OpenCloudOS-Kernel/drivers/net/wireless/rtlwifi/rtl8192ce/hw.c

2428 lines
67 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2012 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "../efuse.h"
#include "../base.h"
#include "../regd.h"
#include "../cam.h"
#include "../ps.h"
#include "../pci.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "../rtl8192c/dm_common.h"
#include "../rtl8192c/fw_common.h"
#include "../rtl8192c/phy_common.h"
#include "dm.h"
#include "led.h"
#include "hw.h"
#define LLT_CONFIG 5
static void _rtl92ce_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
u8 set_bits, u8 clear_bits)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpci->reg_bcn_ctrl_val |= set_bits;
rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val);
}
static void _rtl92ce_stop_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte &= ~(BIT(0));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl92ce_resume_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte |= BIT(0);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl92ce_enable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(1));
}
static void _rtl92ce_disable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl92ce_set_bcn_ctrl_reg(hw, BIT(1), 0);
}
void rtl92ce_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
switch (variable) {
case HW_VAR_RCR:
*((u32 *) (val)) = rtlpci->receive_config;
break;
case HW_VAR_RF_STATE:
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
break;
case HW_VAR_FWLPS_RF_ON:{
enum rf_pwrstate rfState;
u32 val_rcr;
rtlpriv->cfg->ops->get_hw_reg(hw,
HW_VAR_RF_STATE,
(u8 *) (&rfState));
if (rfState == ERFOFF) {
*((bool *) (val)) = true;
} else {
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
val_rcr &= 0x00070000;
if (val_rcr)
*((bool *) (val)) = false;
else
*((bool *) (val)) = true;
}
break;
}
case HW_VAR_FW_PSMODE_STATUS:
*((bool *) (val)) = ppsc->fw_current_inpsmode;
break;
case HW_VAR_CORRECT_TSF:{
u64 tsf;
u32 *ptsf_low = (u32 *)&tsf;
u32 *ptsf_high = ((u32 *)&tsf) + 1;
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
*((u64 *) (val)) = tsf;
break;
}
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not processed\n");
break;
}
}
void rtl92ce_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 idx;
switch (variable) {
case HW_VAR_ETHER_ADDR:{
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_MACID + idx),
val[idx]);
}
break;
}
case HW_VAR_BASIC_RATE:{
u16 rate_cfg = ((u16 *) val)[0];
u8 rate_index = 0;
rate_cfg &= 0x15f;
rate_cfg |= 0x01;
rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
rtl_write_byte(rtlpriv, REG_RRSR + 1,
(rate_cfg >> 8) & 0xff);
while (rate_cfg > 0x1) {
rate_cfg = (rate_cfg >> 1);
rate_index++;
}
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
rate_index);
break;
}
case HW_VAR_BSSID:{
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_BSSID + idx),
val[idx]);
}
break;
}
case HW_VAR_SIFS:{
rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
if (!mac->ht_enable)
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
0x0e0e);
else
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
*((u16 *) val));
break;
}
case HW_VAR_SLOT_TIME:{
u8 e_aci;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"HW_VAR_SLOT_TIME %x\n", val[0]);
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_AC_PARAM,
&e_aci);
}
break;
}
case HW_VAR_ACK_PREAMBLE:{
u8 reg_tmp;
u8 short_preamble = (bool)*val;
reg_tmp = (mac->cur_40_prime_sc) << 5;
if (short_preamble)
reg_tmp |= 0x80;
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
break;
}
case HW_VAR_AMPDU_MIN_SPACE:{
u8 min_spacing_to_set;
u8 sec_min_space;
min_spacing_to_set = *val;
if (min_spacing_to_set <= 7) {
sec_min_space = 0;
if (min_spacing_to_set < sec_min_space)
min_spacing_to_set = sec_min_space;
mac->min_space_cfg = ((mac->min_space_cfg &
0xf8) |
min_spacing_to_set);
*val = min_spacing_to_set;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
}
break;
}
case HW_VAR_SHORTGI_DENSITY:{
u8 density_to_set;
density_to_set = *val;
mac->min_space_cfg |= (density_to_set << 3);
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
break;
}
case HW_VAR_AMPDU_FACTOR:{
u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
u8 regtoset_bt[4] = {0x31, 0x74, 0x42, 0x97};
u8 factor_toset;
u8 *p_regtoset = NULL;
u8 index = 0;
if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
(rtlpcipriv->bt_coexist.bt_coexist_type ==
BT_CSR_BC4))
p_regtoset = regtoset_bt;
else
p_regtoset = regtoset_normal;
factor_toset = *(val);
if (factor_toset <= 3) {
factor_toset = (1 << (factor_toset + 2));
if (factor_toset > 0xf)
factor_toset = 0xf;
for (index = 0; index < 4; index++) {
if ((p_regtoset[index] & 0xf0) >
(factor_toset << 4))
p_regtoset[index] =
(p_regtoset[index] & 0x0f) |
(factor_toset << 4);
if ((p_regtoset[index] & 0x0f) >
factor_toset)
p_regtoset[index] =
(p_regtoset[index] & 0xf0) |
(factor_toset);
rtl_write_byte(rtlpriv,
(REG_AGGLEN_LMT + index),
p_regtoset[index]);
}
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_FACTOR: %#x\n",
factor_toset);
}
break;
}
case HW_VAR_AC_PARAM:{
u8 e_aci = *(val);
rtl92c_dm_init_edca_turbo(hw);
if (rtlpci->acm_method != EACMWAY2_SW)
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_ACM_CTRL,
(&e_aci));
break;
}
case HW_VAR_ACM_CTRL:{
u8 e_aci = *(val);
union aci_aifsn *p_aci_aifsn =
(union aci_aifsn *)(&(mac->ac[0].aifs));
u8 acm = p_aci_aifsn->f.acm;
u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
acm_ctrl =
acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
if (acm) {
switch (e_aci) {
case AC0_BE:
acm_ctrl |= AcmHw_BeqEn;
break;
case AC2_VI:
acm_ctrl |= AcmHw_ViqEn;
break;
case AC3_VO:
acm_ctrl |= AcmHw_VoqEn;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
acm);
break;
}
} else {
switch (e_aci) {
