi->dev, "failed to write block\n");
return ret;
}
/* Start the write now */
val |= HSFSTS_CTL_FGO;
writel(val, ispi->base + HSFSTS_CTL);
ret = intel_spi_wait_hw_busy(ispi);
if (ret) {
dev_err(ispi->dev, "timeout\n");
return ret;
}
status = readl(ispi->base + HSFSTS_CTL);
if (status & HSFSTS_CTL_FCERR)
ret = -EIO;
else if (status & HSFSTS_CTL_AEL)
ret = -EACCES;
if (ret < 0) {
dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
return ret;
}
nbytes -= block_size;
addr += block_size;
write_buf += block_size;
}
return 0;
}
static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
const struct intel_spi_mem_op *iop,
const struct spi_mem_op *op)
{
u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
u8 opcode = op->cmd.opcode;
u32 val, status;
int ret;
writel(addr, ispi->base + FADDR);
if (ispi->swseq_erase)
return intel_spi_sw_cycle(ispi, opcode, 0,
OPTYPE_WRITE_WITH_ADDR);
/* Not needed with HW sequencer erase, make sure it is cleared */
ispi->atomic_preopcode = 0;
val = readl(ispi->base + HSFSTS_CTL);
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
val |= HSFSTS_CTL_FGO;
val |= iop->replacement_op;
writel(val, ispi->base + HSFSTS_CTL);
ret = intel_spi_wait_hw_busy(ispi);
if (ret)
return ret;
status = readl(ispi->base + HSFSTS_CTL);
if (status & HSFSTS_CTL_FCERR)
return -EIO;
if (status & HSFSTS_CTL_AEL)
return -EACCES;
return 0;
}
static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
const struct spi_mem_op *op)
{
if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
iop->mem_op.cmd.dtr != op->cmd.dtr ||
iop->mem_op.cmd.opcode != op->cmd.opcode)
return false;
if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
iop->mem_op.addr.dtr != op->addr.dtr)
return false;
if (iop->mem_op.data.dir != op->data.dir ||
iop->mem_op.data.dtr != op->data.dtr)
return false;
if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
if (iop->mem_op.data.buswidth != op->data.buswidth)
return false;
}
return true;
}
static const struct intel_spi_mem_op *
intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
{
const struct intel_spi_mem_op *iop;
for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
if (intel_spi_cmp_mem_op(iop, op))
break;
}
return iop->mem_op.cmd.opcode ? iop : NULL;
}
static bool intel_spi_supports_mem_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
const struct intel_spi_mem_op *iop;
iop = intel_spi_match_mem_op(ispi, op);
if (!iop) {
dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
return false;
}
/*
* For software sequencer check that the opcode is actually
* present in the opmenu if it is locked.
*/
if (ispi->swseq_reg && ispi->locked) {
int i;
/* Check if it is in the locked opcodes list */
for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
if (ispi->opcodes[i] == op->cmd.opcode)
return true;
}
dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
return false;
}
return true;
}
static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
const struct intel_spi_mem_op *iop;
iop = intel_spi_match_mem_op(ispi, op);
if (!iop)
return -EOPNOTSUPP;
return iop->exec_op(ispi, mem, iop, op);
}
static const char *intel_spi_get_name(struct spi_mem *mem)
{
const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
/*
* Return name of the flash controller device to be compatible
* with the MTD version.
*/
return dev_name(ispi->dev);
}
static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
{
struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
const struct intel_spi_mem_op *iop;
iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
if (!iop)
return -EOPNOTSUPP;
desc->priv = (void *)iop;
return 0;
}
static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
size_t len, void *buf)
{
struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
const struct intel_spi_mem_op *iop = desc->priv;
struct spi_mem_op op = desc->info.op_tmpl;
int ret;
/* Fill in the gaps */
op.addr.val = offs;
op.data.nbytes = len;
op.data.buf.in = buf;
ret = iop->exec_op(ispi, desc->mem, iop, &op);
return ret ? ret : len;
}
static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
size_t len, const void *buf)
{
struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
const struct intel_spi_mem_op *iop = desc->priv;
struct spi_mem_op op = desc->info.op_tmpl;
int ret;
op.addr.val = offs;
op.data.nbytes = len;
op.data.buf.out = buf;
ret = iop->exec_op(ispi, desc->mem, iop, &op);
return ret ? ret : len;
}
static const struct spi_controller_mem_ops intel_spi_mem_ops = {
.supports_op = intel_spi_supports_mem_op,
.exec_op = intel_spi_exec_mem_op,
.get_name = intel_spi_get_name,
.dirmap_create = intel_spi_dirmap_create,
.dirmap_read = intel_spi_dirmap_read,
.dirmap_write = intel_spi_dirmap_write,
};
#define INTEL_SPI_OP_ADDR(__nbytes) \
{ \
.nbytes = __nbytes, \
}
#define INTEL_SPI_OP_NO_DATA \
{ \
.dir = SPI_MEM_NO_DATA, \
}
#define INTEL_SPI_OP_DATA_IN(__buswidth) \
{ \
.dir = SPI_MEM_DATA_IN, \
.buswidth = __buswidth, \
}
#define INTEL_SPI_OP_DATA_OUT(__buswidth) \
{ \
.dir = SPI_MEM_DATA_OUT, \
.buswidth = __buswidth, \
}
#define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \
{ \
.mem_op = { \
.cmd = __cmd, \
.addr = __addr, \
.data = __data, \
}, \
.exec_op = __exec_op, \
}
#define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \
{ \
.mem_op = { \
.cmd = __cmd, \
.addr = __addr, \
.data = __data, \
}, \
.exec_op = __exec_op, \
.replacement_op = __repl, \
}
/*
* The controller handles pretty much everything internally based on the
* SFDP data but we want to make sure we only support the operations
* actually possible. Only check buswidth and transfer direction, the
* core validates data.
