3925 lines
104 KiB
C
3925 lines
104 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_extent_busy.h"
|
|
#include "xfs_errortag.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_ag_resv.h"
|
|
#include "xfs_bmap.h"
|
|
|
|
struct kmem_cache *xfs_extfree_item_cache;
|
|
|
|
struct workqueue_struct *xfs_alloc_wq;
|
|
|
|
#define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
|
|
|
|
#define XFSA_FIXUP_BNO_OK 1
|
|
#define XFSA_FIXUP_CNT_OK 2
|
|
|
|
/*
|
|
* Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
|
|
* the beginning of the block for a proper header with the location information
|
|
* and CRC.
|
|
*/
|
|
unsigned int
|
|
xfs_agfl_size(
|
|
struct xfs_mount *mp)
|
|
{
|
|
unsigned int size = mp->m_sb.sb_sectsize;
|
|
|
|
if (xfs_has_crc(mp))
|
|
size -= sizeof(struct xfs_agfl);
|
|
|
|
return size / sizeof(xfs_agblock_t);
|
|
}
|
|
|
|
unsigned int
|
|
xfs_refc_block(
|
|
struct xfs_mount *mp)
|
|
{
|
|
if (xfs_has_rmapbt(mp))
|
|
return XFS_RMAP_BLOCK(mp) + 1;
|
|
if (xfs_has_finobt(mp))
|
|
return XFS_FIBT_BLOCK(mp) + 1;
|
|
return XFS_IBT_BLOCK(mp) + 1;
|
|
}
|
|
|
|
xfs_extlen_t
|
|
xfs_prealloc_blocks(
|
|
struct xfs_mount *mp)
|
|
{
|
|
if (xfs_has_reflink(mp))
|
|
return xfs_refc_block(mp) + 1;
|
|
if (xfs_has_rmapbt(mp))
|
|
return XFS_RMAP_BLOCK(mp) + 1;
|
|
if (xfs_has_finobt(mp))
|
|
return XFS_FIBT_BLOCK(mp) + 1;
|
|
return XFS_IBT_BLOCK(mp) + 1;
|
|
}
|
|
|
|
/*
|
|
* The number of blocks per AG that we withhold from xfs_mod_fdblocks to
|
|
* guarantee that we can refill the AGFL prior to allocating space in a nearly
|
|
* full AG. Although the space described by the free space btrees, the
|
|
* blocks used by the freesp btrees themselves, and the blocks owned by the
|
|
* AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
|
|
* free space in the AG drop so low that the free space btrees cannot refill an
|
|
* empty AGFL up to the minimum level. Rather than grind through empty AGs
|
|
* until the fs goes down, we subtract this many AG blocks from the incore
|
|
* fdblocks to ensure user allocation does not overcommit the space the
|
|
* filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to
|
|
* withhold space from xfs_mod_fdblocks, so we do not account for that here.
|
|
*/
|
|
#define XFS_ALLOCBT_AGFL_RESERVE 4
|
|
|
|
/*
|
|
* Compute the number of blocks that we set aside to guarantee the ability to
|
|
* refill the AGFL and handle a full bmap btree split.
|
|
*
|
|
* In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
|
|
* AGF buffer (PV 947395), we place constraints on the relationship among
|
|
* actual allocations for data blocks, freelist blocks, and potential file data
|
|
* bmap btree blocks. However, these restrictions may result in no actual space
|
|
* allocated for a delayed extent, for example, a data block in a certain AG is
|
|
* allocated but there is no additional block for the additional bmap btree
|
|
* block due to a split of the bmap btree of the file. The result of this may
|
|
* lead to an infinite loop when the file gets flushed to disk and all delayed
|
|
* extents need to be actually allocated. To get around this, we explicitly set
|
|
* aside a few blocks which will not be reserved in delayed allocation.
|
|
*
|
|
* For each AG, we need to reserve enough blocks to replenish a totally empty
|
|
* AGFL and 4 more to handle a potential split of the file's bmap btree.
|
|
*/
|
|
unsigned int
|
|
xfs_alloc_set_aside(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
|
|
}
|
|
|
|
/*
|
|
* When deciding how much space to allocate out of an AG, we limit the
|
|
* allocation maximum size to the size the AG. However, we cannot use all the
|
|
* blocks in the AG - some are permanently used by metadata. These
|
|
* blocks are generally:
|
|
* - the AG superblock, AGF, AGI and AGFL
|
|
* - the AGF (bno and cnt) and AGI btree root blocks, and optionally
|
|
* the AGI free inode and rmap btree root blocks.
|
|
* - blocks on the AGFL according to xfs_alloc_set_aside() limits
|
|
* - the rmapbt root block
|
|
*
|
|
* The AG headers are sector sized, so the amount of space they take up is
|
|
* dependent on filesystem geometry. The others are all single blocks.
|
|
*/
|
|
unsigned int
|
|
xfs_alloc_ag_max_usable(
|
|
struct xfs_mount *mp)
|
|
{
|
|
unsigned int blocks;
|
|
|
|
blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
|
|
blocks += XFS_ALLOCBT_AGFL_RESERVE;
|
|
blocks += 3; /* AGF, AGI btree root blocks */
|
|
if (xfs_has_finobt(mp))
|
|
blocks++; /* finobt root block */
|
|
if (xfs_has_rmapbt(mp))
|
|
blocks++; /* rmap root block */
|
|
if (xfs_has_reflink(mp))
|
|
blocks++; /* refcount root block */
|
|
|
|
return mp->m_sb.sb_agblocks - blocks;
|
|
}
|
|
|
|
/*
|
|
* Lookup the record equal to [bno, len] in the btree given by cur.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_alloc_lookup_eq(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_agblock_t bno, /* starting block of extent */
|
|
xfs_extlen_t len, /* length of extent */
|
|
int *stat) /* success/failure */
|
|
{
|
|
int error;
|
|
|
|
cur->bc_rec.a.ar_startblock = bno;
|
|
cur->bc_rec.a.ar_blockcount = len;
|
|
error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
|
|
cur->bc_ag.abt.active = (*stat == 1);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Lookup the first record greater than or equal to [bno, len]
|
|
* in the btree given by cur.
|
|
*/
|
|
int /* error */
|
|
xfs_alloc_lookup_ge(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_agblock_t bno, /* starting block of extent */
|
|
xfs_extlen_t len, /* length of extent */
|
|
int *stat) /* success/failure */
|
|
{
|
|
int error;
|
|
|
|
cur->bc_rec.a.ar_startblock = bno;
|
|
cur->bc_rec.a.ar_blockcount = len;
|
|
error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
|
|
cur->bc_ag.abt.active = (*stat == 1);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Lookup the first record less than or equal to [bno, len]
|
|
* in the btree given by cur.
|
|
*/
|
|
int /* error */
|
|
xfs_alloc_lookup_le(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_agblock_t bno, /* starting block of extent */
|
|
xfs_extlen_t len, /* length of extent */
|
|
int *stat) /* success/failure */
|
|
{
|
|
int error;
|
|
cur->bc_rec.a.ar_startblock = bno;
|
|
cur->bc_rec.a.ar_blockcount = len;
|
|
error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
|
|
cur->bc_ag.abt.active = (*stat == 1);
|
|
return error;
|
|
}
|
|
|
|
static inline bool
|
|
xfs_alloc_cur_active(
|
|
struct xfs_btree_cur *cur)
|
|
{
|
|
return cur && cur->bc_ag.abt.active;
|
|
}
|
|
|
|
/*
|
|
* Update the record referred to by cur to the value given
|
|
* by [bno, len].
|
|
* This either works (return 0) or gets an EFSCORRUPTED error.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_alloc_update(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_agblock_t bno, /* starting block of extent */
|
|
xfs_extlen_t len) /* length of extent */
|
|
{
|
|
union xfs_btree_rec rec;
|
|
|
|
rec.alloc.ar_startblock = cpu_to_be32(bno);
|
|
rec.alloc.ar_blockcount = cpu_to_be32(len);
|
|
return xfs_btree_update(cur, &rec);
|
|
}
|
|
|
|
/* Convert the ondisk btree record to its incore representation. */
|
|
void
|
|
xfs_alloc_btrec_to_irec(
|
|
const union xfs_btree_rec *rec,
|
|
struct xfs_alloc_rec_incore *irec)
|
|
{
|
|
irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
|
|
irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
|
|
}
|
|
|
|
/* Simple checks for free space records. */
|
|
xfs_failaddr_t
|
|
xfs_alloc_check_irec(
|
|
struct xfs_btree_cur *cur,
|
|
const struct xfs_alloc_rec_incore *irec)
|
|
{
|
|
struct xfs_perag *pag = cur->bc_ag.pag;
|
|
|
|
if (irec->ar_blockcount == 0)
|
|
return __this_address;
|
|
|
|
/* check for valid extent range, including overflow */
|
|
if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
|
|
return __this_address;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline int
|
|
xfs_alloc_complain_bad_rec(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_failaddr_t fa,
|
|
const struct xfs_alloc_rec_incore *irec)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
|
|
xfs_warn(mp,
|
|
"%s Freespace BTree record corruption in AG %d detected at %pS!",
|
|
cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
|
|
cur->bc_ag.pag->pag_agno, fa);
|
|
xfs_warn(mp,
|
|
"start block 0x%x block count 0x%x", irec->ar_startblock,
|
|
irec->ar_blockcount);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Get the data from the pointed-to record.
|
|
*/
|
|
int /* error */
|
|
xfs_alloc_get_rec(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_agblock_t *bno, /* output: starting block of extent */
|
|
xfs_extlen_t *len, /* output: length of extent */
|
|
int *stat) /* output: success/failure */
|
|
{
|
|
struct xfs_alloc_rec_incore irec;
|
|
union xfs_btree_rec *rec;
|
|
xfs_failaddr_t fa;
|
|
int error;
|
|
|
|
error = xfs_btree_get_rec(cur, &rec, stat);
|
|
if (error || !(*stat))
|
|
return error;
|
|
|
|
xfs_alloc_btrec_to_irec(rec, &irec);
|
|
fa = xfs_alloc_check_irec(cur, &irec);
|
|
if (fa)
|
|
return xfs_alloc_complain_bad_rec(cur, fa, &irec);
|
|
|
|
*bno = irec.ar_startblock;
|
|
*len = irec.ar_blockcount;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compute aligned version of the found extent.
|
|
* Takes alignment and min length into account.
|
|
*/
|
|
STATIC bool
|
|
xfs_alloc_compute_aligned(
|
|
xfs_alloc_arg_t *args, /* allocation argument structure */
|
|
xfs_agblock_t foundbno, /* starting block in found extent */
|
|
xfs_extlen_t foundlen, /* length in found extent */
|
|
xfs_agblock_t *resbno, /* result block number */
|
|
xfs_extlen_t *reslen, /* result length */
|
|
unsigned *busy_gen)
|
|
{
|
|
xfs_agblock_t bno = foundbno;
|
|
xfs_extlen_t len = foundlen;
|
|
xfs_extlen_t diff;
|
|
bool busy;
|
|
|
|
/* Trim busy sections out of found extent */
|
|
busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
|
|
|
|
/*
|
|
* If we have a largish extent that happens to start before min_agbno,
|
|
* see if we can shift it into range...
|
|
*/
|
|
if (bno < args->min_agbno && bno + len > args->min_agbno) {
|
|
diff = args->min_agbno - bno;
|
|
if (len > diff) {
|
|
bno += diff;
|
|
len -= diff;
|
|
}
|
|
}
|
|
|
|
if (args->alignment > 1 && len >= args->minlen) {
|
|
xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
|
|
|
|
diff = aligned_bno - bno;
|
|
|
|
*resbno = aligned_bno;
|
|
*reslen = diff >= len ? 0 : len - diff;
|
|
} else {
|
|
*resbno = bno;
|
|
*reslen = len;
|
|
}
|
|
|
|
return busy;
|
|
}
|
|
|
|
/*
|
|
* Compute best start block and diff for "near" allocations.
|
|
* freelen >= wantlen already checked by caller.
|
|
*/
|
|
STATIC xfs_extlen_t /* difference value (absolute) */
|
|
xfs_alloc_compute_diff(
|
|
xfs_agblock_t wantbno, /* target starting block */
|
|
xfs_extlen_t wantlen, /* target length */
|
|
xfs_extlen_t alignment, /* target alignment */
|
|
int datatype, /* are we allocating data? */
|
|
xfs_agblock_t freebno, /* freespace's starting block */
|
|
xfs_extlen_t freelen, /* freespace's length */
|
|
xfs_agblock_t *newbnop) /* result: best start block from free */
|
|
{
|
|
xfs_agblock_t freeend; /* end of freespace extent */
|
|
xfs_agblock_t newbno1; /* return block number */
|
|
xfs_agblock_t newbno2; /* other new block number */
|
|
xfs_extlen_t newlen1=0; /* length with newbno1 */
|
|
xfs_extlen_t newlen2=0; /* length with newbno2 */
|
|
xfs_agblock_t wantend; /* end of target extent */
|
|
bool userdata = datatype & XFS_ALLOC_USERDATA;
|
|
|
|
ASSERT(freelen >= wantlen);
|
|
freeend = freebno + freelen;
|
|
wantend = wantbno + wantlen;
|
|
/*
|
|
* We want to allocate from the start of a free extent if it is past
|
|
* the desired block or if we are allocating user data and the free
|
|
* extent is before desired block. The second case is there to allow
|
|
* for contiguous allocation from the remaining free space if the file
|
|
* grows in the short term.
|
|
*/
|
|
if (freebno >= wantbno || (userdata && freeend < wantend)) {
|
|
if ((newbno1 = roundup(freebno, alignment)) >= freeend)
|
|
newbno1 = NULLAGBLOCK;
|
|
} else if (freeend >= wantend && alignment > 1) {
|
|
newbno1 = roundup(wantbno, alignment);
|
|
newbno2 = newbno1 - alignment;
|
|
if (newbno1 >= freeend)
|
|
newbno1 = NULLAGBLOCK;
|
|
else
|
|
newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
|
|
if (newbno2 < freebno)
|
|
newbno2 = NULLAGBLOCK;
|
|
else
|
|
newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
|
|
if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
|
|
if (newlen1 < newlen2 ||
|
|
(newlen1 == newlen2 &&
|
|
XFS_ABSDIFF(newbno1, wantbno) >
|
|
XFS_ABSDIFF(newbno2, wantbno)))
|
|
newbno1 = newbno2;
|
|
} else if (newbno2 != NULLAGBLOCK)
|
|
newbno1 = newbno2;
|
|
} else if (freeend >= wantend) {
|
|
newbno1 = wantbno;
|
|
} else if (alignment > 1) {
|
|
newbno1 = roundup(freeend - wantlen, alignment);
|
|
if (newbno1 > freeend - wantlen &&
|
|
newbno1 - alignment >= freebno)
|
|
newbno1 -= alignment;
|
|
else if (newbno1 >= freeend)
|
|
newbno1 = NULLAGBLOCK;
|
|
} else
|
|
newbno1 = freeend - wantlen;
|
|
*newbnop = newbno1;
|
|
return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
|
|
}
|
|
|
|
/*
|
|
* Fix up the length, based on mod and prod.
|
|
* len should be k * prod + mod for some k.
|
|
* If len is too small it is returned unchanged.