case AC0_BE:
acm_ctrl &= (~AcmHw_BeqEn);
break;
case AC2_VI:
acm_ctrl &= (~AcmHw_ViqEn);
break;
case AC3_VO:
acm_ctrl &= (~AcmHw_BeqEn);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not processed\n");
break;
}
}
RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
acm_ctrl);
rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
break;
}
case HW_VAR_RCR:{
rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
rtlpci->receive_config = ((u32 *) (val))[0];
break;
}
case HW_VAR_RETRY_LIMIT:{
u8 retry_limit = val[0];
rtl_write_word(rtlpriv, REG_RL,
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
retry_limit << RETRY_LIMIT_LONG_SHIFT);
break;
}
case HW_VAR_DUAL_TSF_RST:
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
break;
case HW_VAR_EFUSE_BYTES:
rtlefuse->efuse_usedbytes = *((u16 *) val);
break;
case HW_VAR_EFUSE_USAGE:
rtlefuse->efuse_usedpercentage = *val;
break;
case HW_VAR_IO_CMD:
rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
break;
case HW_VAR_WPA_CONFIG:
rtl_write_byte(rtlpriv, REG_SECCFG, *val);
break;
case HW_VAR_SET_RPWM:{
u8 rpwm_val;
rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
udelay(1);
if (rpwm_val & BIT(7)) {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val);
} else {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
*val | BIT(7));
}
break;
}
case HW_VAR_H2C_FW_PWRMODE:{
u8 psmode = *val;
if ((psmode != FW_PS_ACTIVE_MODE) &&
(!IS_92C_SERIAL(rtlhal->version))) {
rtl92c_dm_rf_saving(hw, true);
}
rtl92c_set_fw_pwrmode_cmd(hw, *val);
break;
}
case HW_VAR_FW_PSMODE_STATUS:
ppsc->fw_current_inpsmode = *((bool *) val);
break;
case HW_VAR_H2C_FW_JOINBSSRPT:{
u8 mstatus = *val;
u8 tmp_regcr, tmp_reg422;
bool recover = false;
if (mstatus == RT_MEDIA_CONNECT) {
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID,
NULL);
tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
rtl_write_byte(rtlpriv, REG_CR + 1,
(tmp_regcr | BIT(0)));
_rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
_rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
tmp_reg422 =
rtl_read_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2);
if (tmp_reg422 & BIT(6))
recover = true;
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp_reg422 & (~BIT(6)));
rtl92c_set_fw_rsvdpagepkt(hw, NULL);
_rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
_rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
if (recover) {
rtl_write_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2,
tmp_reg422);
}
rtl_write_byte(rtlpriv, REG_CR + 1,
(tmp_regcr & ~(BIT(0))));
}
rtl92c_set_fw_joinbss_report_cmd(hw, *val);
break;
}
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl92c_set_p2p_ps_offload_cmd(hw, *val);
break;
case HW_VAR_AID:{
u16 u2btmp;
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
u2btmp &= 0xC000;
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
mac->assoc_id));
break;
}
case HW_VAR_CORRECT_TSF:{
u8 btype_ibss = val[0];
if (btype_ibss)
_rtl92ce_stop_tx_beacon(hw);
_rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
rtl_write_dword(rtlpriv, REG_TSFTR,
(u32) (mac->tsf & 0xffffffff));
rtl_write_dword(rtlpriv, REG_TSFTR + 4,
(u32) ((mac->tsf >> 32) & 0xffffffff));
_rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
if (btype_ibss)
_rtl92ce_resume_tx_beacon(hw);
break;
}
case HW_VAR_FW_LPS_ACTION: {
bool enter_fwlps = *((bool *)val);
u8 rpwm_val, fw_pwrmode;
bool fw_current_inps;
if (enter_fwlps) {
rpwm_val = 0x02; /* RF off */
fw_current_inps = true;
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_H2C_FW_PWRMODE,
&ppsc->fwctrl_psmode);
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_SET_RPWM,
&rpwm_val);
} else {
rpwm_val = 0x0C; /* RF on */
fw_pwrmode = FW_PS_ACTIVE_MODE;
fw_current_inps = false;
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_SET_RPWM,
&rpwm_val);
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_H2C_FW_PWRMODE,
&fw_pwrmode);
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
}
break; }
case HW_VAR_KEEP_ALIVE:
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case %d not processed\n", variable);
break;
}
}
static bool _rtl92ce_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool status = true;
long count = 0;
u32 value = _LLT_INIT_ADDR(address) |
_LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
do {
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
if (count > POLLING_LLT_THRESHOLD) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"Failed to polling write LLT done at address %d!\n",
address);
status = false;
break;
}
} while (++count);
return status;
}
static bool _rtl92ce_llt_table_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
unsigned short i;
u8 txpktbuf_bndy;
u8 maxPage;
bool status;
#if LLT_CONFIG == 1
maxPage = 255;
txpktbuf_bndy = 252;
#elif LLT_CONFIG == 2
maxPage = 127;
txpktbuf_bndy = 124;
#elif LLT_CONFIG == 3
maxPage = 255;
txpktbuf_bndy = 174;
#elif LLT_CONFIG == 4
maxPage = 255;
txpktbuf_bndy = 246;
#elif LLT_CONFIG == 5
maxPage = 255;
txpktbuf_bndy = 246;
#endif
#if LLT_CONFIG == 1
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x1c);
rtl_write_dword(rtlpriv, REG_RQPN, 0x80a71c1c);
#elif LLT_CONFIG == 2
rtl_write_dword(rtlpriv, REG_RQPN, 0x845B1010);
#elif LLT_CONFIG == 3
rtl_write_dword(rtlpriv, REG_RQPN, 0x84838484);
#elif LLT_CONFIG == 4
rtl_write_dword(rtlpriv, REG_RQPN, 0x80bd1c1c);
#elif LLT_CONFIG == 5
rtl_write_word(rtlpriv, REG_RQPN_NPQ, 0x0000);
rtl_write_dword(rtlpriv, REG_RQPN, 0x80b01c29);
#endif
rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x27FF0000 | txpktbuf_bndy));
rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_PBP, 0x11);
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _rtl92ce_llt_write(hw, i, i + 1);
if (true != status)
return status;
}