*/
#define INTEL_SPI_GENERIC_OPS \
/* Status register operations */ \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \
SPI_MEM_OP_NO_ADDR, \
INTEL_SPI_OP_DATA_IN(1), \
intel_spi_read_reg), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \
SPI_MEM_OP_NO_ADDR, \
INTEL_SPI_OP_DATA_IN(1), \
intel_spi_read_reg), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \
SPI_MEM_OP_NO_ADDR, \
INTEL_SPI_OP_DATA_OUT(1), \
intel_spi_write_reg), \
/* Normal read */ \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
INTEL_SPI_OP_ADDR(3), \
INTEL_SPI_OP_DATA_IN(1), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
INTEL_SPI_OP_ADDR(3), \
INTEL_SPI_OP_DATA_IN(2), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
INTEL_SPI_OP_ADDR(3), \
INTEL_SPI_OP_DATA_IN(4), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(1), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(2), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(4), \
intel_spi_read), \
/* Fast read */ \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
INTEL_SPI_OP_ADDR(3), \
INTEL_SPI_OP_DATA_IN(1), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
INTEL_SPI_OP_ADDR(3), \
INTEL_SPI_OP_DATA_IN(2), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
INTEL_SPI_OP_ADDR(3), \
INTEL_SPI_OP_DATA_IN(4), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(1), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(2), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(4), \
intel_spi_read), \
/* Read with 4-byte address opcode */ \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(1), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(2), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(4), \
intel_spi_read), \
/* Fast read with 4-byte address opcode */ \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(1), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(2), \
intel_spi_read), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_IN(4), \
intel_spi_read), \
/* Write operations */ \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
INTEL_SPI_OP_ADDR(3), \
INTEL_SPI_OP_DATA_OUT(1), \
intel_spi_write), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_OUT(1), \
intel_spi_write), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \
INTEL_SPI_OP_ADDR(4), \
INTEL_SPI_OP_DATA_OUT(1), \
intel_spi_write), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_NO_DATA, \
intel_spi_write_reg), \
INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_NO_DATA, \
intel_spi_write_reg), \
/* Erase operations */ \
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
INTEL_SPI_OP_ADDR(3), \
SPI_MEM_OP_NO_DATA, \
intel_spi_erase, \
HSFSTS_CTL_FCYCLE_ERASE), \
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
INTEL_SPI_OP_ADDR(4), \
SPI_MEM_OP_NO_DATA, \
intel_spi_erase, \
HSFSTS_CTL_FCYCLE_ERASE), \
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \
INTEL_SPI_OP_ADDR(4), \
SPI_MEM_OP_NO_DATA, \
intel_spi_erase, \
HSFSTS_CTL_FCYCLE_ERASE) \
static const struct intel_spi_mem_op generic_mem_ops[] = {
INTEL_SPI_GENERIC_OPS,
{ },
};
static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
INTEL_SPI_GENERIC_OPS,
/* 64k sector erase operations */
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
INTEL_SPI_OP_ADDR(3),
SPI_MEM_OP_NO_DATA,
intel_spi_erase,
HSFSTS_CTL_FCYCLE_ERASE_64K),
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
INTEL_SPI_OP_ADDR(4),
SPI_MEM_OP_NO_DATA,
intel_spi_erase,
HSFSTS_CTL_FCYCLE_ERASE_64K),
INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
INTEL_SPI_OP_ADDR(4),
SPI_MEM_OP_NO_DATA,
intel_spi_erase,
HSFSTS_CTL_FCYCLE_ERASE_64K),
{ },
};
static int intel_spi_init(struct intel_spi *ispi)
{
u32 opmenu0, opmenu1, lvscc, uvscc, val;
bool erase_64k = false;
int i;
switch (ispi->info->type) {
case INTEL_SPI_BYT:
ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