|
|
* If len hits maxlen it is left alone.
|
|
*/
|
|
STATIC void
|
|
xfs_alloc_fix_len(
|
|
xfs_alloc_arg_t *args) /* allocation argument structure */
|
|
{
|
|
xfs_extlen_t k;
|
|
xfs_extlen_t rlen;
|
|
|
|
ASSERT(args->mod < args->prod);
|
|
rlen = args->len;
|
|
ASSERT(rlen >= args->minlen);
|
|
ASSERT(rlen <= args->maxlen);
|
|
if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
|
|
(args->mod == 0 && rlen < args->prod))
|
|
return;
|
|
k = rlen % args->prod;
|
|
if (k == args->mod)
|
|
return;
|
|
if (k > args->mod)
|
|
rlen = rlen - (k - args->mod);
|
|
else
|
|
rlen = rlen - args->prod + (args->mod - k);
|
|
/* casts to (int) catch length underflows */
|
|
if ((int)rlen < (int)args->minlen)
|
|
return;
|
|
ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
|
|
ASSERT(rlen % args->prod == args->mod);
|
|
ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
|
|
rlen + args->minleft);
|
|
args->len = rlen;
|
|
}
|
|
|
|
/*
|
|
* Update the two btrees, logically removing from freespace the extent
|
|
* starting at rbno, rlen blocks. The extent is contained within the
|
|
* actual (current) free extent fbno for flen blocks.
|
|
* Flags are passed in indicating whether the cursors are set to the
|
|
* relevant records.
|
|
*/
|
|
STATIC int /* error code */
|
|
xfs_alloc_fixup_trees(
|
|
struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */
|
|
struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */
|
|
xfs_agblock_t fbno, /* starting block of free extent */
|
|
xfs_extlen_t flen, /* length of free extent */
|
|
xfs_agblock_t rbno, /* starting block of returned extent */
|
|
xfs_extlen_t rlen, /* length of returned extent */
|
|
int flags) /* flags, XFSA_FIXUP_... */
|
|
{
|
|
int error; /* error code */
|
|
int i; /* operation results */
|
|
xfs_agblock_t nfbno1; /* first new free startblock */
|
|
xfs_agblock_t nfbno2; /* second new free startblock */
|
|
xfs_extlen_t nflen1=0; /* first new free length */
|
|
xfs_extlen_t nflen2=0; /* second new free length */
|
|
struct xfs_mount *mp;
|
|
|
|
mp = cnt_cur->bc_mp;
|
|
|
|
/*
|
|
* Look up the record in the by-size tree if necessary.
|
|
*/
|
|
if (flags & XFSA_FIXUP_CNT_OK) {
|
|
#ifdef DEBUG
|
|
if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp,
|
|
i != 1 ||
|
|
nfbno1 != fbno ||
|
|
nflen1 != flen))
|
|
return -EFSCORRUPTED;
|
|
#endif
|
|
} else {
|
|
if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1))
|
|
return -EFSCORRUPTED;
|
|
}
|
|
/*
|
|
* Look up the record in the by-block tree if necessary.
|
|
*/
|
|
if (flags & XFSA_FIXUP_BNO_OK) {
|
|
#ifdef DEBUG
|
|
if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp,
|
|
i != 1 ||
|
|
nfbno1 != fbno ||
|
|
nflen1 != flen))
|
|
return -EFSCORRUPTED;
|
|
#endif
|
|
} else {
|
|
if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1))
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
|
|
struct xfs_btree_block *bnoblock;
|
|
struct xfs_btree_block *cntblock;
|
|
|
|
bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
|
|
cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
|
|
|
|
if (XFS_IS_CORRUPT(mp,
|
|
bnoblock->bb_numrecs !=
|
|
cntblock->bb_numrecs))
|
|
return -EFSCORRUPTED;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Deal with all four cases: the allocated record is contained
|
|
* within the freespace record, so we can have new freespace
|
|
* at either (or both) end, or no freespace remaining.
|
|
*/
|
|
if (rbno == fbno && rlen == flen)
|
|
nfbno1 = nfbno2 = NULLAGBLOCK;
|
|
else if (rbno == fbno) {
|
|
nfbno1 = rbno + rlen;
|
|
nflen1 = flen - rlen;
|
|
nfbno2 = NULLAGBLOCK;
|
|
} else if (rbno + rlen == fbno + flen) {
|
|
nfbno1 = fbno;
|
|
nflen1 = flen - rlen;
|
|
nfbno2 = NULLAGBLOCK;
|
|
} else {
|
|
nfbno1 = fbno;
|
|
nflen1 = rbno - fbno;
|
|
nfbno2 = rbno + rlen;
|
|
nflen2 = (fbno + flen) - nfbno2;
|
|
}
|
|
/*
|
|
* Delete the entry from the by-size btree.
|
|
*/
|
|
if ((error = xfs_btree_delete(cnt_cur, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1))
|
|
return -EFSCORRUPTED;
|
|
/*
|
|
* Add new by-size btree entry(s).
|
|
*/
|
|
if (nfbno1 != NULLAGBLOCK) {
|
|
if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp, i != 0))
|
|
return -EFSCORRUPTED;
|
|
if ((error = xfs_btree_insert(cnt_cur, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1))
|
|
return -EFSCORRUPTED;
|
|
}
|
|
if (nfbno2 != NULLAGBLOCK) {
|
|
if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp, i != 0))
|
|
return -EFSCORRUPTED;
|
|
if ((error = xfs_btree_insert(cnt_cur, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1))
|
|
return -EFSCORRUPTED;
|
|
}
|
|
/*
|
|
* Fix up the by-block btree entry(s).
|
|
*/
|
|
if (nfbno1 == NULLAGBLOCK) {
|
|
/*
|
|
* No remaining freespace, just delete the by-block tree entry.
|
|
*/
|
|
if ((error = xfs_btree_delete(bno_cur, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1))
|
|
return -EFSCORRUPTED;
|
|
} else {
|
|
/*
|
|
* Update the by-block entry to start later|be shorter.
|
|
*/
|
|
if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
|
|
return error;
|
|
}
|
|
if (nfbno2 != NULLAGBLOCK) {
|
|
/*
|
|
* 2 resulting free entries, need to add one.
|
|
*/
|
|
if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp, i != 0))
|
|
return -EFSCORRUPTED;
|
|
if ((error = xfs_btree_insert(bno_cur, &i)))
|
|
return error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1))
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We do not verify the AGFL contents against AGF-based index counters here,
|
|
* even though we may have access to the perag that contains shadow copies. We
|
|
* don't know if the AGF based counters have been checked, and if they have they
|
|
* still may be inconsistent because they haven't yet been reset on the first
|
|
* allocation after the AGF has been read in.
|
|
*
|
|
* This means we can only check that all agfl entries contain valid or null
|
|
* values because we can't reliably determine the active range to exclude
|
|
* NULLAGBNO as a valid value.
|
|
*
|
|
* However, we can't even do that for v4 format filesystems because there are
|
|
* old versions of mkfs out there that does not initialise the AGFL to known,
|
|
* verifiable values. HEnce we can't tell the difference between a AGFL block
|
|
* allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
|
|
*
|
|
* As a result, we can only fully validate AGFL block numbers when we pull them
|
|
* from the freelist in xfs_alloc_get_freelist().
|
|
*/
|
|
static xfs_failaddr_t
|
|
xfs_agfl_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
|
|
__be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
|
|
int i;
|
|
|
|
if (!xfs_has_crc(mp))
|
|
return NULL;
|
|
|
|
if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
|
|
return __this_address;
|
|
if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
|
|
return __this_address;
|
|
/*
|
|
* during growfs operations, the perag is not fully initialised,
|
|
* so we can't use it for any useful checking. growfs ensures we can't
|
|
* use it by using uncached buffers that don't have the perag attached
|
|
* so we can detect and avoid this problem.
|
|
*/
|
|
if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
|
|
return __this_address;
|
|
|
|
for (i = 0; i < xfs_agfl_size(mp); i++) {
|
|
if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
|
|
be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
|
|
return __this_address;
|
|
}
|
|
|
|
if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
|
|
return __this_address;
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
xfs_agfl_read_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
xfs_failaddr_t fa;
|
|
|
|
/*
|
|
* There is no verification of non-crc AGFLs because mkfs does not
|
|
* initialise the AGFL to zero or NULL. Hence the only valid part of the
|
|
* AGFL is what the AGF says is active. We can't get to the AGF, so we
|
|
* can't verify just those entries are valid.
|
|
*/
|
|
if (!xfs_has_crc(mp))
|
|
return;
|
|
|
|
if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
|
|
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
|
|
else {
|
|
fa = xfs_agfl_verify(bp);
|
|
if (fa)
|
|
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_agfl_write_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
struct xfs_buf_log_item *bip = bp->b_log_item;
|
|
xfs_failaddr_t fa;
|
|
|
|
/* no verification of non-crc AGFLs */
|
|
if (!xfs_has_crc(mp))
|
|
return;
|
|
|
|
fa = xfs_agfl_verify(bp);
|
|
if (fa) {
|
|
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
|
|
return;
|
|
}
|
|
|
|
if (bip)
|
|
XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
|
|
|
|
xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
|
|
}
|
|
|
|
const struct xfs_buf_ops xfs_agfl_buf_ops = {
|
|
.name = "xfs_agfl",
|
|
.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
|
|
.verify_read = xfs_agfl_read_verify,
|
|
.verify_write = xfs_agfl_write_verify,
|
|
.verify_struct = xfs_agfl_verify,
|
|
};
|
|
|
|
/*
|
|
* Read in the allocation group free block array.
|
|
*/
|
|
int
|
|
xfs_alloc_read_agfl(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
|
|
error = xfs_trans_read_buf(
|
|
mp, tp, mp->m_ddev_targp,
|
|
XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
|
|
XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
|
|
if (error)
|
|
return error;
|
|
xfs_buf_set_ref(bp, XFS_AGFL_REF);
|
|
*bpp = bp;
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_alloc_update_counters(
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
long len)
|
|
{
|
|
struct xfs_agf *agf = agbp->b_addr;
|
|
|
|
agbp->b_pag->pagf_freeblks += len;
|
|
be32_add_cpu(&agf->agf_freeblks, len);
|
|
|
|
if (unlikely(be32_to_cpu(agf->agf_freeblks) >
|
|
be32_to_cpu(agf->agf_length))) {
|
|
xfs_buf_mark_corrupt(agbp);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Block allocation algorithm and data structures.
|
|
*/
|
|
struct xfs_alloc_cur {
|
|
struct xfs_btree_cur *cnt; /* btree cursors */
|
|
struct xfs_btree_cur *bnolt;
|
|
struct xfs_btree_cur *bnogt;
|
|
xfs_extlen_t cur_len;/* current search length */
|
|
xfs_agblock_t rec_bno;/* extent startblock */
|
|
xfs_extlen_t rec_len;/* extent length */
|
|
xfs_agblock_t bno; /* alloc bno */
|
|
xfs_extlen_t len; /* alloc len */
|
|
xfs_extlen_t diff; /* diff from search bno */
|
|
unsigned int busy_gen;/* busy state */
|
|
bool busy;
|
|
};
|
|
|
|
/*
|
|
* Set up cursors, etc. in the extent allocation cursor. This function can be
|
|
* called multiple times to reset an initialized structure without having to
|
|
* reallocate cursors.
|
|
*/
|
|
static int
|
|
xfs_alloc_cur_setup(
|
|
struct xfs_alloc_arg *args,
|
|
struct xfs_alloc_cur *acur)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
acur->cur_len = args->maxlen;
|
|
acur->rec_bno = 0;
|
|
acur->rec_len = 0;
|
|
acur->bno = 0;
|
|
acur->len = 0;
|
|
acur->diff = -1;
|
|
acur->busy = false;
|
|
acur->busy_gen = 0;
|
|
|
|
/*
|
|
* Perform an initial cntbt lookup to check for availability of maxlen
|
|
* extents. If this fails, we'll return -ENOSPC to signal the caller to
|
|
* attempt a small allocation.
|
|
*/
|
|
if (!acur->cnt)
|
|
acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
|
|
args->agbp, args->pag, XFS_BTNUM_CNT);
|
|
error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Allocate the bnobt left and right search cursors.
|
|
*/
|
|
if (!acur->bnolt)
|
|
acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
|
|
args->agbp, args->pag, XFS_BTNUM_BNO);
|
|
if (!acur->bnogt)
|
|
acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
|
|
args->agbp, args->pag, XFS_BTNUM_BNO);
|
|
return i == 1 ? 0 : -ENOSPC;
|
|
}
|
|
|
|
static void
|
|
xfs_alloc_cur_close(
|
|
struct xfs_alloc_cur *acur,
|
|
bool error)
|
|
{
|
|
int cur_error = XFS_BTREE_NOERROR;
|
|
|
|
if (error)
|
|
cur_error = XFS_BTREE_ERROR;
|
|
|
|
if (acur->cnt)
|
|
xfs_btree_del_cursor(acur->cnt, cur_error);
|
|
if (acur->bnolt)
|
|
xfs_btree_del_cursor(acur->bnolt, cur_error);
|
|
if (acur->bnogt)
|
|
xfs_btree_del_cursor(acur->bnogt, cur_error);
|
|
acur->cnt = acur->bnolt = acur->bnogt = NULL;
|
|
}
|
|
|
|
/*
|
|
* Check an extent for allocation and track the best available candidate in the
|
|
* allocation structure. The cursor is deactivated if it has entered an out of
|
|
* range state based on allocation arguments. Optionally return the extent
|
|
* extent geometry and allocation status if requested by the caller.
|
|
*/
|
|
static int
|
|
xfs_alloc_cur_check(
|
|
struct xfs_alloc_arg *args,
|
|
struct xfs_alloc_cur *acur,
|
|
struct xfs_btree_cur *cur,
|
|
int *new)
|
|
{
|
|
int error, i;
|
|
xfs_agblock_t bno, bnoa, bnew;
|
|
xfs_extlen_t len, lena, diff = -1;
|
|
bool busy;
|
|
unsigned busy_gen = 0;
|
|
bool deactivate = false;
|
|
bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
|
|
|
|
*new = 0;
|
|
|
|
error = xfs_alloc_get_rec(cur, &bno, &len, &i);
|
|
if (error)
|
|
return error;
|
|
if (XFS_IS_CORRUPT(args->mp, i != 1))
|
|
return -EFSCORRUPTED;
|
|
|
|
/*
|
|
* Check minlen and deactivate a cntbt cursor if out of acceptable size
|
|
* range (i.e., walking backwards looking for a minlen extent).
|
|
*/
|
|
if (len < args->minlen) {
|
|
deactivate = !isbnobt;
|
|
goto out;
|
|
}
|
|
|
|
busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
|
|
&busy_gen);
|
|
acur->busy |= busy;
|
|
if (busy)
|
|
acur->busy_gen = busy_gen;
|
|
/* deactivate a bnobt cursor outside of locality range */
|
|
if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
|
|
deactivate = isbnobt;
|
|
goto out;
|
|
}
|
|
if (lena < args->minlen)
|
|
goto out;
|
|
|
|
args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
|
|
xfs_alloc_fix_len(args);
|
|
ASSERT(args->len >= args->minlen);
|
|
if (args->len < acur->len)
|
|
goto out;
|
|
|
|
/*
|
|
* We have an aligned record that satisfies minlen and beats or matches
|
|
* the candidate extent size. Compare locality for near allocation mode.