status = _rtl92ce_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
if (true != status)
return status;
for (i = txpktbuf_bndy; i < maxPage; i++) {
status = _rtl92ce_llt_write(hw, i, (i + 1));
if (true != status)
return status;
}
status = _rtl92ce_llt_write(hw, maxPage, txpktbuf_bndy);
if (true != status)
return status;
return true;
}
static void _rtl92ce_gen_refresh_led_state(struct ieee80211_hw *hw)
{
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
if (rtlpci->up_first_time)
return;
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
rtl92ce_sw_led_on(hw, pLed0);
else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
rtl92ce_sw_led_on(hw, pLed0);
else
rtl92ce_sw_led_off(hw, pLed0);
}
static bool _rtl92ce_init_mac(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
unsigned char bytetmp;
unsigned short wordtmp;
u16 retry;
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
if (rtlpcipriv->bt_coexist.bt_coexistence) {
u32 value32;
value32 = rtl_read_dword(rtlpriv, REG_APS_FSMCO);
value32 |= (SOP_ABG | SOP_AMB | XOP_BTCK);
rtl_write_dword(rtlpriv, REG_APS_FSMCO, value32);
}
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
if (rtlpcipriv->bt_coexist.bt_coexistence) {
u32 u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
u4b_tmp &= (~0x00024800);
rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
}
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
udelay(2);
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
udelay(2);
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
udelay(2);
retry = 0;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
rtl_read_dword(rtlpriv, 0xEC), bytetmp);
while ((bytetmp & BIT(0)) && retry < 1000) {
retry++;
udelay(50);
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
rtl_read_dword(rtlpriv, 0xEC), bytetmp);
udelay(50);
}
rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
udelay(2);
if (rtlpcipriv->bt_coexist.bt_coexistence) {
bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL+2) & 0xfd;
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL+2, bytetmp);
}
rtl_write_word(rtlpriv, REG_CR, 0x2ff);
if (!_rtl92ce_llt_table_init(hw))
return false;
rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x27ff);
wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
wordtmp &= 0xf;
wordtmp |= 0xF771;
rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
rtl_write_byte(rtlpriv, 0x4d0, 0x0);
rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_MGQ_DESA,
(u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VOQ_DESA,
(u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VIQ_DESA,
(u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BEQ_DESA,
(u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BKQ_DESA,
(u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_HQ_DESA,
(u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_RX_DESA,
(u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
DMA_BIT_MASK(32));
if (IS_92C_SERIAL(rtlhal->version))
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x77);
else
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x22);
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
do {
retry++;
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
} while ((retry < 200) && (bytetmp & BIT(7)));
_rtl92ce_gen_refresh_led_state(hw);
rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
return true;
}
static void _rtl92ce_hw_configure(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
u8 reg_bw_opmode;
u32 reg_prsr;
reg_bw_opmode = BW_OPMODE_20MHZ;
reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
rtl_write_word(rtlpriv, REG_RL, 0x0707);
rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
(rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x97427431);
else
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
rtlpci->reg_bcn_ctrl_val = 0x1f;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
(rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4)) {
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0402);
} else {
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
}
if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
(rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666);
else
rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x086666);
rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
}
static void _rtl92ce_enable_aspm_back_door(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
rtl_write_byte(rtlpriv, 0x34b, 0x93);
rtl_write_word(rtlpriv, 0x350, 0x870c);
rtl_write_byte(rtlpriv, 0x352, 0x1);
if (ppsc->support_backdoor)
rtl_write_byte(rtlpriv, 0x349, 0x1b);
else
rtl_write_byte(rtlpriv, 0x349, 0x03);
rtl_write_word(rtlpriv, 0x350, 0x2718);
rtl_write_byte(rtlpriv, 0x352, 0x1);
}
void rtl92ce_enable_hw_security_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 sec_reg_value;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
rtlpriv->sec.pairwise_enc_algorithm,
rtlpriv->sec.group_enc_algorithm);
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"not open hw encryption\n");
return;
}
sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
if (rtlpriv->sec.use_defaultkey) {
sec_reg_value |= SCR_TxUseDK;
sec_reg_value |= SCR_RxUseDK;
}
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
"The SECR-value %x\n", sec_reg_value);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}
int rtl92ce_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
bool rtstatus = true;
bool is92c;
int err;
u8 tmp_u1b;
unsigned long flags;
rtlpci->being_init_adapter = true;
/* Since this function can take a very long time (up to 350 ms)
* and can be called with irqs disabled, reenable the irqs
* to let the other devices continue being serviced.
*
* It is safe doing so since our own interrupts will only be enabled
* in a subsequent step.