ispi->pregs = ispi->base + BYT_PR;
ispi->nregions = BYT_FREG_NUM;
ispi->pr_num = BYT_PR_NUM;
ispi->swseq_reg = true;
break;
case INTEL_SPI_LPT:
ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
ispi->pregs = ispi->base + LPT_PR;
ispi->nregions = LPT_FREG_NUM;
ispi->pr_num = LPT_PR_NUM;
ispi->swseq_reg = true;
break;
case INTEL_SPI_BXT:
ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
ispi->pregs = ispi->base + BXT_PR;
ispi->nregions = BXT_FREG_NUM;
ispi->pr_num = BXT_PR_NUM;
erase_64k = true;
break;
case INTEL_SPI_CNL:
ispi->sregs = NULL;
ispi->pregs = ispi->base + CNL_PR;
ispi->nregions = CNL_FREG_NUM;
ispi->pr_num = CNL_PR_NUM;
erase_64k = true;
break;
default:
return -EINVAL;
}
/* Try to disable write protection if user asked to do so */
if (writeable && !intel_spi_set_writeable(ispi)) {
dev_warn(ispi->dev, "can't disable chip write protection\n");
writeable = false;
}
/* Disable #SMI generation from HW sequencer */
val = readl(ispi->base + HSFSTS_CTL);
val &= ~HSFSTS_CTL_FSMIE;
writel(val, ispi->base + HSFSTS_CTL);
/*
* Determine whether erase operation should use HW or SW sequencer.
*
* The HW sequencer has a predefined list of opcodes, with only the
* erase opcode being programmable in LVSCC and UVSCC registers.
* If these registers don't contain a valid erase opcode, erase
* cannot be done using HW sequencer.
*/
lvscc = readl(ispi->base + LVSCC);
uvscc = readl(ispi->base + UVSCC);
if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
ispi->swseq_erase = true;
/* SPI controller on Intel BXT supports 64K erase opcode */
if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
!(uvscc & ERASE_64K_OPCODE_MASK))
erase_64k = false;
if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
dev_err(ispi->dev, "software sequencer not supported, but required\n");
return -EINVAL;
}
/*
* Some controllers can only do basic operations using hardware
* sequencer. All other operations are supposed to be carried out
* using software sequencer.
*/
if (ispi->swseq_reg) {
/* Disable #SMI generation from SW sequencer */
val = readl(ispi->sregs + SSFSTS_CTL);
val &= ~SSFSTS_CTL_FSMIE;
writel(val, ispi->sregs + SSFSTS_CTL);
}
/* Check controller's lock status */
val = readl(ispi->base + HSFSTS_CTL);
ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
if (ispi->locked && ispi->sregs) {
/*
* BIOS programs allowed opcodes and then locks down the
* register. So read back what opcodes it decided to support.
* That's the set we are going to support as well.
*/
opmenu0 = readl(ispi->sregs + OPMENU0);
opmenu1 = readl(ispi->sregs + OPMENU1);
if (opmenu0 && opmenu1) {
for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
ispi->opcodes[i] = opmenu0 >> i * 8;
ispi->opcodes[i + 4] = opmenu1 >> i * 8;
}
}
}
if (erase_64k) {
dev_dbg(ispi->dev, "Using erase_64k memory operations");
ispi->mem_ops = erase_64k_mem_ops;
} else {
dev_dbg(ispi->dev, "Using generic memory operations");
ispi->mem_ops = generic_mem_ops;
}
intel_spi_dump_regs(ispi);
return 0;
}
static bool intel_spi_is_protected(const struct intel_spi *ispi,
unsigned int base, unsigned int limit)
{
int i;
for (i = 0; i < ispi->pr_num; i++) {
u32 pr_base, pr_limit, pr_value;
pr_value = readl(ispi->pregs + PR(i));
if (!(pr_value & (PR_WPE | PR_RPE)))
continue;
pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
pr_base = pr_value & PR_BASE_MASK;
if (pr_base >= base && pr_limit <= limit)
return true;
}
return false;
}
/*
* There will be a single partition holding all enabled flash regions. We
* call this "BIOS".
*/
static void intel_spi_fill_partition(struct intel_spi *ispi,
struct mtd_partition *part)
{
u64 end;
int i;
memset(part, 0, sizeof(*part));
/* Start from the mandatory descriptor region */
part->size = 4096;
part->name = "BIOS";
/*
* Now try to find where this partition ends based on the flash
* region registers.