|
|
*/
|
|
diff = xfs_alloc_compute_diff(args->agbno, args->len,
|
|
args->alignment, args->datatype,
|
|
bnoa, lena, &bnew);
|
|
if (bnew == NULLAGBLOCK)
|
|
goto out;
|
|
|
|
/*
|
|
* Deactivate a bnobt cursor with worse locality than the current best.
|
|
*/
|
|
if (diff > acur->diff) {
|
|
deactivate = isbnobt;
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(args->len > acur->len ||
|
|
(args->len == acur->len && diff <= acur->diff));
|
|
acur->rec_bno = bno;
|
|
acur->rec_len = len;
|
|
acur->bno = bnew;
|
|
acur->len = args->len;
|
|
acur->diff = diff;
|
|
*new = 1;
|
|
|
|
/*
|
|
* We're done if we found a perfect allocation. This only deactivates
|
|
* the current cursor, but this is just an optimization to terminate a
|
|
* cntbt search that otherwise runs to the edge of the tree.
|
|
*/
|
|
if (acur->diff == 0 && acur->len == args->maxlen)
|
|
deactivate = true;
|
|
out:
|
|
if (deactivate)
|
|
cur->bc_ag.abt.active = false;
|
|
trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
|
|
*new);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Complete an allocation of a candidate extent. Remove the extent from both
|
|
* trees and update the args structure.
|
|
*/
|
|
STATIC int
|
|
xfs_alloc_cur_finish(
|
|
struct xfs_alloc_arg *args,
|
|
struct xfs_alloc_cur *acur)
|
|
{
|
|
struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
|
|
int error;
|
|
|
|
ASSERT(acur->cnt && acur->bnolt);
|
|
ASSERT(acur->bno >= acur->rec_bno);
|
|
ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
|
|
ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
|
|
|
|
error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
|
|
acur->rec_len, acur->bno, acur->len, 0);
|
|
if (error)
|
|
return error;
|
|
|
|
args->agbno = acur->bno;
|
|
args->len = acur->len;
|
|
args->wasfromfl = 0;
|
|
|
|
trace_xfs_alloc_cur(args);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Locality allocation lookup algorithm. This expects a cntbt cursor and uses
|
|
* bno optimized lookup to search for extents with ideal size and locality.
|
|
*/
|
|
STATIC int
|
|
xfs_alloc_cntbt_iter(
|
|
struct xfs_alloc_arg *args,
|
|
struct xfs_alloc_cur *acur)
|
|
{
|
|
struct xfs_btree_cur *cur = acur->cnt;
|
|
xfs_agblock_t bno;
|
|
xfs_extlen_t len, cur_len;
|
|
int error;
|
|
int i;
|
|
|
|
if (!xfs_alloc_cur_active(cur))
|
|
return 0;
|
|
|
|
/* locality optimized lookup */
|
|
cur_len = acur->cur_len;
|
|
error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
|
|
if (error)
|
|
return error;
|
|
if (i == 0)
|
|
return 0;
|
|
error = xfs_alloc_get_rec(cur, &bno, &len, &i);
|
|
if (error)
|
|
return error;
|
|
|
|
/* check the current record and update search length from it */
|
|
error = xfs_alloc_cur_check(args, acur, cur, &i);
|
|
if (error)
|
|
return error;
|
|
ASSERT(len >= acur->cur_len);
|
|
acur->cur_len = len;
|
|
|
|
/*
|
|
* We looked up the first record >= [agbno, len] above. The agbno is a
|
|
* secondary key and so the current record may lie just before or after
|
|
* agbno. If it is past agbno, check the previous record too so long as
|
|
* the length matches as it may be closer. Don't check a smaller record
|
|
* because that could deactivate our cursor.
|
|
*/
|
|
if (bno > args->agbno) {
|
|
error = xfs_btree_decrement(cur, 0, &i);
|
|
if (!error && i) {
|
|
error = xfs_alloc_get_rec(cur, &bno, &len, &i);
|
|
if (!error && i && len == acur->cur_len)
|
|
error = xfs_alloc_cur_check(args, acur, cur,
|
|
&i);
|
|
}
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Increment the search key until we find at least one allocation
|
|
* candidate or if the extent we found was larger. Otherwise, double the
|
|
* search key to optimize the search. Efficiency is more important here
|
|
* than absolute best locality.
|
|
*/
|
|
cur_len <<= 1;
|
|
if (!acur->len || acur->cur_len >= cur_len)
|
|
acur->cur_len++;
|
|
else
|
|
acur->cur_len = cur_len;
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Deal with the case where only small freespaces remain. Either return the
|
|
* contents of the last freespace record, or allocate space from the freelist if
|
|
* there is nothing in the tree.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_alloc_ag_vextent_small(
|
|
struct xfs_alloc_arg *args, /* allocation argument structure */
|
|
struct xfs_btree_cur *ccur, /* optional by-size cursor */
|
|
xfs_agblock_t *fbnop, /* result block number */
|
|
xfs_extlen_t *flenp, /* result length */
|
|
int *stat) /* status: 0-freelist, 1-normal/none */
|
|
{
|
|
struct xfs_agf *agf = args->agbp->b_addr;
|
|
int error = 0;
|
|
xfs_agblock_t fbno = NULLAGBLOCK;
|
|
xfs_extlen_t flen = 0;
|
|
int i = 0;
|
|
|
|
/*
|
|
* If a cntbt cursor is provided, try to allocate the largest record in
|
|
* the tree. Try the AGFL if the cntbt is empty, otherwise fail the
|
|
* allocation. Make sure to respect minleft even when pulling from the
|
|
* freelist.
|
|
*/
|
|
if (ccur)
|
|
error = xfs_btree_decrement(ccur, 0, &i);
|
|
if (error)
|
|
goto error;
|
|
if (i) {
|
|
error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
|
|
if (error)
|
|
goto error;
|
|
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
if (args->minlen != 1 || args->alignment != 1 ||
|
|
args->resv == XFS_AG_RESV_AGFL ||
|
|
be32_to_cpu(agf->agf_flcount) <= args->minleft)
|
|
goto out;
|
|
|
|
error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
|
|
&fbno, 0);
|
|
if (error)
|
|
goto error;
|
|
if (fbno == NULLAGBLOCK)
|
|
goto out;
|
|
|
|
xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
|
|
(args->datatype & XFS_ALLOC_NOBUSY));
|
|
|
|
if (args->datatype & XFS_ALLOC_USERDATA) {
|
|
struct xfs_buf *bp;
|
|
|
|
error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
|
|
XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
|
|
args->mp->m_bsize, 0, &bp);
|
|
if (error)
|
|
goto error;
|
|
xfs_trans_binval(args->tp, bp);
|
|
}
|
|
*fbnop = args->agbno = fbno;
|
|
*flenp = args->len = 1;
|
|
if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
|
|
error = -EFSCORRUPTED;
|
|
goto error;
|
|
}
|
|
args->wasfromfl = 1;
|
|
trace_xfs_alloc_small_freelist(args);
|
|
|
|
/*
|
|
* If we're feeding an AGFL block to something that doesn't live in the
|
|
* free space, we need to clear out the OWN_AG rmap.
|
|
*/
|
|
error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
|
|
&XFS_RMAP_OINFO_AG);
|
|
if (error)
|
|
goto error;
|
|
|
|
*stat = 0;
|
|
return 0;
|
|
|
|
out:
|
|
/*
|
|
* Can't do the allocation, give up.
|
|
*/
|
|
if (flen < args->minlen) {
|
|
args->agbno = NULLAGBLOCK;
|
|
trace_xfs_alloc_small_notenough(args);
|
|
flen = 0;
|
|
}
|
|
*fbnop = fbno;
|
|
*flenp = flen;
|
|
*stat = 1;
|
|
trace_xfs_alloc_small_done(args);
|
|
return 0;
|
|
|
|
error:
|
|
trace_xfs_alloc_small_error(args);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate a variable extent at exactly agno/bno.
|
|
* Extent's length (returned in *len) will be between minlen and maxlen,
|
|
* and of the form k * prod + mod unless there's nothing that large.
|
|
* Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_alloc_ag_vextent_exact(
|
|
xfs_alloc_arg_t *args) /* allocation argument structure */
|
|
{
|
|
struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
|
|
struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
|
|
struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
|
|
int error;
|
|
xfs_agblock_t fbno; /* start block of found extent */
|
|
xfs_extlen_t flen; /* length of found extent */
|
|
xfs_agblock_t tbno; /* start block of busy extent */
|
|
xfs_extlen_t tlen; /* length of busy extent */
|
|
xfs_agblock_t tend; /* end block of busy extent */
|
|
int i; /* success/failure of operation */
|
|
unsigned busy_gen;
|
|
|
|
ASSERT(args->alignment == 1);
|
|
|
|
/*
|
|
* Allocate/initialize a cursor for the by-number freespace btree.
|
|
*/
|
|
bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
|
|
args->pag, XFS_BTNUM_BNO);
|
|
|
|
/*
|
|
* Lookup bno and minlen in the btree (minlen is irrelevant, really).
|
|
* Look for the closest free block <= bno, it must contain bno
|
|
* if any free block does.
|
|
*/
|
|
error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (!i)
|
|
goto not_found;
|
|
|
|
/*
|
|
* Grab the freespace record.
|
|
*/
|
|
error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
ASSERT(fbno <= args->agbno);
|
|
|
|
/*
|
|
* Check for overlapping busy extents.
|
|
*/
|
|
tbno = fbno;
|
|
tlen = flen;
|
|
xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
|
|
|
|
/*
|
|
* Give up if the start of the extent is busy, or the freespace isn't
|
|
* long enough for the minimum request.
|
|
*/
|
|
if (tbno > args->agbno)
|
|
goto not_found;
|
|
if (tlen < args->minlen)
|
|
goto not_found;
|
|
tend = tbno + tlen;
|
|
if (tend < args->agbno + args->minlen)
|
|
goto not_found;
|
|
|
|
/*
|
|
* End of extent will be smaller of the freespace end and the
|
|
* maximal requested end.
|
|
*
|
|
* Fix the length according to mod and prod if given.
|
|
*/
|
|
args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
|
|
- args->agbno;
|
|
xfs_alloc_fix_len(args);
|
|
ASSERT(args->agbno + args->len <= tend);
|
|
|
|
/*
|
|
* We are allocating agbno for args->len
|
|
* Allocate/initialize a cursor for the by-size btree.
|
|
*/
|
|
cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
|
|
args->pag, XFS_BTNUM_CNT);
|
|
ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
|
|
error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
|
|
args->len, XFSA_FIXUP_BNO_OK);
|
|
if (error) {
|
|
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
|
|
goto error0;
|
|
}
|
|
|
|
xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
|
|
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
|
|
|
|
args->wasfromfl = 0;
|
|
trace_xfs_alloc_exact_done(args);
|
|
return 0;
|
|
|
|
not_found:
|
|
/* Didn't find it, return null. */
|
|
xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
|
|
args->agbno = NULLAGBLOCK;
|
|
trace_xfs_alloc_exact_notfound(args);
|
|
return 0;
|
|
|
|
error0:
|
|
xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
|
|
trace_xfs_alloc_exact_error(args);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Search a given number of btree records in a given direction. Check each
|
|
* record against the good extent we've already found.
|
|
*/
|
|
STATIC int
|
|
xfs_alloc_walk_iter(
|
|
struct xfs_alloc_arg *args,
|
|
struct xfs_alloc_cur *acur,
|
|
struct xfs_btree_cur *cur,
|
|
bool increment,
|
|
bool find_one, /* quit on first candidate */
|
|
int count, /* rec count (-1 for infinite) */
|
|
int *stat)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
*stat = 0;
|
|
|
|
/*
|
|
* Search so long as the cursor is active or we find a better extent.
|
|
* The cursor is deactivated if it extends beyond the range of the
|
|
* current allocation candidate.
|
|
*/
|
|
while (xfs_alloc_cur_active(cur) && count) {
|
|
error = xfs_alloc_cur_check(args, acur, cur, &i);
|
|
if (error)
|
|
return error;
|
|
if (i == 1) {
|
|
*stat = 1;
|
|
if (find_one)
|
|
break;
|
|
}
|
|
if (!xfs_alloc_cur_active(cur))
|
|
break;
|
|
|
|
if (increment)
|
|
error = xfs_btree_increment(cur, 0, &i);
|
|
else
|
|
error = xfs_btree_decrement(cur, 0, &i);
|
|
if (error)
|
|
return error;
|
|
if (i == 0)
|
|
cur->bc_ag.abt.active = false;
|
|
|
|
if (count > 0)
|
|
count--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Search the by-bno and by-size btrees in parallel in search of an extent with
|
|
* ideal locality based on the NEAR mode ->agbno locality hint.
|
|
*/
|
|
STATIC int
|
|
xfs_alloc_ag_vextent_locality(
|
|
struct xfs_alloc_arg *args,
|
|
struct xfs_alloc_cur *acur,
|
|
int *stat)
|
|
{
|
|
struct xfs_btree_cur *fbcur = NULL;
|
|
int error;
|
|
int i;
|
|
bool fbinc;
|
|
|
|
ASSERT(acur->len == 0);
|
|
|
|
*stat = 0;
|
|
|
|
error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
|
|
if (error)
|
|
return error;
|
|
error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
|
|
if (error)
|
|
return error;
|
|
error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Search the bnobt and cntbt in parallel. Search the bnobt left and
|
|
* right and lookup the closest extent to the locality hint for each
|
|
* extent size key in the cntbt. The entire search terminates
|
|
* immediately on a bnobt hit because that means we've found best case
|
|
* locality. Otherwise the search continues until the cntbt cursor runs
|
|
* off the end of the tree. If no allocation candidate is found at this
|
|
* point, give up on locality, walk backwards from the end of the cntbt
|
|
* and take the first available extent.
|
|
*
|
|
* The parallel tree searches balance each other out to provide fairly
|
|
* consistent performance for various situations. The bnobt search can
|
|
* have pathological behavior in the worst case scenario of larger
|
|
* allocation requests and fragmented free space. On the other hand, the
|
|
* bnobt is able to satisfy most smaller allocation requests much more
|
|
* quickly than the cntbt. The cntbt search can sift through fragmented
|
|
* free space and sets of free extents for larger allocation requests
|
|
* more quickly than the bnobt. Since the locality hint is just a hint
|
|
* and we don't want to scan the entire bnobt for perfect locality, the
|
|
* cntbt search essentially bounds the bnobt search such that we can
|
|
* find good enough locality at reasonable performance in most cases.
|
|
*/
|
|
while (xfs_alloc_cur_active(acur->bnolt) ||
|
|
xfs_alloc_cur_active(acur->bnogt) ||
|
|
xfs_alloc_cur_active(acur->cnt)) {
|
|
|
|
trace_xfs_alloc_cur_lookup(args);
|
|
|
|
/*
|
|
* Search the bnobt left and right. In the case of a hit, finish
|
|
* the search in the opposite direction and we're done.