*/
local_save_flags(flags);
local_irq_enable();
rtlpriv->intf_ops->disable_aspm(hw);
rtstatus = _rtl92ce_init_mac(hw);
if (!rtstatus) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
err = 1;
goto exit;
}
err = rtl92c_download_fw(hw);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Failed to download FW. Init HW without FW now..\n");
err = 1;
goto exit;
}
rtlhal->last_hmeboxnum = 0;
rtl92c_phy_mac_config(hw);
/* because last function modify RCR, so we update
* rcr var here, or TP will unstable for receive_config
* is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
* RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl92c_phy_bb_config(hw);
rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
rtl92c_phy_rf_config(hw);
if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
!IS_92C_SERIAL(rtlhal->version)) {
rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
} else if (IS_81XXC_VENDOR_UMC_B_CUT(rtlhal->version)) {
rtl_set_rfreg(hw, RF90_PATH_A, 0x0C, MASKDWORD, 0x894AE);
rtl_set_rfreg(hw, RF90_PATH_A, 0x0A, MASKDWORD, 0x1AF31);
rtl_set_rfreg(hw, RF90_PATH_A, RF_IPA, MASKDWORD, 0x8F425);
rtl_set_rfreg(hw, RF90_PATH_A, RF_SYN_G2, MASKDWORD, 0x4F200);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK1, MASKDWORD, 0x44053);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK2, MASKDWORD, 0x80201);
}
rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);
_rtl92ce_hw_configure(hw);
rtl_cam_reset_all_entry(hw);
rtl92ce_enable_hw_security_config(hw);
ppsc->rfpwr_state = ERFON;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
_rtl92ce_enable_aspm_back_door(hw);
rtlpriv->intf_ops->enable_aspm(hw);
rtl8192ce_bt_hw_init(hw);
if (ppsc->rfpwr_state == ERFON) {
rtl92c_phy_set_rfpath_switch(hw, 1);
if (rtlphy->iqk_initialized) {
rtl92c_phy_iq_calibrate(hw, true);
} else {
rtl92c_phy_iq_calibrate(hw, false);
rtlphy->iqk_initialized = true;
}
rtl92c_dm_check_txpower_tracking(hw);
rtl92c_phy_lc_calibrate(hw);
}
is92c = IS_92C_SERIAL(rtlhal->version);
tmp_u1b = efuse_read_1byte(hw, 0x1FA);
if (!(tmp_u1b & BIT(0))) {
rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n");
}
if (!(tmp_u1b & BIT(1)) && is92c) {
rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0F, 0x05);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path B\n");
}
if (!(tmp_u1b & BIT(4))) {
tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
tmp_u1b &= 0x0F;
rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
udelay(10);
rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n");
}
rtl92c_dm_init(hw);
exit:
local_irq_restore(flags);
rtlpci->being_init_adapter = false;
return err;
}
static enum version_8192c _rtl92ce_read_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
enum version_8192c version = VERSION_UNKNOWN;
u32 value32;
const char *versionid;
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
if (value32 & TRP_VAUX_EN) {
version = (value32 & TYPE_ID) ? VERSION_A_CHIP_92C :
VERSION_A_CHIP_88C;
} else {
version = (enum version_8192c) (CHIP_VER_B |
((value32 & TYPE_ID) ? CHIP_92C_BITMASK : 0) |
((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0));
if ((!IS_CHIP_VENDOR_UMC(version)) && (value32 &
CHIP_VER_RTL_MASK)) {
version = (enum version_8192c)(version |
((((value32 & CHIP_VER_RTL_MASK) == BIT(12))
? CHIP_VENDOR_UMC_B_CUT : CHIP_UNKNOWN) |
CHIP_VENDOR_UMC));
}
if (IS_92C_SERIAL(version)) {
value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM);
version = (enum version_8192c)(version |
((CHIP_BONDING_IDENTIFIER(value32)
== CHIP_BONDING_92C_1T2R) ?
RF_TYPE_1T2R : 0));
}
}
switch (version) {
case VERSION_B_CHIP_92C:
versionid = "B_CHIP_92C";
break;
case VERSION_B_CHIP_88C:
versionid = "B_CHIP_88C";
break;
case VERSION_A_CHIP_92C:
versionid = "A_CHIP_92C";
break;
case VERSION_A_CHIP_88C:
versionid = "A_CHIP_88C";
break;
case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT:
versionid = "A_CUT_92C_1T2R";
break;
case VERSION_NORMAL_UMC_CHIP_92C_A_CUT:
versionid = "A_CUT_92C";
break;
case VERSION_NORMAL_UMC_CHIP_88C_A_CUT:
versionid = "A_CUT_88C";
break;
case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT:
versionid = "B_CUT_92C_1T2R";
break;
case VERSION_NORMAL_UMC_CHIP_92C_B_CUT:
versionid = "B_CUT_92C";
break;
case VERSION_NORMAL_UMC_CHIP_88C_B_CUT:
versionid = "B_CUT_88C";
break;
default:
versionid = "Unknown. Bug?";
break;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
"Chip Version ID: %s\n", versionid);
switch (version & 0x3) {
case CHIP_88C:
rtlphy->rf_type = RF_1T1R;
break;
case CHIP_92C:
rtlphy->rf_type = RF_2T2R;
break;
case CHIP_92C_1T2R:
rtlphy->rf_type = RF_1T2R;
break;
default:
rtlphy->rf_type = RF_1T1R;
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"ERROR RF_Type is set!!\n");
break;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n",
rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R");
return version;
}
static int _rtl92ce_set_media_status(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
bt_msr &= 0xfc;
if (type == NL80211_IFTYPE_UNSPECIFIED ||
type == NL80211_IFTYPE_STATION) {
_rtl92ce_stop_tx_beacon(hw);
_rtl92ce_enable_bcn_sub_func(hw);
} else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP ||
type == NL80211_IFTYPE_MESH_POINT) {
_rtl92ce_resume_tx_beacon(hw);
_rtl92ce_disable_bcn_sub_func(hw);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
type);
}
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
bt_msr |= MSR_NOLINK;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to NO LINK!\n");
break;
case NL80211_IFTYPE_ADHOC:
bt_msr |= MSR_ADHOC;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to Ad Hoc!\n");
break;
case NL80211_IFTYPE_STATION:
bt_msr |= MSR_INFRA;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to STA!\n");
break;
case NL80211_IFTYPE_AP:
bt_msr |= MSR_AP;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to AP!\n");
break;
case NL80211_IFTYPE_MESH_POINT:
bt_msr |= MSR_ADHOC;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to Mesh Point!\n");
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"Network type %d not supported!\n", type);
return 1;
}
rtl_write_byte(rtlpriv, (MSR), bt_msr);
rtlpriv->cfg->ops->led_control(hw, ledaction);
if ((bt_msr & MSR_MASK) == MSR_AP)
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
else
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
return 0;
}
void rtl92ce_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 reg_rcr;
if (rtlpriv->psc.rfpwr_state != ERFON)
return;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
if (check_bssid) {
reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *) (&reg_rcr));
_rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
} else if (!check_bssid) {
reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
_rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_RCR, (u8 *) (&reg_rcr));
}
}
int rtl92ce_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (_rtl92ce_set_media_status(hw, type))
return -EOPNOTSUPP;
if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
if (type != NL80211_IFTYPE_AP &&
type != NL80211_IFTYPE_MESH_POINT)
rtl92ce_set_check_bssid(hw, true);
} else {
rtl92ce_set_check_bssid(hw, false);
}
return 0;
}
/* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
void rtl92ce_set_qos(struct ieee80211_hw *hw, int aci)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl92c_dm_init_edca_turbo(hw);
switch (aci) {
case AC1_BK:
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
break;
case AC0_BE:
/* rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param); */
break;
case AC2_VI:
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
break;
case AC3_VO:
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
break;
default:
RT_ASSERT(false, "invalid aci: %d !\n", aci);
break;
}
}
void rtl92ce_enable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
rtlpci->irq_enabled = true;
}
void rtl92ce_disable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
rtlpci->irq_enabled = false;
}
static void _rtl92ce_poweroff_adapter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
u8 u1b_tmp;
u32 u4b_tmp;
rtlpriv->intf_ops->enable_aspm(hw);
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7))
rtl92c_firmware_selfreset(hw);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
(rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8))) {
rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00F30000 |
(u1b_tmp << 8));
} else {
rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00FF0000 |
(u1b_tmp << 8));
}
rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
if (!IS_81XXC_VENDOR_UMC_B_CUT(rtlhal->version))
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
if (rtlpcipriv->bt_coexist.bt_coexistence) {
u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
u4b_tmp |= 0x03824800;
rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
} else {
rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
}
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
}
void rtl92ce_card_disable(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
enum nl80211_iftype opmode;
mac->link_state = MAC80211_NOLINK;
opmode = NL80211_IFTYPE_UNSPECIFIED;
_rtl92ce_set_media_status(hw, opmode);
if (rtlpci->driver_is_goingto_unload ||
ppsc->rfoff_reason > RF_CHANGE_BY_PS)
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
_rtl92ce_poweroff_adapter(hw);
/* after power off we should do iqk again */
rtlpriv->phy.iqk_initialized = false;
}
void rtl92ce_interrupt_recognized(struct ieee80211_hw *hw,
u32 *p_inta, u32 *p_intb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
rtl_write_dword(rtlpriv, ISR, *p_inta);
/*
* *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
* rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
*/
}
void rtl92ce_set_beacon_related_registers(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval, atim_window;
bcn_interval = mac->beacon_interval;
atim_window = 2; /*FIX MERGE */
rtl92ce_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
rtl_write_byte(rtlpriv, 0x606, 0x30);
rtl92ce_enable_interrupt(hw);
}
void rtl92ce_set_beacon_interval(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval = mac->beacon_interval;
RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
"beacon_interval:%d\n", bcn_interval);
rtl92ce_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl92ce_enable_interrupt(hw);
}
void rtl92ce_update_interrupt_mask(struct ieee80211_hw *hw,
u32 add_msr, u32 rm_msr)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
add_msr, rm_msr);
if (add_msr)
rtlpci->irq_mask[0] |= add_msr;
if (rm_msr)
rtlpci->irq_mask[0] &= (~rm_msr);
rtl92ce_disable_interrupt(hw);
rtl92ce_enable_interrupt(hw);
}
static void _rtl92ce_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
bool autoload_fail,
u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 rf_path, index, tempval;
u16 i;
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 3; i++) {
if (!autoload_fail) {
rtlefuse->
eeprom_chnlarea_txpwr_cck[rf_path][i] =
hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
i];
} else {
rtlefuse->
eeprom_chnlarea_txpwr_cck[rf_path][i] =
EEPROM_DEFAULT_TXPOWERLEVEL;
rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
EEPROM_DEFAULT_TXPOWERLEVEL;
}
}
}
for (i = 0; i < 3; i++) {
if (!autoload_fail)
tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
else
tempval = EEPROM_DEFAULT_HT40_2SDIFF;
rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] =
(tempval & 0xf);
rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] =
((tempval & 0xf0) >> 4);
}
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
rf_path, i,
rtlefuse->
eeprom_chnlarea_txpwr_cck[rf_path][i]);
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
rf_path, i,
rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]);
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
rf_path, i,
rtlefuse->
eprom_chnl_txpwr_ht40_2sdf[rf_path][i]);
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 14; i++) {
index = rtl92c_get_chnl_group((u8)i);
rtlefuse->txpwrlevel_cck[rf_path][i] =
rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
if ((rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
rtlefuse->
eprom_chnl_txpwr_ht40_2sdf[rf_path][index])
> 0) {
rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path]
[index] -
rtlefuse->
eprom_chnl_txpwr_ht40_2sdf[rf_path]
[index];
} else {
rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
}
}
for (i = 0; i < 14; i++) {
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
rf_path, i,
rtlefuse->txpwrlevel_cck[rf_path][i],
rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
}
}
for (i = 0; i < 3; i++) {
if (!autoload_fail) {
rtlefuse->eeprom_pwrlimit_ht40[i] =
hwinfo[EEPROM_TXPWR_GROUP + i];
rtlefuse->eeprom_pwrlimit_ht20[i] =
hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
} else {
rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
}
}
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 14; i++) {
index = rtl92c_get_chnl_group((u8)i);
if (rf_path == RF90_PATH_A) {
rtlefuse->pwrgroup_ht20[rf_path][i] =
(rtlefuse->eeprom_pwrlimit_ht20[index]
& 0xf);
rtlefuse->pwrgroup_ht40[rf_path][i] =
(rtlefuse->eeprom_pwrlimit_ht40[index]
& 0xf);
} else if (rf_path == RF90_PATH_B) {