*/
for (i = 1; i < ispi->nregions; i++) {
u32 region, base, limit;
region = readl(ispi->base + FREG(i));
base = region & FREG_BASE_MASK;
limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
if (base >= limit || limit == 0)
continue;
/*
* If any of the regions have protection bits set, make the
* whole partition read-only to be on the safe side.
*
* Also if the user did not ask the chip to be writeable
* mask the bit too.
*/
if (!writeable || intel_spi_is_protected(ispi, base, limit))
part->mask_flags |= MTD_WRITEABLE;
end = (limit << 12) + 4096;
if (end > part->size)
part->size = end;
}
}
static int intel_spi_read_desc(struct intel_spi *ispi)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
SPI_MEM_OP_ADDR(3, 0, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(0, NULL, 0));
u32 buf[2], nc, fcba, flcomp;
ssize_t ret;
op.addr.val = 0x10;
op.data.buf.in = buf;
op.data.nbytes = sizeof(buf);
ret = intel_spi_read(ispi, NULL, NULL, &op);
if (ret) {
dev_warn(ispi->dev, "failed to read descriptor\n");
return ret;
}
dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
if (buf[0] != FLVALSIG_MAGIC) {
dev_warn(ispi->dev, "descriptor signature not valid\n");
return -ENODEV;
}
fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
op.addr.val = fcba;
op.data.buf.in = &flcomp;
op.data.nbytes = sizeof(flcomp);
ret = intel_spi_read(ispi, NULL, NULL, &op);
if (ret) {
dev_warn(ispi->dev, "failed to read FLCOMP\n");
return -ENODEV;
}
dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
switch (flcomp & FLCOMP_C0DEN_MASK) {
case FLCOMP_C0DEN_512K:
ispi->chip0_size = SZ_512K;
break;
case FLCOMP_C0DEN_1M:
ispi->chip0_size = SZ_1M;
break;
case FLCOMP_C0DEN_2M:
ispi->chip0_size = SZ_2M;
break;
case FLCOMP_C0DEN_4M:
ispi->chip0_size = SZ_4M;
break;
case FLCOMP_C0DEN_8M:
ispi->chip0_size = SZ_8M;
break;
case FLCOMP_C0DEN_16M:
ispi->chip0_size = SZ_16M;
break;
case FLCOMP_C0DEN_32M:
ispi->chip0_size = SZ_32M;
break;
case FLCOMP_C0DEN_64M:
ispi->chip0_size = SZ_64M;
break;
default:
return -EINVAL;
}
dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
if (!nc)
ispi->master->num_chipselect = 1;
else if (nc == 1)
ispi->master->num_chipselect = 2;
else
return -EINVAL;
dev_dbg(ispi->dev, "%u flash components found\n",
ispi->master->num_chipselect);
return 0;
}
static int intel_spi_populate_chip(struct intel_spi *ispi)
{
struct flash_platform_data *pdata;
struct spi_board_info chip;
int ret;
pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
pdata->nr_parts = 1;
pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
sizeof(*pdata->parts), GFP_KERNEL);
if (!pdata->parts)
return -ENOMEM;
intel_spi_fill_partition(ispi, pdata->parts);
memset(&chip, 0, sizeof(chip));
snprintf(chip.modalias, 8, "spi-nor");
chip.platform_data = pdata;
if (!spi_new_device(ispi->master, &chip))
return -ENODEV;
/* Add the second chip if present */
if (ispi->master->num_chipselect < 2)
return 0;
ret = intel_spi_read_desc(ispi);
if (ret)
return ret;
chip.platform_data = NULL;
chip.chip_select = 1;
if (!spi_new_device(ispi->master, &chip))
return -ENODEV;
return 0;
}
/**
* intel_spi_probe() - Probe the Intel SPI flash controller
* @dev: Pointer to the parent device
* @mem: MMIO resource
* @info: Platform specific information
*
* Probes Intel SPI flash controller and creates the flash chip device.
* Returns %0 on success and negative errno in case of failure.
*/
int intel_spi_probe(struct device *dev, struct resource *mem,
const struct intel_spi_boardinfo *info)
{
struct spi_controller *master;
struct intel_spi *ispi;
int ret;
master = devm_spi_alloc_master(dev, sizeof(*ispi));
if (!master)
return -ENOMEM;
master->mem_ops = &intel_spi_mem_ops;
ispi = spi_master_get_devdata(master);
ispi->base = devm_ioremap_resource(dev, mem);
if (IS_ERR(ispi->base))
return PTR_ERR(ispi->base);
ispi->dev = dev;
ispi->master = master;
ispi->info = info;
ret = intel_spi_init(ispi);
if (ret)
return ret;
ret = devm_spi_register_master(dev, master);
if (ret)
return ret;
return intel_spi_populate_chip(ispi);
}
EXPORT_SYMBOL_GPL(intel_spi_probe);
MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
MODULE_LICENSE("GPL v2");