|
|
*/
|
|
error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
|
|
true, 1, &i);
|
|
if (error)
|
|
return error;
|
|
if (i == 1) {
|
|
trace_xfs_alloc_cur_left(args);
|
|
fbcur = acur->bnogt;
|
|
fbinc = true;
|
|
break;
|
|
}
|
|
error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
|
|
1, &i);
|
|
if (error)
|
|
return error;
|
|
if (i == 1) {
|
|
trace_xfs_alloc_cur_right(args);
|
|
fbcur = acur->bnolt;
|
|
fbinc = false;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check the extent with best locality based on the current
|
|
* extent size search key and keep track of the best candidate.
|
|
*/
|
|
error = xfs_alloc_cntbt_iter(args, acur);
|
|
if (error)
|
|
return error;
|
|
if (!xfs_alloc_cur_active(acur->cnt)) {
|
|
trace_xfs_alloc_cur_lookup_done(args);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we failed to find anything due to busy extents, return empty
|
|
* handed so the caller can flush and retry. If no busy extents were
|
|
* found, walk backwards from the end of the cntbt as a last resort.
|
|
*/
|
|
if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
|
|
error = xfs_btree_decrement(acur->cnt, 0, &i);
|
|
if (error)
|
|
return error;
|
|
if (i) {
|
|
acur->cnt->bc_ag.abt.active = true;
|
|
fbcur = acur->cnt;
|
|
fbinc = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Search in the opposite direction for a better entry in the case of
|
|
* a bnobt hit or walk backwards from the end of the cntbt.
|
|
*/
|
|
if (fbcur) {
|
|
error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
|
|
&i);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
if (acur->len)
|
|
*stat = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check the last block of the cnt btree for allocations. */
|
|
static int
|
|
xfs_alloc_ag_vextent_lastblock(
|
|
struct xfs_alloc_arg *args,
|
|
struct xfs_alloc_cur *acur,
|
|
xfs_agblock_t *bno,
|
|
xfs_extlen_t *len,
|
|
bool *allocated)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
#ifdef DEBUG
|
|
/* Randomly don't execute the first algorithm. */
|
|
if (get_random_u32_below(2))
|
|
return 0;
|
|
#endif
|
|
|
|
/*
|
|
* Start from the entry that lookup found, sequence through all larger
|
|
* free blocks. If we're actually pointing at a record smaller than
|
|
* maxlen, go to the start of this block, and skip all those smaller
|
|
* than minlen.
|
|
*/
|
|
if (*len || args->alignment > 1) {
|
|
acur->cnt->bc_levels[0].ptr = 1;
|
|
do {
|
|
error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
|
|
if (error)
|
|
return error;
|
|
if (XFS_IS_CORRUPT(args->mp, i != 1))
|
|
return -EFSCORRUPTED;
|
|
if (*len >= args->minlen)
|
|
break;
|
|
error = xfs_btree_increment(acur->cnt, 0, &i);
|
|
if (error)
|
|
return error;
|
|
} while (i);
|
|
ASSERT(*len >= args->minlen);
|
|
if (!i)
|
|
return 0;
|
|
}
|
|
|
|
error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* It didn't work. We COULD be in a case where there's a good record
|
|
* somewhere, so try again.
|
|
*/
|
|
if (acur->len == 0)
|
|
return 0;
|
|
|
|
trace_xfs_alloc_near_first(args);
|
|
*allocated = true;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate a variable extent near bno in the allocation group agno.
|
|
* Extent's length (returned in len) will be between minlen and maxlen,
|
|
* and of the form k * prod + mod unless there's nothing that large.
|
|
* Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
|
|
*/
|
|
STATIC int
|
|
xfs_alloc_ag_vextent_near(
|
|
struct xfs_alloc_arg *args,
|
|
uint32_t alloc_flags)
|
|
{
|
|
struct xfs_alloc_cur acur = {};
|
|
int error; /* error code */
|
|
int i; /* result code, temporary */
|
|
xfs_agblock_t bno;
|
|
xfs_extlen_t len;
|
|
|
|
/* handle uninitialized agbno range so caller doesn't have to */
|
|
if (!args->min_agbno && !args->max_agbno)
|
|
args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
|
|
ASSERT(args->min_agbno <= args->max_agbno);
|
|
|
|
/* clamp agbno to the range if it's outside */
|
|
if (args->agbno < args->min_agbno)
|
|
args->agbno = args->min_agbno;
|
|
if (args->agbno > args->max_agbno)
|
|
args->agbno = args->max_agbno;
|
|
|
|
/* Retry once quickly if we find busy extents before blocking. */
|
|
alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
|
|
restart:
|
|
len = 0;
|
|
|
|
/*
|
|
* Set up cursors and see if there are any free extents as big as
|
|
* maxlen. If not, pick the last entry in the tree unless the tree is
|
|
* empty.
|
|
*/
|
|
error = xfs_alloc_cur_setup(args, &acur);
|
|
if (error == -ENOSPC) {
|
|
error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
|
|
&len, &i);
|
|
if (error)
|
|
goto out;
|
|
if (i == 0 || len == 0) {
|
|
trace_xfs_alloc_near_noentry(args);
|
|
goto out;
|
|
}
|
|
ASSERT(i == 1);
|
|
} else if (error) {
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* First algorithm.
|
|
* If the requested extent is large wrt the freespaces available
|
|
* in this a.g., then the cursor will be pointing to a btree entry
|
|
* near the right edge of the tree. If it's in the last btree leaf
|
|
* block, then we just examine all the entries in that block
|
|
* that are big enough, and pick the best one.
|
|
*/
|
|
if (xfs_btree_islastblock(acur.cnt, 0)) {
|
|
bool allocated = false;
|
|
|
|
error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
|
|
&allocated);
|
|
if (error)
|
|
goto out;
|
|
if (allocated)
|
|
goto alloc_finish;
|
|
}
|
|
|
|
/*
|
|
* Second algorithm. Combined cntbt and bnobt search to find ideal
|
|
* locality.
|
|
*/
|
|
error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
|
|
if (error)
|
|
goto out;
|
|
|
|
/*
|
|
* If we couldn't get anything, give up.
|
|
*/
|
|
if (!acur.len) {
|
|
if (acur.busy) {
|
|
/*
|
|
* Our only valid extents must have been busy. Flush and
|
|
* retry the allocation again. If we get an -EAGAIN
|
|
* error, we're being told that a deadlock was avoided
|
|
* and the current transaction needs committing before
|
|
* the allocation can be retried.
|
|
*/
|
|
trace_xfs_alloc_near_busy(args);
|
|
error = xfs_extent_busy_flush(args->tp, args->pag,
|
|
acur.busy_gen, alloc_flags);
|
|
if (error)
|
|
goto out;
|
|
|
|
alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
|
|
goto restart;
|
|
}
|
|
trace_xfs_alloc_size_neither(args);
|
|
args->agbno = NULLAGBLOCK;
|
|
goto out;
|
|
}
|
|
|
|
alloc_finish:
|
|
/* fix up btrees on a successful allocation */
|
|
error = xfs_alloc_cur_finish(args, &acur);
|
|
|
|
out:
|
|
xfs_alloc_cur_close(&acur, error);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate a variable extent anywhere in the allocation group agno.
|
|
* Extent's length (returned in len) will be between minlen and maxlen,
|
|
* and of the form k * prod + mod unless there's nothing that large.
|
|
* Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
|
|
*/
|
|
static int
|
|
xfs_alloc_ag_vextent_size(
|
|
struct xfs_alloc_arg *args,
|
|
uint32_t alloc_flags)
|
|
{
|
|
struct xfs_agf *agf = args->agbp->b_addr;
|
|
struct xfs_btree_cur *bno_cur;
|
|
struct xfs_btree_cur *cnt_cur;
|
|
xfs_agblock_t fbno; /* start of found freespace */
|
|
xfs_extlen_t flen; /* length of found freespace */
|
|
xfs_agblock_t rbno; /* returned block number */
|
|
xfs_extlen_t rlen; /* length of returned extent */
|
|
bool busy;
|
|
unsigned busy_gen;
|
|
int error;
|
|
int i;
|
|
|
|
/* Retry once quickly if we find busy extents before blocking. */
|
|
alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
|
|
restart:
|
|
/*
|
|
* Allocate and initialize a cursor for the by-size btree.
|
|
*/
|
|
cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
|
|
args->pag, XFS_BTNUM_CNT);
|
|
bno_cur = NULL;
|
|
|
|
/*
|
|
* Look for an entry >= maxlen+alignment-1 blocks.
|
|
*/
|
|
if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
|
|
args->maxlen + args->alignment - 1, &i)))
|
|
goto error0;
|
|
|
|
/*
|
|
* If none then we have to settle for a smaller extent. In the case that
|
|
* there are no large extents, this will return the last entry in the
|
|
* tree unless the tree is empty. In the case that there are only busy
|
|
* large extents, this will return the largest small extent unless there
|
|
* are no smaller extents available.
|
|
*/
|
|
if (!i) {
|
|
error = xfs_alloc_ag_vextent_small(args, cnt_cur,
|
|
&fbno, &flen, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (i == 0 || flen == 0) {
|
|
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
|
|
trace_xfs_alloc_size_noentry(args);
|
|
return 0;
|
|
}
|
|
ASSERT(i == 1);
|
|
busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
|
|
&rlen, &busy_gen);
|
|
} else {
|
|
/*
|
|
* Search for a non-busy extent that is large enough.
|
|
*/
|
|
for (;;) {
|
|
error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
|
|
busy = xfs_alloc_compute_aligned(args, fbno, flen,
|
|
&rbno, &rlen, &busy_gen);
|
|
|
|
if (rlen >= args->maxlen)
|
|
break;
|
|
|
|
error = xfs_btree_increment(cnt_cur, 0, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (i)
|
|
continue;
|
|
|
|
/*
|
|
* Our only valid extents must have been busy. Flush and
|
|
* retry the allocation again. If we get an -EAGAIN
|
|
* error, we're being told that a deadlock was avoided
|
|
* and the current transaction needs committing before
|
|
* the allocation can be retried.
|
|
*/
|
|
trace_xfs_alloc_size_busy(args);
|
|
error = xfs_extent_busy_flush(args->tp, args->pag,
|
|
busy_gen, alloc_flags);
|
|
if (error)
|
|
goto error0;
|
|
|
|
alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
|
|
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In the first case above, we got the last entry in the
|
|
* by-size btree. Now we check to see if the space hits maxlen
|
|
* once aligned; if not, we search left for something better.
|
|
* This can't happen in the second case above.
|
|
*/
|
|
rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
|
|
if (XFS_IS_CORRUPT(args->mp,
|
|
rlen != 0 &&
|
|
(rlen > flen ||
|
|
rbno + rlen > fbno + flen))) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
if (rlen < args->maxlen) {
|
|
xfs_agblock_t bestfbno;
|
|
xfs_extlen_t bestflen;
|
|
xfs_agblock_t bestrbno;
|
|
xfs_extlen_t bestrlen;
|
|
|
|
bestrlen = rlen;
|
|
bestrbno = rbno;
|
|
bestflen = flen;
|
|
bestfbno = fbno;
|
|
for (;;) {
|
|
if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
|
|
goto error0;
|
|
if (i == 0)
|
|
break;
|
|
if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
|
|
&i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
if (flen < bestrlen)
|
|
break;
|
|
busy = xfs_alloc_compute_aligned(args, fbno, flen,
|
|
&rbno, &rlen, &busy_gen);
|
|
rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
|
|
if (XFS_IS_CORRUPT(args->mp,
|
|
rlen != 0 &&
|
|
(rlen > flen ||
|
|
rbno + rlen > fbno + flen))) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
if (rlen > bestrlen) {
|
|
bestrlen = rlen;
|
|
bestrbno = rbno;
|
|
bestflen = flen;
|
|
bestfbno = fbno;
|
|
if (rlen == args->maxlen)
|
|
break;
|
|
}
|
|
}
|
|
if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
|
|
&i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
rlen = bestrlen;
|
|
rbno = bestrbno;
|
|
flen = bestflen;
|
|
fbno = bestfbno;
|
|
}
|
|
args->wasfromfl = 0;
|
|
/*
|
|
* Fix up the length.
|
|
*/
|
|
args->len = rlen;
|
|
if (rlen < args->minlen) {
|
|
if (busy) {
|
|
/*
|
|
* Our only valid extents must have been busy. Flush and
|
|
* retry the allocation again. If we get an -EAGAIN
|
|
* error, we're being told that a deadlock was avoided
|
|
* and the current transaction needs committing before
|
|
* the allocation can be retried.
|
|
*/
|
|
trace_xfs_alloc_size_busy(args);
|
|
error = xfs_extent_busy_flush(args->tp, args->pag,
|
|
busy_gen, alloc_flags);
|
|
if (error)
|
|
goto error0;
|
|
|
|
alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
|
|
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
|
|
goto restart;
|
|
}
|
|
goto out_nominleft;
|
|
}
|
|
xfs_alloc_fix_len(args);
|
|
|
|
rlen = args->len;
|
|
if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
/*
|
|
* Allocate and initialize a cursor for the by-block tree.
|
|
*/
|
|
bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
|
|
args->pag, XFS_BTNUM_BNO);
|
|
if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
|
|
rbno, rlen, XFSA_FIXUP_CNT_OK)))
|
|
goto error0;
|
|
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
|
|
xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
|
|
cnt_cur = bno_cur = NULL;
|
|
args->len = rlen;
|
|
args->agbno = rbno;
|
|
if (XFS_IS_CORRUPT(args->mp,
|
|
args->agbno + args->len >
|
|
be32_to_cpu(agf->agf_length))) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
trace_xfs_alloc_size_done(args);
|
|
return 0;
|
|
|
|
error0:
|
|
trace_xfs_alloc_size_error(args);
|
|
if (cnt_cur)
|
|
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
|
|
if (bno_cur)
|
|
xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
|
|
out_nominleft:
|
|
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
|
|
trace_xfs_alloc_size_nominleft(args);
|
|
args->agbno = NULLAGBLOCK;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free the extent starting at agno/bno for length.
|
|
*/
|
|
STATIC int
|
|
xfs_free_ag_extent(
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agblock_t bno,
|
|
xfs_extlen_t len,
|
|
const struct xfs_owner_info *oinfo,
|
|
enum xfs_ag_resv_type type)
|
|
{
|
|
struct xfs_mount *mp;
|
|
struct xfs_btree_cur *bno_cur;
|
|
struct xfs_btree_cur *cnt_cur;
|
|
xfs_agblock_t gtbno; /* start of right neighbor */
|
|
xfs_extlen_t gtlen; /* length of right neighbor */
|
|
xfs_agblock_t ltbno; /* start of left neighbor */
|
|
xfs_extlen_t ltlen; /* length of left neighbor */
|
|
xfs_agblock_t nbno; /* new starting block of freesp */
|
|
xfs_extlen_t nlen; /* new length of freespace */
|
|
int haveleft; /* have a left neighbor */
|
|
int haveright; /* have a right neighbor */
|
|
int i;
|
|
int error;
|
|
struct xfs_perag *pag = agbp->b_pag;
|
|
|
|
bno_cur = cnt_cur = NULL;
|
|
mp = tp->t_mountp;
|
|
|
|
if (!xfs_rmap_should_skip_owner_update(oinfo)) {
|
|
error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize a cursor for the by-block btree.