rtlefuse->pwrgroup_ht20[rf_path][i] =
((rtlefuse->eeprom_pwrlimit_ht20[index]
& 0xf0) >> 4);
rtlefuse->pwrgroup_ht40[rf_path][i] =
((rtlefuse->eeprom_pwrlimit_ht40[index]
& 0xf0) >> 4);
}
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
rf_path, i,
rtlefuse->pwrgroup_ht20[rf_path][i]);
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
rf_path, i,
rtlefuse->pwrgroup_ht40[rf_path][i]);
}
}
for (i = 0; i < 14; i++) {
index = rtl92c_get_chnl_group((u8)i);
if (!autoload_fail)
tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
else
tempval = EEPROM_DEFAULT_HT20_DIFF;
rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
((tempval >> 4) & 0xF);
if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
index = rtl92c_get_chnl_group((u8)i);
if (!autoload_fail)
tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
else
tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
((tempval >> 4) & 0xF);
}
rtlefuse->legacy_ht_txpowerdiff =
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
if (!autoload_fail)
rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
else
rtlefuse->eeprom_regulatory = 0;
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
if (!autoload_fail) {
rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
} else {
rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
}
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
rtlefuse->eeprom_tssi[RF90_PATH_A],
rtlefuse->eeprom_tssi[RF90_PATH_B]);
if (!autoload_fail)
tempval = hwinfo[EEPROM_THERMAL_METER];
else
tempval = EEPROM_DEFAULT_THERMALMETER;
rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
rtlefuse->apk_thermalmeterignore = true;
rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
}
static void _rtl92ce_read_adapter_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u16 i, usvalue;
u8 hwinfo[HWSET_MAX_SIZE];
u16 eeprom_id;
if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
rtl_efuse_shadow_map_update(hw);
memcpy((void *)hwinfo,
(void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
HWSET_MAX_SIZE);
} else if (rtlefuse->epromtype == EEPROM_93C46) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"RTL819X Not boot from eeprom, check it !!");
}
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
hwinfo, HWSET_MAX_SIZE);
eeprom_id = *((u16 *)&hwinfo[0]);
if (eeprom_id != RTL8190_EEPROM_ID) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"EEPROM ID(%#x) is invalid!!\n", eeprom_id);
rtlefuse->autoload_failflag = true;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
}
if (rtlefuse->autoload_failflag)
return;
rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROMId = 0x%4x\n", eeprom_id);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
for (i = 0; i < 6; i += 2) {
usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
_rtl92ce_read_txpower_info_from_hwpg(hw,
rtlefuse->autoload_failflag,
hwinfo);
rtl8192ce_read_bt_coexist_info_from_hwpg(hw,
rtlefuse->autoload_failflag,
hwinfo);
rtlefuse->eeprom_channelplan = *&hwinfo[EEPROM_CHANNELPLAN];
rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
rtlefuse->txpwr_fromeprom = true;
rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMER_ID];
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
/* set channel paln to world wide 13 */
rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
if (rtlhal->oem_id == RT_CID_DEFAULT) {
switch (rtlefuse->eeprom_oemid) {
case EEPROM_CID_DEFAULT:
if (rtlefuse->eeprom_did == 0x8176) {
if ((rtlefuse->eeprom_svid == 0x103C &&
rtlefuse->eeprom_smid == 0x1629))
rtlhal->oem_id = RT_CID_819X_HP;
else
rtlhal->oem_id = RT_CID_DEFAULT;
} else {
rtlhal->oem_id = RT_CID_DEFAULT;
}
break;
case EEPROM_CID_TOSHIBA:
rtlhal->oem_id = RT_CID_TOSHIBA;
break;
case EEPROM_CID_QMI:
rtlhal->oem_id = RT_CID_819X_QMI;
break;
case EEPROM_CID_WHQL:
default:
rtlhal->oem_id = RT_CID_DEFAULT;
break;
}
}
}
static void _rtl92ce_hal_customized_behavior(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
switch (rtlhal->oem_id) {
case RT_CID_819X_HP:
pcipriv->ledctl.led_opendrain = true;
break;
case RT_CID_819X_LENOVO:
case RT_CID_DEFAULT:
case RT_CID_TOSHIBA:
case RT_CID_CCX:
case RT_CID_819X_ACER:
case RT_CID_WHQL:
default:
break;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"RT Customized ID: 0x%02X\n", rtlhal->oem_id);
}
void rtl92ce_read_eeprom_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_u1b;
rtlhal->version = _rtl92ce_read_chip_version(hw);
if (get_rf_type(rtlphy) == RF_1T1R)
rtlpriv->dm.rfpath_rxenable[0] = true;
else
rtlpriv->dm.rfpath_rxenable[0] =
rtlpriv->dm.rfpath_rxenable[1] = true;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
rtlhal->version);
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
if (tmp_u1b & BIT(4)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
rtlefuse->epromtype = EEPROM_93C46;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
}
if (tmp_u1b & BIT(5)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
_rtl92ce_read_adapter_info(hw);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
}
_rtl92ce_hal_customized_behavior(hw);
}
static void rtl92ce_update_hal_rate_table(struct ieee80211_hw *hw,
struct ieee80211_sta *sta)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u32 ratr_value;
u8 ratr_index = 0;
u8 nmode = mac->ht_enable;
u8 mimo_ps = IEEE80211_SMPS_OFF;
u16 shortgi_rate;
u32 tmp_ratr_value;
u8 curtxbw_40mhz = mac->bw_40;
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = mac->mode;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_value = sta->supp_rates[1] << 4;
else
ratr_value = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_value = 0xfff;
ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
if (ratr_value & 0x0000000c)
ratr_value &= 0x0000000d;
else
ratr_value &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_value &= 0x00000FF5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
nmode = 1;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
ratr_value &= 0x0007F005;
} else {
u32 ratr_mask;
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_1T1R)
ratr_mask = 0x000ff005;
else
ratr_mask = 0x0f0ff005;
ratr_value &= ratr_mask;
}
break;
default:
if (rtlphy->rf_type == RF_1T2R)
ratr_value &= 0x000ff0ff;
else
ratr_value &= 0x0f0ff0ff;
break;
}
if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
(rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) &&
(rtlpcipriv->bt_coexist.bt_cur_state) &&
(rtlpcipriv->bt_coexist.bt_ant_isolation) &&
((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ||
(rtlpcipriv->bt_coexist.bt_service == BT_BUSY)))
ratr_value &= 0x0fffcfc0;
else
ratr_value &= 0x0FFFFFFF;
if (nmode && ((curtxbw_40mhz &&
curshortgi_40mhz) || (!curtxbw_40mhz &&
curshortgi_20mhz))) {
ratr_value |= 0x10000000;
tmp_ratr_value = (ratr_value >> 12);
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
if ((1 << shortgi_rate) & tmp_ratr_value)
break;
}
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
(shortgi_rate << 4) | (shortgi_rate);
}
rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
rtl_read_dword(rtlpriv, REG_ARFR0));
}
static void rtl92ce_update_hal_rate_mask(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi_level)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u32 ratr_bitmap;
u8 ratr_index;
u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
u8 curshortgi_40mhz = curtxbw_40mhz &&
(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = 0;
bool shortgi = false;
u8 rate_mask[5];
u8 macid = 0;
u8 mimo_ps = IEEE80211_SMPS_OFF;
sta_entry = (struct rtl_sta_info *) sta->drv_priv;
wirelessmode = sta_entry->wireless_mode;
if (mac->opmode == NL80211_IFTYPE_STATION ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
curtxbw_40mhz = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC)
macid = sta->aid + 1;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_bitmap = sta->supp_rates[1] << 4;
else
ratr_bitmap = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_bitmap = 0xfff;
ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
ratr_index = RATR_INX_WIRELESS_B;
if (ratr_bitmap & 0x0000000c)
ratr_bitmap &= 0x0000000d;
else
ratr_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_index = RATR_INX_WIRELESS_GB;
if (rssi_level == 1)
ratr_bitmap &= 0x00000f00;
else if (rssi_level == 2)
ratr_bitmap &= 0x00000ff0;
else
ratr_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_A:
ratr_index = RATR_INX_WIRELESS_A;
ratr_bitmap &= 0x00000ff0;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
ratr_index = RATR_INX_WIRELESS_NGB;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
if (rssi_level == 1)
ratr_bitmap &= 0x00070000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0007f000;
else
ratr_bitmap &= 0x0007f005;
} else {
if (rtlphy->rf_type == RF_1T2R ||
rtlphy->rf_type == RF_1T1R) {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff005;
}
} else {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x0f0f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f0ff000;
else
ratr_bitmap &= 0x0f0ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x0f0f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f0ff000;
else
ratr_bitmap &= 0x0f0ff005;
}
}
}
if ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz)) {
if (macid == 0)
shortgi = true;
else if (macid == 1)
shortgi = false;
}
break;
default:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R)
ratr_bitmap &= 0x000ff0ff;
else
ratr_bitmap &= 0x0f0ff0ff;
break;
}
sta_entry->ratr_index = ratr_index;
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"ratr_bitmap :%x\n", ratr_bitmap);
*(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
(ratr_index << 28);
rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"Rate_index:%x, ratr_val:%x, %5phC\n",
ratr_index, ratr_bitmap, rate_mask);
rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
if (macid != 0)
sta_entry->ratr_index = ratr_index;
}
void rtl92ce_update_hal_rate_tbl(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi_level)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->dm.useramask)
rtl92ce_update_hal_rate_mask(hw, sta, rssi_level);
else
rtl92ce_update_hal_rate_table(hw, sta);
}
void rtl92ce_update_channel_access_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 sifs_timer;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
&mac->slot_time);
if (!mac->ht_enable)
sifs_timer = 0x0a0a;
else
sifs_timer = 0x1010;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}
bool rtl92ce_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
enum rf_pwrstate e_rfpowerstate_toset;
u8 u1tmp;
bool actuallyset = false;
unsigned long flag;
if (rtlpci->being_init_adapter)
return false;
if (ppsc->swrf_processing)
return false;
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
if (ppsc->rfchange_inprogress) {
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
return false;
} else {
ppsc->rfchange_inprogress = true;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
}
rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
REG_MAC_PINMUX_CFG)&~(BIT(3)));
u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio ON, RF ON\n");
e_rfpowerstate_toset = ERFON;
ppsc->hwradiooff = false;
actuallyset = true;
} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio OFF, RF OFF\n");
e_rfpowerstate_toset = ERFOFF;
ppsc->hwradiooff = true;
actuallyset = true;
}
if (actuallyset) {
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
} else {
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
}
*valid = 1;
return !ppsc->hwradiooff;
}
void rtl92ce_set_key(struct ieee80211_hw *hw, u32 key_index,
u8 *p_macaddr, bool is_group, u8 enc_algo,
bool is_wepkey, bool clear_all)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 *macaddr = p_macaddr;
u32 entry_id = 0;
bool is_pairwise = false;
static u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (clear_all) {
u8 idx = 0;
u8 cam_offset = 0;
u8 clear_number = 5;
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
} else {
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not processed\n");
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key_index];
entry_id = key_index;
} else {
if (is_group) {
macaddr = cam_const_broad;
entry_id = key_index;
} else {
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
entry_id = rtl_cam_get_free_entry(hw,
p_macaddr);
if (entry_id >= TOTAL_CAM_ENTRY) {
RT_TRACE(rtlpriv, COMP_SEC,
DBG_EMERG,
"Can not find free hw security cam entry\n");
return;
}
} else {
entry_id = CAM_PAIRWISE_KEY_POSITION;
}
key_index = PAIRWISE_KEYIDX;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key_index] == 0) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry, entry_id is %d\n",
entry_id);
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
rtl_cam_del_entry(hw, p_macaddr);
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
"The insert KEY length is %d\n",
rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
"The insert KEY is %x %x\n",
rtlpriv->sec.key_buf[0][0],
rtlpriv->sec.key_buf[0][1]);
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"add one entry\n");
if (is_pairwise) {
RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
"Pairwise Key content",
rtlpriv->sec.pairwise_key,
rtlpriv->sec.