|
|
*/
|
|
bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
|
|
/*
|
|
* Look for a neighboring block on the left (lower block numbers)
|
|
* that is contiguous with this space.
|
|
*/
|
|
if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
|
|
goto error0;
|
|
if (haveleft) {
|
|
/*
|
|
* There is a block to our left.
|
|
*/
|
|
if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
/*
|
|
* It's not contiguous, though.
|
|
*/
|
|
if (ltbno + ltlen < bno)
|
|
haveleft = 0;
|
|
else {
|
|
/*
|
|
* If this failure happens the request to free this
|
|
* space was invalid, it's (partly) already free.
|
|
* Very bad.
|
|
*/
|
|
if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Look for a neighboring block on the right (higher block numbers)
|
|
* that is contiguous with this space.
|
|
*/
|
|
if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
|
|
goto error0;
|
|
if (haveright) {
|
|
/*
|
|
* There is a block to our right.
|
|
*/
|
|
if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
/*
|
|
* It's not contiguous, though.
|
|
*/
|
|
if (bno + len < gtbno)
|
|
haveright = 0;
|
|
else {
|
|
/*
|
|
* If this failure happens the request to free this
|
|
* space was invalid, it's (partly) already free.
|
|
* Very bad.
|
|
*/
|
|
if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Now allocate and initialize a cursor for the by-size tree.
|
|
*/
|
|
cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
|
|
/*
|
|
* Have both left and right contiguous neighbors.
|
|
* Merge all three into a single free block.
|
|
*/
|
|
if (haveleft && haveright) {
|
|
/*
|
|
* Delete the old by-size entry on the left.
|
|
*/
|
|
if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
if ((error = xfs_btree_delete(cnt_cur, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
/*
|
|
* Delete the old by-size entry on the right.
|
|
*/
|
|
if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
if ((error = xfs_btree_delete(cnt_cur, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
/*
|
|
* Delete the old by-block entry for the right block.
|
|
*/
|
|
if ((error = xfs_btree_delete(bno_cur, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
/*
|
|
* Move the by-block cursor back to the left neighbor.
|
|
*/
|
|
if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
#ifdef DEBUG
|
|
/*
|
|
* Check that this is the right record: delete didn't
|
|
* mangle the cursor.
|
|
*/
|
|
{
|
|
xfs_agblock_t xxbno;
|
|
xfs_extlen_t xxlen;
|
|
|
|
if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
|
|
&i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp,
|
|
i != 1 ||
|
|
xxbno != ltbno ||
|
|
xxlen != ltlen)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* Update remaining by-block entry to the new, joined block.
|
|
*/
|
|
nbno = ltbno;
|
|
nlen = len + ltlen + gtlen;
|
|
if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
|
|
goto error0;
|
|
}
|
|
/*
|
|
* Have only a left contiguous neighbor.
|
|
* Merge it together with the new freespace.
|
|
*/
|
|
else if (haveleft) {
|
|
/*
|
|
* Delete the old by-size entry on the left.
|
|
*/
|
|
if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
if ((error = xfs_btree_delete(cnt_cur, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
/*
|
|
* Back up the by-block cursor to the left neighbor, and
|
|
* update its length.
|
|
*/
|
|
if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
nbno = ltbno;
|
|
nlen = len + ltlen;
|
|
if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
|
|
goto error0;
|
|
}
|
|
/*
|
|
* Have only a right contiguous neighbor.
|
|
* Merge it together with the new freespace.
|
|
*/
|
|
else if (haveright) {
|
|
/*
|
|
* Delete the old by-size entry on the right.
|
|
*/
|
|
if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
if ((error = xfs_btree_delete(cnt_cur, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
/*
|
|
* Update the starting block and length of the right
|
|
* neighbor in the by-block tree.
|
|
*/
|
|
nbno = bno;
|
|
nlen = len + gtlen;
|
|
if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
|
|
goto error0;
|
|
}
|
|
/*
|
|
* No contiguous neighbors.
|
|
* Insert the new freespace into the by-block tree.
|
|
*/
|
|
else {
|
|
nbno = bno;
|
|
nlen = len;
|
|
if ((error = xfs_btree_insert(bno_cur, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
}
|
|
xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
|
|
bno_cur = NULL;
|
|
/*
|
|
* In all cases we need to insert the new freespace in the by-size tree.
|
|
*/
|
|
if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 0)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
if ((error = xfs_btree_insert(cnt_cur, &i)))
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
|
|
cnt_cur = NULL;
|
|
|
|
/*
|
|
* Update the freespace totals in the ag and superblock.
|
|
*/
|
|
error = xfs_alloc_update_counters(tp, agbp, len);
|
|
xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
|
|
if (error)
|
|
goto error0;
|
|
|
|
XFS_STATS_INC(mp, xs_freex);
|
|
XFS_STATS_ADD(mp, xs_freeb, len);
|
|
|
|
trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
|
|
|
|
return 0;
|
|
|
|
error0:
|
|
trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
|
|
if (bno_cur)
|
|
xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
|
|
if (cnt_cur)
|
|
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Visible (exported) allocation/free functions.
|
|
* Some of these are used just by xfs_alloc_btree.c and this file.
|
|
*/
|
|
|
|
/*
|
|
* Compute and fill in value of m_alloc_maxlevels.
|
|
*/
|
|
void
|
|
xfs_alloc_compute_maxlevels(
|
|
xfs_mount_t *mp) /* file system mount structure */
|
|
{
|
|
mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
|
|
(mp->m_sb.sb_agblocks + 1) / 2);
|
|
ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
|
|
}
|
|
|
|
/*
|
|
* Find the length of the longest extent in an AG. The 'need' parameter
|
|
* specifies how much space we're going to need for the AGFL and the
|
|
* 'reserved' parameter tells us how many blocks in this AG are reserved for
|
|
* other callers.
|
|
*/
|
|
xfs_extlen_t
|
|
xfs_alloc_longest_free_extent(
|
|
struct xfs_perag *pag,
|
|
xfs_extlen_t need,
|
|
xfs_extlen_t reserved)
|
|
{
|
|
xfs_extlen_t delta = 0;
|
|
|
|
/*
|
|
* If the AGFL needs a recharge, we'll have to subtract that from the
|
|
* longest extent.
|
|
*/
|
|
if (need > pag->pagf_flcount)
|
|
delta = need - pag->pagf_flcount;
|
|
|
|
/*
|
|
* If we cannot maintain others' reservations with space from the
|
|
* not-longest freesp extents, we'll have to subtract /that/ from
|
|
* the longest extent too.
|
|
*/
|
|
if (pag->pagf_freeblks - pag->pagf_longest < reserved)
|
|
delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
|
|
|
|
/*
|
|
* If the longest extent is long enough to satisfy all the
|
|
* reservations and AGFL rules in place, we can return this extent.
|
|
*/
|
|
if (pag->pagf_longest > delta)
|
|
return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
|
|
pag->pagf_longest - delta);
|
|
|
|
/* Otherwise, let the caller try for 1 block if there's space. */
|
|
return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
|
|
}
|
|
|
|
/*
|
|
* Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
|
|
* return the largest possible minimum length.
|
|
*/
|
|
unsigned int
|
|
xfs_alloc_min_freelist(
|
|
struct xfs_mount *mp,
|
|
struct xfs_perag *pag)
|
|
{
|
|
/* AG btrees have at least 1 level. */
|
|
static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
|
|
const uint8_t *levels = pag ? pag->pagf_levels : fake_levels;
|
|
unsigned int min_free;
|
|
|
|
ASSERT(mp->m_alloc_maxlevels > 0);
|
|
|
|
/* space needed by-bno freespace btree */
|
|
min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
|
|
mp->m_alloc_maxlevels);
|
|
/* space needed by-size freespace btree */
|
|
min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
|
|
mp->m_alloc_maxlevels);
|
|
/* space needed reverse mapping used space btree */
|
|
if (xfs_has_rmapbt(mp))
|
|
min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
|
|
mp->m_rmap_maxlevels);
|
|
|
|
return min_free;
|
|
}
|
|
|
|
/*
|
|
* Check if the operation we are fixing up the freelist for should go ahead or
|
|
* not. If we are freeing blocks, we always allow it, otherwise the allocation
|
|
* is dependent on whether the size and shape of free space available will
|
|
* permit the requested allocation to take place.
|
|
*/
|
|
static bool
|
|
xfs_alloc_space_available(
|
|
struct xfs_alloc_arg *args,
|
|
xfs_extlen_t min_free,
|
|
int flags)
|
|
{
|
|
struct xfs_perag *pag = args->pag;
|
|
xfs_extlen_t alloc_len, longest;
|
|
xfs_extlen_t reservation; /* blocks that are still reserved */
|
|
int available;
|
|
xfs_extlen_t agflcount;
|
|
|
|
if (flags & XFS_ALLOC_FLAG_FREEING)
|
|
return true;
|
|
|
|
reservation = xfs_ag_resv_needed(pag, args->resv);
|
|
|
|
/* do we have enough contiguous free space for the allocation? */
|
|
alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
|
|
longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
|
|
if (longest < alloc_len)
|
|
return false;
|
|
|
|
/*
|
|
* Do we have enough free space remaining for the allocation? Don't
|
|
* account extra agfl blocks because we are about to defer free them,
|
|
* making them unavailable until the current transaction commits.
|
|
*/
|
|
agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
|
|
available = (int)(pag->pagf_freeblks + agflcount -
|
|
reservation - min_free - args->minleft);
|
|
if (available < (int)max(args->total, alloc_len))
|
|
return false;
|
|
|
|
/*
|
|
* Clamp maxlen to the amount of free space available for the actual
|
|
* extent allocation.
|
|
*/
|
|
if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
|
|
args->maxlen = available;
|
|
ASSERT(args->maxlen > 0);
|
|
ASSERT(args->maxlen >= args->minlen);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int
|
|
xfs_free_agfl_block(
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agblock_t agbno,
|
|
struct xfs_buf *agbp,
|
|
struct xfs_owner_info *oinfo)
|
|
{
|
|
int error;
|
|
struct xfs_buf *bp;
|
|
|
|
error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
|
|
XFS_AG_RESV_AGFL);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
|
|
XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
|
|
tp->t_mountp->m_bsize, 0, &bp);
|
|
if (error)
|
|
return error;
|
|
xfs_trans_binval(tp, bp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check the agfl fields of the agf for inconsistency or corruption.
|
|
*
|
|
* The original purpose was to detect an agfl header padding mismatch between
|
|
* current and early v5 kernels. This problem manifests as a 1-slot size
|
|
* difference between the on-disk flcount and the active [first, last] range of
|
|
* a wrapped agfl.
|
|
*
|
|
* However, we need to use these same checks to catch agfl count corruptions
|
|
* unrelated to padding. This could occur on any v4 or v5 filesystem, so either
|
|
* way, we need to reset the agfl and warn the user.
|
|
*
|
|
* Return true if a reset is required before the agfl can be used, false
|
|
* otherwise.
|
|
*/
|
|
static bool
|
|
xfs_agfl_needs_reset(
|
|
struct xfs_mount *mp,
|
|
struct xfs_agf *agf)
|
|
{
|
|
uint32_t f = be32_to_cpu(agf->agf_flfirst);
|
|
uint32_t l = be32_to_cpu(agf->agf_fllast);
|
|
uint32_t c = be32_to_cpu(agf->agf_flcount);
|
|
int agfl_size = xfs_agfl_size(mp);
|
|
int active;
|
|
|
|
/*
|
|
* The agf read verifier catches severe corruption of these fields.
|
|
* Repeat some sanity checks to cover a packed -> unpacked mismatch if
|
|
* the verifier allows it.
|
|
*/
|
|
if (f >= agfl_size || l >= agfl_size)
|
|
return true;
|
|
if (c > agfl_size)
|
|
return true;
|
|
|
|
/*
|
|
* Check consistency between the on-disk count and the active range. An
|
|
* agfl padding mismatch manifests as an inconsistent flcount.
|
|
*/
|
|
if (c && l >= f)
|
|
active = l - f + 1;
|
|
else if (c)
|
|
active = agfl_size - f + l + 1;
|
|
else
|
|
active = 0;
|
|
|
|
return active != c;
|
|
}
|
|
|
|
/*
|
|
* Reset the agfl to an empty state. Ignore/drop any existing blocks since the
|
|
* agfl content cannot be trusted. Warn the user that a repair is required to
|
|
* recover leaked blocks.
|
|
*
|
|
* The purpose of this mechanism is to handle filesystems affected by the agfl
|
|
* header padding mismatch problem. A reset keeps the filesystem online with a
|
|
* relatively minor free space accounting inconsistency rather than suffer the
|
|
* inevitable crash from use of an invalid agfl block.
|
|
*/
|
|
static void
|
|
xfs_agfl_reset(
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
struct xfs_perag *pag)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_agf *agf = agbp->b_addr;
|
|
|
|
ASSERT(xfs_perag_agfl_needs_reset(pag));
|
|
trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
|
|
|
|
xfs_warn(mp,
|
|
"WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
|
|
"Please unmount and run xfs_repair.",
|
|
pag->pag_agno, pag->pagf_flcount);
|
|
|
|
agf->agf_flfirst = 0;
|
|
agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
|
|
agf->agf_flcount = 0;
|
|
xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
|
|
XFS_AGF_FLCOUNT);
|
|
|
|
pag->pagf_flcount = 0;
|
|
clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
|
|
}
|
|
|
|
/*
|
|
* Defer an AGFL block free. This is effectively equivalent to
|
|
* xfs_free_extent_later() with some special handling particular to AGFL blocks.
|
|
*
|
|
* Deferring AGFL frees helps prevent log reservation overruns due to too many
|
|
* allocation operations in a transaction. AGFL frees are prone to this problem
|
|
* because for one they are always freed one at a time. Further, an immediate
|
|
* AGFL block free can cause a btree join and require another block free before
|
|
* the real allocation can proceed. Deferring the free disconnects freeing up
|
|
* the AGFL slot from freeing the block.
|
|
*/
|
|
static int
|
|
xfs_defer_agfl_block(
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agblock_t agbno,
|
|
struct xfs_owner_info *oinfo)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_extent_free_item *xefi;
|
|
xfs_fsblock_t fsbno = XFS_AGB_TO_FSB(mp, agno, agbno);
|
|
|
|
ASSERT(xfs_extfree_item_cache != NULL);
|
|
ASSERT(oinfo != NULL);
|
|
|
|
if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno)))
|
|
return -EFSCORRUPTED;
|
|
|
|
xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
xefi->xefi_startblock = fsbno;
|
|
xefi->xefi_blockcount = 1;
|
|
xefi->xefi_owner = oinfo->oi_owner;
|
|
xefi->xefi_agresv = XFS_AG_RESV_AGFL;
|
|
|
|
trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
|
|
|
|
xfs_extent_free_get_group(mp, xefi);
|
|
xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &xefi->xefi_list);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add the extent to the list of extents to be free at transaction end.
|
|
* The list is maintained sorted (by block number).
|
|
*/
|
|
int
|
|
__xfs_free_extent_later(
|
|
struct xfs_trans *tp,
|
|
xfs_fsblock_t bno,
|
|
xfs_filblks_t len,
|
|
const struct xfs_owner_info *oinfo,
|
|
enum xfs_ag_resv_type type,
|
|
bool skip_discard)
|
|
{
|
|
struct xfs_extent_free_item *xefi;
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
#ifdef DEBUG
|
|
xfs_agnumber_t agno;
|
|
xfs_agblock_t agbno;
|
|
|
|
ASSERT(bno != NULLFSBLOCK);
|
|
ASSERT(len > 0);
|
|
ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
|
|
ASSERT(!isnullstartblock(bno));
|
|
agno = XFS_FSB_TO_AGNO(mp, bno);
|
|
agbno = XFS_FSB_TO_AGBNO(mp, bno);
|
|
ASSERT(agno < mp->m_sb.sb_agcount);
|
|
ASSERT(agbno < mp->m_sb.sb_agblocks);
|
|
ASSERT(len < mp->m_sb.sb_agblocks);
|
|
ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
|
|
#endif
|
|
ASSERT(xfs_extfree_item_cache != NULL);
|
|
ASSERT(type != XFS_AG_RESV_AGFL);
|
|
|
|
if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
|
|
return -EFSCORRUPTED;
|
|
|
|
xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
xefi->xefi_startblock = bno;
|
|
xefi->xefi_blockcount = (xfs_extlen_t)len;
|
|
xefi->xefi_agresv = type;
|
|
if (skip_discard)
|
|
xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
|
|
if (oinfo) {
|
|
ASSERT(oinfo->oi_offset == 0);
|
|
|
|
if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
|
|
xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
|
|
if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
|
|
xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
|
|
xefi->xefi_owner = oinfo->oi_owner;
|
|
} else {
|
|
xefi->xefi_owner = XFS_RMAP_OWN_NULL;
|
|
}
|
|
trace_xfs_bmap_free_defer(mp,
|
|
XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
|
|
XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
|
|
|
|
xfs_extent_free_get_group(mp, xefi);
|
|
xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &xefi->xefi_list);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/*
|
|
* Check if an AGF has a free extent record whose length is equal to
|
|
* args->minlen.
|
|
*/
|
|
STATIC int
|
|
xfs_exact_minlen_extent_available(
|
|
struct xfs_alloc_arg *args,
|
|
struct xfs_buf *agbp,
|
|
int *stat)
|
|
{
|
|
struct xfs_btree_cur *cnt_cur;
|
|
xfs_agblock_t fbno;
|
|
xfs_extlen_t flen;
|
|
int error = 0;
|
|
|
|
cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
|
|
args->pag, XFS_BTNUM_CNT);
|
|
error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (*stat == 0) {
|
|
error = -EFSCORRUPTED;
|
|
goto out;
|
|
}
|
|
|
|
error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (*stat == 1 && flen != args->minlen)
|
|
*stat = 0;
|
|
|
|
out:
|
|
xfs_btree_del_cursor(cnt_cur, error);
|
|
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Decide whether to use this allocation group for this allocation.
|
|
* If so, fix up the btree freelist's size.
|
|
*/
|
|
int /* error */
|
|
xfs_alloc_fix_freelist(
|
|
struct xfs_alloc_arg *args, /* allocation argument structure */
|
|
uint32_t alloc_flags)
|
|
{
|
|
struct xfs_mount *mp = args->mp;
|
|
struct xfs_perag *pag = args->pag;
|
|
struct xfs_trans *tp = args->tp;
|
|
struct xfs_buf *agbp = NULL;
|
|
struct xfs_buf *agflbp = NULL;
|
|
struct xfs_alloc_arg targs; /* local allocation arguments */
|
|
xfs_agblock_t bno; /* freelist block */
|
|
xfs_extlen_t need; /* total blocks needed in freelist */
|
|
int error = 0;
|
|
|
|
/* deferred ops (AGFL block frees) require permanent transactions */
|
|
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
|
|
|
|
if (!xfs_perag_initialised_agf(pag)) {
|
|
error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
|
|
if (error) {
|
|
/* Couldn't lock the AGF so skip this AG. */
|
|
if (error == -EAGAIN)
|
|
error = 0;
|
|
goto out_no_agbp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is a metadata preferred pag and we are user data then try
|
|
* somewhere else if we are not being asked to try harder at this
|
|
* point
|
|
*/
|
|
if (xfs_perag_prefers_metadata(pag) &&
|
|
(args->datatype & XFS_ALLOC_USERDATA) &&
|
|
(alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
|
|
ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
|
|
goto out_agbp_relse;
|
|
}
|
|
|
|
need = xfs_alloc_min_freelist(mp, pag);
|
|
if (!xfs_alloc_space_available(args, need, alloc_flags |
|
|
XFS_ALLOC_FLAG_CHECK))
|
|
goto out_agbp_relse;
|
|
|
|
/*
|
|
* Get the a.g. freespace buffer.
|
|
* Can fail if we're not blocking on locks, and it's held.
|
|
*/
|
|
if (!agbp) {
|
|
error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
|
|
if (error) {
|
|
/* Couldn't lock the AGF so skip this AG. */
|
|
if (error == -EAGAIN)
|
|
error = 0;
|
|
goto out_no_agbp;
|
|
}
|
|
}
|
|
|
|
/* reset a padding mismatched agfl before final free space check */
|
|
if (xfs_perag_agfl_needs_reset(pag))
|
|
xfs_agfl_reset(tp, agbp, pag);
|
|
|
|
/* If there isn't enough total space or single-extent, reject it. */
|
|
need = xfs_alloc_min_freelist(mp, pag);
|
|
if (!xfs_alloc_space_available(args, need, alloc_flags))
|
|
goto out_agbp_relse;
|
|
|
|
#ifdef DEBUG
|
|
if (args->alloc_minlen_only) {
|
|
int stat;
|
|
|
|
error = xfs_exact_minlen_extent_available(args, agbp, &stat);
|
|
if (error || !stat)
|
|
goto out_agbp_relse;
|
|
}
|
|
#endif
|
|
/*
|
|
* Make the freelist shorter if it's too long.
|
|
*
|
|
* Note that from this point onwards, we will always release the agf and
|
|
* agfl buffers on error. This handles the case where we error out and
|
|
* the buffers are clean or may not have been joined to the transaction
|
|
* and hence need to be released manually. If they have been joined to
|
|
* the transaction, then xfs_trans_brelse() will handle them
|
|
* appropriately based on the recursion count and dirty state of the
|
|
* buffer.
|
|
*
|
|
* XXX (dgc): When we have lots of free space, does this buy us
|
|
* anything other than extra overhead when we need to put more blocks
|
|
* back on the free list? Maybe we should only do this when space is
|
|
* getting low or the AGFL is more than half full?
|
|
*
|
|
* The NOSHRINK flag prevents the AGFL from being shrunk if it's too
|
|
* big; the NORMAP flag prevents AGFL expand/shrink operations from
|
|
* updating the rmapbt. Both flags are used in xfs_repair while we're
|
|
* rebuilding the rmapbt, and neither are used by the kernel. They're
|
|
* both required to ensure that rmaps are correctly recorded for the
|
|
* regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
|
|
* repair/rmap.c in xfsprogs for details.
|
|
*/
|
|
memset(&targs, 0, sizeof(targs));
|
|
/* struct copy below */
|
|
if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
|
|
targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
|
|
else
|
|
targs.oinfo = XFS_RMAP_OINFO_AG;
|
|
while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
|
|
pag->pagf_flcount > need) {
|
|
error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
|
|
if (error)
|
|
goto out_agbp_relse;
|
|
|
|
/* defer agfl frees */
|
|
error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
|
|
if (error)
|
|
goto out_agbp_relse;
|
|
}
|
|
|
|
targs.tp = tp;
|
|
targs.mp = mp;
|
|
targs.agbp = agbp;
|
|
targs.agno = args->agno;
|
|
targs.alignment = targs.minlen = targs.prod = 1;
|
|
targs.pag = pag;
|
|
error = xfs_alloc_read_agfl(pag, tp, &agflbp);
|
|
if (error)
|
|
goto out_agbp_relse;
|
|
|
|
/* Make the freelist longer if it's too short. */
|
|
while (pag->pagf_flcount < need) {
|
|
targs.agbno = 0;
|
|
targs.maxlen = need - pag->pagf_flcount;
|
|
targs.resv = XFS_AG_RESV_AGFL;
|
|
|
|
/* Allocate as many blocks as possible at once. */
|
|
error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
|
|
if (error)
|
|
goto out_agflbp_relse;
|
|
|
|
/*
|
|
* Stop if we run out. Won't happen if callers are obeying
|
|
* the restrictions correctly. Can happen for free calls
|
|
* on a completely full ag.
|
|
*/
|
|
if (targs.agbno == NULLAGBLOCK) {
|
|
if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
|
|
break;
|
|
goto out_agflbp_relse;
|
|
}
|
|
|
|
if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
|
|
error = xfs_rmap_alloc(tp, agbp, pag,
|
|
targs.agbno, targs.len, &targs.oinfo);
|
|
if (error)
|
|
goto out_agflbp_relse;
|
|
}
|
|
error = xfs_alloc_update_counters(tp, agbp,
|
|
-((long)(targs.len)));
|
|
if (error)
|
|
goto out_agflbp_relse;
|
|
|
|
/*
|
|
* Put each allocated block on the list.
|
|
*/
|
|
for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
|
|
error = xfs_alloc_put_freelist(pag, tp, agbp,
|
|
agflbp, bno, 0);
|
|
if (error)
|
|
goto out_agflbp_relse;
|
|
}
|
|
}
|
|
xfs_trans_brelse(tp, agflbp);
|
|
args->agbp = agbp;
|
|
return 0;
|
|
|
|
out_agflbp_relse:
|
|
xfs_trans_brelse(tp, agflbp);
|
|
out_agbp_relse:
|
|
if (agbp)
|
|
xfs_trans_brelse(tp, agbp);
|
|
out_no_agbp:
|
|
args->agbp = NULL;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Get a block from the freelist.
|
|
* Returns with the buffer for the block gotten.
|
|
*/
|
|
int
|
|
xfs_alloc_get_freelist(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
xfs_agblock_t *bnop,
|
|
int btreeblk)
|
|
{
|
|
struct xfs_agf *agf = agbp->b_addr;
|
|
struct xfs_buf *agflbp;
|
|
xfs_agblock_t bno;
|
|
__be32 *agfl_bno;
|
|
int error;
|
|
uint32_t logflags;
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
|
|
/*
|
|
* Freelist is empty, give up.
|
|
*/
|
|
if (!agf->agf_flcount) {
|
|
*bnop = NULLAGBLOCK;
|
|
return 0;
|
|
}
|
|
/*
|
|
* Read the array of free blocks.
|
|
*/
|
|
error = xfs_alloc_read_agfl(pag, tp, &agflbp);
|
|
if (error)
|
|
return error;
|
|
|
|
|
|
/*
|
|
* Get the block number and update the data structures.
|
|
*/
|
|
agfl_bno = xfs_buf_to_agfl_bno(agflbp);
|
|
bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
|
|
if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
|
|
return -EFSCORRUPTED;
|
|
|
|
be32_add_cpu(&agf->agf_flfirst, 1);
|
|
xfs_trans_brelse(tp, agflbp);
|
|
if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
|
|
agf->agf_flfirst = 0;
|
|
|
|
ASSERT(!xfs_perag_agfl_needs_reset(pag));
|
|
be32_add_cpu(&agf->agf_flcount, -1);
|
|
pag->pagf_flcount--;
|
|
|
|
logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
|
|
if (btreeblk) {
|
|
be32_add_cpu(&agf->agf_btreeblks, 1);
|
|
pag->pagf_btreeblks++;
|
|
logflags |= XFS_AGF_BTREEBLKS;
|
|
}
|
|
|
|
xfs_alloc_log_agf(tp, agbp, logflags);
|
|
*bnop = bno;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Log the given fields from the agf structure.
|
|
*/
|
|
void
|
|
xfs_alloc_log_agf(
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *bp,
|
|
uint32_t fields)
|
|
{
|
|
int first; /* first byte offset */
|
|
int last; /* last byte offset */
|
|
static const short offsets[] = {
|
|
offsetof(xfs_agf_t, agf_magicnum),
|
|
offsetof(xfs_agf_t, agf_versionnum),
|
|
offsetof(xfs_agf_t, agf_seqno),
|
|
offsetof(xfs_agf_t, agf_length),
|
|
offsetof(xfs_agf_t, agf_roots[0]),
|
|
offsetof(xfs_agf_t, agf_levels[0]),
|
|
offsetof(xfs_agf_t, agf_flfirst),
|
|
offsetof(xfs_agf_t, agf_fllast),
|
|
offsetof(xfs_agf_t, agf_flcount),
|
|
offsetof(xfs_agf_t, agf_freeblks),
|
|
offsetof(xfs_agf_t, agf_longest),
|
|
offsetof(xfs_agf_t, agf_btreeblks),
|
|
offsetof(xfs_agf_t, agf_uuid),
|
|
offsetof(xfs_agf_t, agf_rmap_blocks),
|
|
offsetof(xfs_agf_t, agf_refcount_blocks),
|
|
offsetof(xfs_agf_t, agf_refcount_root),
|
|
offsetof(xfs_agf_t, agf_refcount_level),
|
|
/* needed so that we don't log the whole rest of the structure: */
|
|
offsetof(xfs_agf_t, agf_spare64),
|
|
sizeof(xfs_agf_t)
|
|
};
|
|
|
|
trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
|
|
|
|
xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
|
|
|
|
xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
|
|
xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
|
|
}
|
|
|
|
/*
|
|
* Put the block on the freelist for the allocation group.
|
|
*/
|
|
int
|
|
xfs_alloc_put_freelist(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
struct xfs_buf *agflbp,
|
|
xfs_agblock_t bno,
|
|
int btreeblk)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_agf *agf = agbp->b_addr;
|
|
__be32 *blockp;
|
|
int error;
|
|
uint32_t logflags;
|
|
__be32 *agfl_bno;
|
|
int startoff;
|
|
|
|
if (!agflbp) {
|
|
error = xfs_alloc_read_agfl(pag, tp, &agflbp);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
be32_add_cpu(&agf->agf_fllast, 1);
|
|
if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
|
|
agf->agf_fllast = 0;
|
|
|
|
ASSERT(!xfs_perag_agfl_needs_reset(pag));
|
|
be32_add_cpu(&agf->agf_flcount, 1);
|
|
pag->pagf_flcount++;
|
|
|
|
logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
|
|
if (btreeblk) {
|
|
be32_add_cpu(&agf->agf_btreeblks, -1);
|
|
pag->pagf_btreeblks--;
|
|
logflags |= XFS_AGF_BTREEBLKS;
|
|
}
|
|
|
|
xfs_alloc_log_agf(tp, agbp, logflags);
|
|
|
|
ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
|
|
|
|
agfl_bno = xfs_buf_to_agfl_bno(agflbp);
|
|
blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
|
|
*blockp = cpu_to_be32(bno);
|
|
startoff = (char *)blockp - (char *)agflbp->b_addr;
|
|
|
|
xfs_alloc_log_agf(tp, agbp, logflags);
|
|
|
|
xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
|
|
xfs_trans_log_buf(tp, agflbp, startoff,
|
|
startoff + sizeof(xfs_agblock_t) - 1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Verify the AGF is consistent.