key_len[PAIRWISE_KEYIDX]);
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set Pairwise key\n");
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.
key_buf[key_index]);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw,
rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf
[entry_id]);
}
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
}
}
}
static void rtl8192ce_bt_var_init(struct ieee80211_hw *hw)
{
struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
rtlpcipriv->bt_coexist.bt_coexistence =
rtlpcipriv->bt_coexist.eeprom_bt_coexist;
rtlpcipriv->bt_coexist.bt_ant_num =
rtlpcipriv->bt_coexist.eeprom_bt_ant_num;
rtlpcipriv->bt_coexist.bt_coexist_type =
rtlpcipriv->bt_coexist.eeprom_bt_type;
if (rtlpcipriv->bt_coexist.reg_bt_iso == 2)
rtlpcipriv->bt_coexist.bt_ant_isolation =
rtlpcipriv->bt_coexist.eeprom_bt_ant_isol;
else
rtlpcipriv->bt_coexist.bt_ant_isolation =
rtlpcipriv->bt_coexist.reg_bt_iso;
rtlpcipriv->bt_coexist.bt_radio_shared_type =
rtlpcipriv->bt_coexist.eeprom_bt_radio_shared;
if (rtlpcipriv->bt_coexist.bt_coexistence) {
if (rtlpcipriv->bt_coexist.reg_bt_sco == 1)
rtlpcipriv->bt_coexist.bt_service = BT_OTHER_ACTION;
else if (rtlpcipriv->bt_coexist.reg_bt_sco == 2)
rtlpcipriv->bt_coexist.bt_service = BT_SCO;
else if (rtlpcipriv->bt_coexist.reg_bt_sco == 4)
rtlpcipriv->bt_coexist.bt_service = BT_BUSY;
else if (rtlpcipriv->bt_coexist.reg_bt_sco == 5)
rtlpcipriv->bt_coexist.bt_service = BT_OTHERBUSY;
else
rtlpcipriv->bt_coexist.bt_service = BT_IDLE;
rtlpcipriv->bt_coexist.bt_edca_ul = 0;
rtlpcipriv->bt_coexist.bt_edca_dl = 0;
rtlpcipriv->bt_coexist.bt_rssi_state = 0xff;
}
}
void rtl8192ce_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
bool auto_load_fail, u8 *hwinfo)
{
struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
u8 val;
if (!auto_load_fail) {
rtlpcipriv->bt_coexist.eeprom_bt_coexist =
((hwinfo[RF_OPTION1] & 0xe0) >> 5);
val = hwinfo[RF_OPTION4];
rtlpcipriv->bt_coexist.eeprom_bt_type = ((val & 0xe) >> 1);
rtlpcipriv->bt_coexist.eeprom_bt_ant_num = (val & 0x1);
rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = ((val & 0x10) >> 4);
rtlpcipriv->bt_coexist.eeprom_bt_radio_shared =
((val & 0x20) >> 5);
} else {
rtlpcipriv->bt_coexist.eeprom_bt_coexist = 0;
rtlpcipriv->bt_coexist.eeprom_bt_type = BT_2WIRE;
rtlpcipriv->bt_coexist.eeprom_bt_ant_num = ANT_X2;
rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = 0;
rtlpcipriv->bt_coexist.eeprom_bt_radio_shared = BT_RADIO_SHARED;
}
rtl8192ce_bt_var_init(hw);
}
void rtl8192ce_bt_reg_init(struct ieee80211_hw *hw)
{
struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
/* 0:Low, 1:High, 2:From Efuse. */
rtlpcipriv->bt_coexist.reg_bt_iso = 2;
/* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
rtlpcipriv->bt_coexist.reg_bt_sco = 3;
/* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
rtlpcipriv->bt_coexist.reg_bt_sco = 0;
}
void rtl8192ce_bt_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
u8 u1_tmp;
if (rtlpcipriv->bt_coexist.bt_coexistence &&
((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8)) {
if (rtlpcipriv->bt_coexist.bt_ant_isolation)
rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0);
u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) &
BIT_OFFSET_LEN_MASK_32(0, 1);
u1_tmp = u1_tmp |
((rtlpcipriv->bt_coexist.bt_ant_isolation == 1) ?
0 : BIT_OFFSET_LEN_MASK_32(1, 1)) |
((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ?
0 : BIT_OFFSET_LEN_MASK_32(2, 1));
rtl_write_byte(rtlpriv, 0x4fd, u1_tmp);
rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040);
rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010);
/* Config to 1T1R. */
if (rtlphy->rf_type == RF_1T1R) {
u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE);
u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp);
u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE);
u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp);
}
}
}
void rtl92ce_suspend(struct ieee80211_hw *hw)
{
}
void rtl92ce_resume(struct ieee80211_hw *hw)
{
}