|
|
*
|
|
* We do not verify the AGFL indexes in the AGF are fully consistent here
|
|
* because of issues with variable on-disk structure sizes. Instead, we check
|
|
* the agfl indexes for consistency when we initialise the perag from the AGF
|
|
* information after a read completes.
|
|
*
|
|
* If the index is inconsistent, then we mark the perag as needing an AGFL
|
|
* reset. The first AGFL update performed then resets the AGFL indexes and
|
|
* refills the AGFL with known good free blocks, allowing the filesystem to
|
|
* continue operating normally at the cost of a few leaked free space blocks.
|
|
*/
|
|
static xfs_failaddr_t
|
|
xfs_agf_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
struct xfs_agf *agf = bp->b_addr;
|
|
uint32_t agf_length = be32_to_cpu(agf->agf_length);
|
|
|
|
if (xfs_has_crc(mp)) {
|
|
if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
|
|
return __this_address;
|
|
if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
|
|
return __this_address;
|
|
}
|
|
|
|
if (!xfs_verify_magic(bp, agf->agf_magicnum))
|
|
return __this_address;
|
|
|
|
if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
|
|
return __this_address;
|
|
|
|
/*
|
|
* Both agf_seqno and agf_length need to validated before anything else
|
|
* block number related in the AGF or AGFL can be checked.
|
|
*
|
|
* During growfs operations, the perag is not fully initialised,
|
|
* so we can't use it for any useful checking. growfs ensures we can't
|
|
* use it by using uncached buffers that don't have the perag attached
|
|
* so we can detect and avoid this problem.
|
|
*/
|
|
if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno)
|
|
return __this_address;
|
|
|
|
/*
|
|
* Only the last AGF in the filesytsem is allowed to be shorter
|
|
* than the AG size recorded in the superblock.
|
|
*/
|
|
if (agf_length != mp->m_sb.sb_agblocks) {
|
|
/*
|
|
* During growfs, the new last AGF can get here before we
|
|
* have updated the superblock. Give it a pass on the seqno
|
|
* check.
|
|
*/
|
|
if (bp->b_pag &&
|
|
be32_to_cpu(agf->agf_seqno) != mp->m_sb.sb_agcount - 1)
|
|
return __this_address;
|
|
if (agf_length < XFS_MIN_AG_BLOCKS)
|
|
return __this_address;
|
|
if (agf_length > mp->m_sb.sb_agblocks)
|
|
return __this_address;
|
|
}
|
|
|
|
if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
|
|
return __this_address;
|
|
if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
|
|
return __this_address;
|
|
if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
|
|
return __this_address;
|
|
|
|
if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
|
|
be32_to_cpu(agf->agf_freeblks) > agf_length)
|
|
return __this_address;
|
|
|
|
if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
|
|
be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
|
|
be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
|
|
mp->m_alloc_maxlevels ||
|
|
be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
|
|
mp->m_alloc_maxlevels)
|
|
return __this_address;
|
|
|
|
if (xfs_has_lazysbcount(mp) &&
|
|
be32_to_cpu(agf->agf_btreeblks) > agf_length)
|
|
return __this_address;
|
|
|
|
if (xfs_has_rmapbt(mp)) {
|
|
if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
|
|
return __this_address;
|
|
|
|
if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
|
|
be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
|
|
mp->m_rmap_maxlevels)
|
|
return __this_address;
|
|
}
|
|
|
|
if (xfs_has_reflink(mp)) {
|
|
if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
|
|
return __this_address;
|
|
|
|
if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
|
|
be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
|
|
return __this_address;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
xfs_agf_read_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
xfs_failaddr_t fa;
|
|
|
|
if (xfs_has_crc(mp) &&
|
|
!xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
|
|
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
|
|
else {
|
|
fa = xfs_agf_verify(bp);
|
|
if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
|
|
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_agf_write_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
struct xfs_buf_log_item *bip = bp->b_log_item;
|
|
struct xfs_agf *agf = bp->b_addr;
|
|
xfs_failaddr_t fa;
|
|
|
|
fa = xfs_agf_verify(bp);
|
|
if (fa) {
|
|
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
|
|
return;
|
|
}
|
|
|
|
if (!xfs_has_crc(mp))
|
|
return;
|
|
|
|
if (bip)
|
|
agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
|
|
|
|
xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
|
|
}
|
|
|
|
const struct xfs_buf_ops xfs_agf_buf_ops = {
|
|
.name = "xfs_agf",
|
|
.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
|
|
.verify_read = xfs_agf_read_verify,
|
|
.verify_write = xfs_agf_write_verify,
|
|
.verify_struct = xfs_agf_verify,
|
|
};
|
|
|
|
/*
|
|
* Read in the allocation group header (free/alloc section).
|
|
*/
|
|
int
|
|
xfs_read_agf(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
int flags,
|
|
struct xfs_buf **agfbpp)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
int error;
|
|
|
|
trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
|
|
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
|
|
XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
|
|
XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read in the allocation group header (free/alloc section) and initialise the
|
|
* perag structure if necessary. If the caller provides @agfbpp, then return the
|
|
* locked buffer to the caller, otherwise free it.
|
|
*/
|
|
int
|
|
xfs_alloc_read_agf(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
int flags,
|
|
struct xfs_buf **agfbpp)
|
|
{
|
|
struct xfs_buf *agfbp;
|
|
struct xfs_agf *agf;
|
|
int error;
|
|
int allocbt_blks;
|
|
|
|
trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
|
|
|
|
/* We don't support trylock when freeing. */
|
|
ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
|
|
(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
|
|
error = xfs_read_agf(pag, tp,
|
|
(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
|
|
&agfbp);
|
|
if (error)
|
|
return error;
|
|
|
|
agf = agfbp->b_addr;
|
|
if (!xfs_perag_initialised_agf(pag)) {
|
|
pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
|
|
pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
|
|
pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
|
|
pag->pagf_longest = be32_to_cpu(agf->agf_longest);
|
|
pag->pagf_levels[XFS_BTNUM_BNOi] =
|
|
be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
|
|
pag->pagf_levels[XFS_BTNUM_CNTi] =
|
|
be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
|
|
pag->pagf_levels[XFS_BTNUM_RMAPi] =
|
|
be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
|
|
pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
|
|
if (xfs_agfl_needs_reset(pag->pag_mount, agf))
|
|
set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
|
|
else
|
|
clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
|
|
|
|
/*
|
|
* Update the in-core allocbt counter. Filter out the rmapbt
|
|
* subset of the btreeblks counter because the rmapbt is managed
|
|
* by perag reservation. Subtract one for the rmapbt root block
|
|
* because the rmap counter includes it while the btreeblks
|
|
* counter only tracks non-root blocks.
|
|
*/
|
|
allocbt_blks = pag->pagf_btreeblks;
|
|
if (xfs_has_rmapbt(pag->pag_mount))
|
|
allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
|
|
if (allocbt_blks > 0)
|
|
atomic64_add(allocbt_blks,
|
|
&pag->pag_mount->m_allocbt_blks);
|
|
|
|
set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
|
|
}
|
|
#ifdef DEBUG
|
|
else if (!xfs_is_shutdown(pag->pag_mount)) {
|
|
ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
|
|
ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
|
|
ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
|
|
ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
|
|
ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
|
|
be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
|
|
ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
|
|
be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
|
|
}
|
|
#endif
|
|
if (agfbpp)
|
|
*agfbpp = agfbp;
|
|
else
|
|
xfs_trans_brelse(tp, agfbp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pre-proces allocation arguments to set initial state that we don't require
|
|
* callers to set up correctly, as well as bounds check the allocation args
|
|
* that are set up.
|
|
*/
|
|
static int
|
|
xfs_alloc_vextent_check_args(
|
|
struct xfs_alloc_arg *args,
|
|
xfs_fsblock_t target,
|
|
xfs_agnumber_t *minimum_agno)
|
|
{
|
|
struct xfs_mount *mp = args->mp;
|
|
xfs_agblock_t agsize;
|
|
|
|
args->fsbno = NULLFSBLOCK;
|
|
|
|
*minimum_agno = 0;
|
|
if (args->tp->t_highest_agno != NULLAGNUMBER)
|
|
*minimum_agno = args->tp->t_highest_agno;
|
|
|
|
/*
|
|
* Just fix this up, for the case where the last a.g. is shorter
|
|
* (or there's only one a.g.) and the caller couldn't easily figure
|
|
* that out (xfs_bmap_alloc).
|
|
*/
|
|
agsize = mp->m_sb.sb_agblocks;
|
|
if (args->maxlen > agsize)
|
|
args->maxlen = agsize;
|
|
if (args->alignment == 0)
|
|
args->alignment = 1;
|
|
|
|
ASSERT(args->minlen > 0);
|
|
ASSERT(args->maxlen > 0);
|
|
ASSERT(args->alignment > 0);
|
|
ASSERT(args->resv != XFS_AG_RESV_AGFL);
|
|
|
|
ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
|
|
ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
|
|
ASSERT(args->minlen <= args->maxlen);
|
|
ASSERT(args->minlen <= agsize);
|
|
ASSERT(args->mod < args->prod);
|
|
|
|
if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
|
|
XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
|
|
args->minlen > args->maxlen || args->minlen > agsize ||
|
|
args->mod >= args->prod) {
|
|
trace_xfs_alloc_vextent_badargs(args);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
|
|
trace_xfs_alloc_vextent_skip_deadlock(args);
|
|
return -ENOSPC;
|
|
}
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*
|
|
* Prepare an AG for allocation. If the AG is not prepared to accept the
|
|
* allocation, return failure.
|
|
*
|
|
* XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
|
|
* modified to hold their own perag references.
|
|
*/
|
|
static int
|
|
xfs_alloc_vextent_prepare_ag(
|
|
struct xfs_alloc_arg *args,
|
|
uint32_t alloc_flags)
|
|
{
|
|
bool need_pag = !args->pag;
|
|
int error;
|
|
|
|
if (need_pag)
|
|
args->pag = xfs_perag_get(args->mp, args->agno);
|
|
|
|
args->agbp = NULL;
|
|
error = xfs_alloc_fix_freelist(args, alloc_flags);
|
|
if (error) {
|
|
trace_xfs_alloc_vextent_nofix(args);
|
|
if (need_pag)
|
|
xfs_perag_put(args->pag);
|
|
args->agbno = NULLAGBLOCK;
|
|
return error;
|
|
}
|
|
if (!args->agbp) {
|
|
/* cannot allocate in this AG at all */
|
|
trace_xfs_alloc_vextent_noagbp(args);
|
|
args->agbno = NULLAGBLOCK;
|
|
return 0;
|
|
}
|
|
args->wasfromfl = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Post-process allocation results to account for the allocation if it succeed
|
|
* and set the allocated block number correctly for the caller.
|
|
*
|
|
* XXX: we should really be returning ENOSPC for ENOSPC, not
|
|
* hiding it behind a "successful" NULLFSBLOCK allocation.
|
|
*/
|
|
static int
|
|
xfs_alloc_vextent_finish(
|
|
struct xfs_alloc_arg *args,
|
|
xfs_agnumber_t minimum_agno,
|
|
int alloc_error,
|
|
bool drop_perag)
|
|
{
|
|
struct xfs_mount *mp = args->mp;
|
|
int error = 0;
|
|
|
|
/*
|
|
* We can end up here with a locked AGF. If we failed, the caller is
|
|
* likely going to try to allocate again with different parameters, and
|
|
* that can widen the AGs that are searched for free space. If we have
|
|
* to do BMBT block allocation, we have to do a new allocation.
|
|
*
|
|
* Hence leaving this function with the AGF locked opens up potential
|
|
* ABBA AGF deadlocks because a future allocation attempt in this
|
|
* transaction may attempt to lock a lower number AGF.
|
|
*
|
|
* We can't release the AGF until the transaction is commited, so at
|
|
* this point we must update the "first allocation" tracker to point at
|
|
* this AG if the tracker is empty or points to a lower AG. This allows
|
|
* the next allocation attempt to be modified appropriately to avoid
|
|
* deadlocks.
|
|
*/
|
|
if (args->agbp &&
|
|
(args->tp->t_highest_agno == NULLAGNUMBER ||
|
|
args->agno > minimum_agno))
|
|
args->tp->t_highest_agno = args->agno;
|
|
|
|
/*
|
|
* If the allocation failed with an error or we had an ENOSPC result,
|
|
* preserve the returned error whilst also marking the allocation result
|
|
* as "no extent allocated". This ensures that callers that fail to
|
|
* capture the error will still treat it as a failed allocation.
|
|
*/
|
|
if (alloc_error || args->agbno == NULLAGBLOCK) {
|
|
args->fsbno = NULLFSBLOCK;
|
|
error = alloc_error;
|
|
goto out_drop_perag;
|
|
}
|
|
|
|
args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
|
|
|
|
ASSERT(args->len >= args->minlen);
|
|
ASSERT(args->len <= args->maxlen);
|
|
ASSERT(args->agbno % args->alignment == 0);
|
|
XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
|
|
|
|
/* if not file data, insert new block into the reverse map btree */
|
|
if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
|
|
error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
|
|
args->agbno, args->len, &args->oinfo);
|
|
if (error)
|
|
goto out_drop_perag;
|
|
}
|
|
|
|
if (!args->wasfromfl) {
|
|
error = xfs_alloc_update_counters(args->tp, args->agbp,
|
|
-((long)(args->len)));
|
|
if (error)
|
|
goto out_drop_perag;
|
|
|
|
ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
|
|
args->len));
|
|
}
|
|
|
|
xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
|
|
|
|
XFS_STATS_INC(mp, xs_allocx);
|
|
XFS_STATS_ADD(mp, xs_allocb, args->len);
|
|
|
|
trace_xfs_alloc_vextent_finish(args);
|
|
|
|
out_drop_perag:
|
|
if (drop_perag && args->pag) {
|
|
xfs_perag_rele(args->pag);
|
|
args->pag = NULL;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate within a single AG only. This uses a best-fit length algorithm so if
|
|
* you need an exact sized allocation without locality constraints, this is the
|
|
* fastest way to do it.
|
|
*
|
|
* Caller is expected to hold a perag reference in args->pag.
|
|
*/
|
|
int
|
|
xfs_alloc_vextent_this_ag(
|
|
struct xfs_alloc_arg *args,
|
|
xfs_agnumber_t agno)
|
|
{
|
|
struct xfs_mount *mp = args->mp;
|
|
xfs_agnumber_t minimum_agno;
|
|
uint32_t alloc_flags = 0;
|
|
int error;
|
|
|
|
ASSERT(args->pag != NULL);
|
|
ASSERT(args->pag->pag_agno == agno);
|
|
|
|
args->agno = agno;
|
|
args->agbno = 0;
|
|
|
|
trace_xfs_alloc_vextent_this_ag(args);
|
|
|
|
error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
|
|
&minimum_agno);
|
|
if (error) {
|
|
if (error == -ENOSPC)
|
|
return 0;
|
|
return error;
|
|
}
|
|
|
|
error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
|
|
if (!error && args->agbp)
|
|
error = xfs_alloc_ag_vextent_size(args, alloc_flags);
|
|
|
|
return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
|
|
}
|
|
|
|
/*
|
|
* Iterate all AGs trying to allocate an extent starting from @start_ag.
|
|
*
|
|
* If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
|
|
* allocation attempts in @start_agno have locality information. If we fail to
|
|
* allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
|
|
* we attempt to allocation in as there is no locality optimisation possible for
|
|
* those allocations.
|
|
*
|
|
* On return, args->pag may be left referenced if we finish before the "all
|
|
* failed" return point. The allocation finish still needs the perag, and
|
|
* so the caller will release it once they've finished the allocation.
|
|
*
|
|
* When we wrap the AG iteration at the end of the filesystem, we have to be
|
|
* careful not to wrap into AGs below ones we already have locked in the
|
|
* transaction if we are doing a blocking iteration. This will result in an
|
|
* out-of-order locking of AGFs and hence can cause deadlocks.
|
|
*/
|
|
static int
|
|
xfs_alloc_vextent_iterate_ags(
|
|
struct xfs_alloc_arg *args,
|
|
xfs_agnumber_t minimum_agno,
|
|
xfs_agnumber_t start_agno,
|
|
xfs_agblock_t target_agbno,
|
|
uint32_t alloc_flags)
|
|
{
|
|
struct xfs_mount *mp = args->mp;
|
|
xfs_agnumber_t restart_agno = minimum_agno;
|
|
xfs_agnumber_t agno;
|
|
int error = 0;
|
|
|
|
if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
|
|
restart_agno = 0;
|
|
restart:
|
|
for_each_perag_wrap_range(mp, start_agno, restart_agno,
|
|
mp->m_sb.sb_agcount, agno, args->pag) {
|
|
args->agno = agno;
|
|
error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
|
|
if (error)
|
|
break;
|
|
if (!args->agbp) {
|
|
trace_xfs_alloc_vextent_loopfailed(args);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Allocation is supposed to succeed now, so break out of the
|
|
* loop regardless of whether we succeed or not.
|
|
*/
|
|
if (args->agno == start_agno && target_agbno) {
|
|
args->agbno = target_agbno;
|
|
error = xfs_alloc_ag_vextent_near(args, alloc_flags);
|
|
} else {
|
|
args->agbno = 0;
|
|
error = xfs_alloc_ag_vextent_size(args, alloc_flags);
|
|
}
|
|
break;
|
|
}
|
|
if (error) {
|
|
xfs_perag_rele(args->pag);
|
|
args->pag = NULL;
|
|
return error;
|
|
}
|
|
if (args->agbp)
|
|
return 0;
|
|
|
|
/*
|
|
* We didn't find an AG we can alloation from. If we were given
|
|
* constraining flags by the caller, drop them and retry the allocation
|
|
* without any constraints being set.
|
|
*/
|
|
if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
|
|
alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
|
|
restart_agno = minimum_agno;
|
|
goto restart;
|
|
}
|
|
|
|
ASSERT(args->pag == NULL);
|
|
trace_xfs_alloc_vextent_allfailed(args);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Iterate from the AGs from the start AG to the end of the filesystem, trying
|
|
* to allocate blocks. It starts with a near allocation attempt in the initial
|
|
* AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
|
|
* back to zero if allowed by previous allocations in this transaction,
|
|
* otherwise will wrap back to the start AG and run a second blocking pass to
|
|
* the end of the filesystem.
|
|
*/
|
|
int
|
|
xfs_alloc_vextent_start_ag(
|
|
struct xfs_alloc_arg *args,
|
|
xfs_fsblock_t target)
|
|
{
|
|
struct xfs_mount *mp = args->mp;
|
|
xfs_agnumber_t minimum_agno;
|
|
xfs_agnumber_t start_agno;
|
|
xfs_agnumber_t rotorstep = xfs_rotorstep;
|
|
bool bump_rotor = false;
|
|
uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
|
|
int error;
|
|
|
|
ASSERT(args->pag == NULL);
|
|
|
|
args->agno = NULLAGNUMBER;
|
|
args->agbno = NULLAGBLOCK;
|
|
|
|
trace_xfs_alloc_vextent_start_ag(args);
|
|
|
|
error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
|
|
if (error) {
|
|
if (error == -ENOSPC)
|
|
return 0;
|
|
return error;
|
|
}
|
|
|
|
if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
|
|
xfs_is_inode32(mp)) {
|
|
target = XFS_AGB_TO_FSB(mp,
|
|
((mp->m_agfrotor / rotorstep) %
|
|
mp->m_sb.sb_agcount), 0);
|
|
bump_rotor = 1;
|
|
}
|
|
|
|
start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
|
|
error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
|
|
XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
|
|
|
|
if (bump_rotor) {
|
|
if (args->agno == start_agno)
|
|
mp->m_agfrotor = (mp->m_agfrotor + 1) %
|
|
(mp->m_sb.sb_agcount * rotorstep);
|
|
else
|
|
mp->m_agfrotor = (args->agno * rotorstep + 1) %
|
|
(mp->m_sb.sb_agcount * rotorstep);
|
|
}
|
|
|
|
return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
|
|
}
|
|
|
|
/*
|
|
* Iterate from the agno indicated via @target through to the end of the
|
|
* filesystem attempting blocking allocation. This does not wrap or try a second
|
|
* pass, so will not recurse into AGs lower than indicated by the target.
|
|
*/
|
|
int
|
|
xfs_alloc_vextent_first_ag(
|
|
struct xfs_alloc_arg *args,
|
|
xfs_fsblock_t target)
|
|
{
|
|
struct xfs_mount *mp = args->mp;
|
|
xfs_agnumber_t minimum_agno;
|
|
xfs_agnumber_t start_agno;
|
|
uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
|
|
int error;
|
|
|
|
ASSERT(args->pag == NULL);
|
|
|
|
args->agno = NULLAGNUMBER;
|
|
args->agbno = NULLAGBLOCK;
|
|
|
|
trace_xfs_alloc_vextent_first_ag(args);
|
|
|
|
error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
|
|
if (error) {
|
|
if (error == -ENOSPC)
|
|
return 0;
|
|
return error;
|
|
}
|
|
|
|
start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
|
|
error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
|
|
XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
|
|
return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
|
|
}
|
|
|
|
/*
|
|
* Allocate at the exact block target or fail. Caller is expected to hold a
|
|
* perag reference in args->pag.
|
|
*/
|
|
int
|
|
xfs_alloc_vextent_exact_bno(
|
|
struct xfs_alloc_arg *args,
|
|
xfs_fsblock_t target)
|
|
{
|
|
struct xfs_mount *mp = args->mp;
|
|
xfs_agnumber_t minimum_agno;
|
|
int error;
|
|
|
|
ASSERT(args->pag != NULL);
|
|
ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
|
|
|
|
args->agno = XFS_FSB_TO_AGNO(mp, target);
|
|
args->agbno = XFS_FSB_TO_AGBNO(mp, target);
|
|
|
|
trace_xfs_alloc_vextent_exact_bno(args);
|
|
|
|
error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
|
|
if (error) {
|
|
if (error == -ENOSPC)
|
|
return 0;
|
|
return error;
|
|
}
|
|
|
|
error = xfs_alloc_vextent_prepare_ag(args, 0);
|
|
if (!error && args->agbp)
|
|
error = xfs_alloc_ag_vextent_exact(args);
|
|
|
|
return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
|
|
}
|
|
|
|
/*
|
|
* Allocate an extent as close to the target as possible. If there are not
|
|
* viable candidates in the AG, then fail the allocation.
|
|
*
|
|
* Caller may or may not have a per-ag reference in args->pag.
|
|
*/
|
|
int
|
|
xfs_alloc_vextent_near_bno(
|
|
struct xfs_alloc_arg *args,
|
|
xfs_fsblock_t target)
|
|
{
|
|
struct xfs_mount *mp = args->mp;
|
|
xfs_agnumber_t minimum_agno;
|
|
bool needs_perag = args->pag == NULL;
|
|
uint32_t alloc_flags = 0;
|
|
int error;
|
|
|
|
if (!needs_perag)
|
|
ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
|
|
|
|
args->agno = XFS_FSB_TO_AGNO(mp, target);
|
|
args->agbno = XFS_FSB_TO_AGBNO(mp, target);
|
|
|
|
trace_xfs_alloc_vextent_near_bno(args);
|
|
|
|
error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
|
|
if (error) {
|
|
if (error == -ENOSPC)
|
|
return 0;
|
|
return error;
|
|
}
|
|
|
|
if (needs_perag)
|
|
args->pag = xfs_perag_grab(mp, args->agno);
|
|
|
|
error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
|
|
if (!error && args->agbp)
|
|
error = xfs_alloc_ag_vextent_near(args, alloc_flags);
|
|
|
|
return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
|
|
}
|
|
|
|
/* Ensure that the freelist is at full capacity. */
|
|
int
|
|
xfs_free_extent_fix_freelist(
|
|
struct xfs_trans *tp,
|
|
struct xfs_perag *pag,
|
|
struct xfs_buf **agbp)
|
|
{
|
|
struct xfs_alloc_arg args;
|
|
int error;
|
|
|
|
memset(&args, 0, sizeof(struct xfs_alloc_arg));
|
|
args.tp = tp;
|
|
args.mp = tp->t_mountp;
|
|
args.agno = pag->pag_agno;
|
|
args.pag = pag;
|
|
|
|
/*
|
|
* validate that the block number is legal - the enables us to detect
|
|
* and handle a silent filesystem corruption rather than crashing.
|
|
*/
|
|
if (args.agno >= args.mp->m_sb.sb_agcount)
|
|
return -EFSCORRUPTED;
|
|
|
|
error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
|
|
if (error)
|
|
return error;
|
|
|
|
*agbp = args.agbp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free an extent.
|
|
* Just break up the extent address and hand off to xfs_free_ag_extent
|
|
* after fixing up the freelist.
|
|
*/
|
|
int
|
|
__xfs_free_extent(
|
|
struct xfs_trans *tp,
|
|
struct xfs_perag *pag,
|
|
xfs_agblock_t agbno,
|
|
xfs_extlen_t len,
|
|
const struct xfs_owner_info *oinfo,
|
|
enum xfs_ag_resv_type type,
|
|
bool skip_discard)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_buf *agbp;
|
|
struct xfs_agf *agf;
|
|
int error;
|
|
unsigned int busy_flags = 0;
|
|
|
|
ASSERT(len != 0);
|
|
ASSERT(type != XFS_AG_RESV_AGFL);
|
|
|
|
if (XFS_TEST_ERROR(false, mp,
|
|
XFS_ERRTAG_FREE_EXTENT))
|
|
return -EIO;
|
|
|
|
error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
|
|
if (error)
|
|
return error;
|
|
agf = agbp->b_addr;
|
|
|
|
if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
|
|
error = -EFSCORRUPTED;
|
|
goto err_release;
|
|
}
|
|
|
|
/* validate the extent size is legal now we have the agf locked */
|
|
if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
|
|
error = -EFSCORRUPTED;
|
|
goto err_release;
|
|
}
|
|
|
|
error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
|
|
type);
|
|
if (error)
|
|
goto err_release;
|
|
|
|
if (skip_discard)
|
|
busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
|
|
xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
|
|
return 0;
|
|
|
|
err_release:
|
|
xfs_trans_brelse(tp, agbp);
|
|
return error;
|
|
}
|
|
|
|
struct xfs_alloc_query_range_info {
|
|
xfs_alloc_query_range_fn fn;
|
|
void *priv;
|
|
};
|
|
|
|
/* Format btree record and pass to our callback. */
|
|
STATIC int
|
|
xfs_alloc_query_range_helper(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_rec *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_alloc_query_range_info *query = priv;
|
|
struct xfs_alloc_rec_incore irec;
|
|
xfs_failaddr_t fa;
|
|
|
|
xfs_alloc_btrec_to_irec(rec, &irec);
|
|
fa = xfs_alloc_check_irec(cur, &irec);
|
|
if (fa)
|
|
return xfs_alloc_complain_bad_rec(cur, fa, &irec);
|
|
|
|
return query->fn(cur, &irec, query->priv);
|
|
}
|
|
|
|
/* Find all free space within a given range of blocks. */
|
|
int
|
|
xfs_alloc_query_range(
|
|
struct xfs_btree_cur *cur,
|
|
const struct xfs_alloc_rec_incore *low_rec,
|
|
const struct xfs_alloc_rec_incore *high_rec,
|
|
xfs_alloc_query_range_fn fn,
|
|
void *priv)
|
|
{
|
|
union xfs_btree_irec low_brec = { .a = *low_rec };
|
|
union xfs_btree_irec high_brec = { .a = *high_rec };
|
|
struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn };
|
|
|
|
ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
|
|
return xfs_btree_query_range(cur, &low_brec, &high_brec,
|
|
xfs_alloc_query_range_helper, &query);
|
|
}
|
|
|
|
/* Find all free space records. */
|
|
int
|
|
xfs_alloc_query_all(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_alloc_query_range_fn fn,
|
|
void *priv)
|
|
{
|
|
struct xfs_alloc_query_range_info query;
|
|
|
|
ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
|
|
query.priv = priv;
|
|
query.fn = fn;
|
|
return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
|
|
}
|
|
|
|
/*
|
|
* Scan part of the keyspace of the free space and tell us if the area has no
|
|
* records, is fully mapped by records, or is partially filled.
|
|
*/
|
|
int
|
|
xfs_alloc_has_records(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_agblock_t bno,
|
|
xfs_extlen_t len,
|
|
enum xbtree_recpacking *outcome)
|
|
{
|
|
union xfs_btree_irec low;
|
|
union xfs_btree_irec high;
|
|
|
|
memset(&low, 0, sizeof(low));
|
|
low.a.ar_startblock = bno;
|
|
memset(&high, 0xFF, sizeof(high));
|
|
high.a.ar_startblock = bno + len - 1;
|
|
|
|
return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
|
|
}
|
|
|
|
/*
|
|
* Walk all the blocks in the AGFL. The @walk_fn can return any negative
|
|
* error code or XFS_ITER_*.
|
|
*/
|
|
int
|
|
xfs_agfl_walk(
|
|
struct xfs_mount *mp,
|
|
struct xfs_agf *agf,
|
|
struct xfs_buf *agflbp,
|
|
xfs_agfl_walk_fn walk_fn,
|
|
void *priv)
|
|
{
|
|
__be32 *agfl_bno;
|
|
unsigned int i;
|
|
int error;
|
|
|
|
agfl_bno = xfs_buf_to_agfl_bno(agflbp);
|
|
i = be32_to_cpu(agf->agf_flfirst);
|
|
|
|
/* Nothing to walk in an empty AGFL. */
|
|
if (agf->agf_flcount == cpu_to_be32(0))
|
|
return 0;
|
|
|
|
/* Otherwise, walk from first to last, wrapping as needed. */
|
|
for (;;) {
|
|
error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
|
|
if (error)
|
|
return error;
|
|
if (i == be32_to_cpu(agf->agf_fllast))
|
|
break;
|
|
if (++i == xfs_agfl_size(mp))
|
|
i = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init
|
|
xfs_extfree_intent_init_cache(void)
|
|
{
|
|
xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
|
|
sizeof(struct xfs_extent_free_item),
|
|
0, 0, NULL);
|
|
|
|
return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
|
|
}
|
|
|
|
void
|
|
xfs_extfree_intent_destroy_cache(void)
|
|
{
|
|
kmem_cache_destroy(xfs_extfree_item_cache);
|
|
xfs_extfree_item_cache = NULL;
|
|
}
|