OpenCloudOS-Kernel/drivers/mmc/host/sdhci-pci-arasan.c

332 lines
8.3 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* sdhci-pci-arasan.c - Driver for Arasan PCI Controller with
* integrated phy.
*
* Copyright (C) 2017 Arasan Chip Systems Inc.
*
* Author: Atul Garg <agarg@arasan.com>
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include "sdhci.h"
#include "sdhci-pci.h"
/* Extra registers for Arasan SD/SDIO/MMC Host Controller with PHY */
#define PHY_ADDR_REG 0x300
#define PHY_DAT_REG 0x304
#define PHY_WRITE BIT(8)
#define PHY_BUSY BIT(9)
#define DATA_MASK 0xFF
/* PHY Specific Registers */
#define DLL_STATUS 0x00
#define IPAD_CTRL1 0x01
#define IPAD_CTRL2 0x02
#define IPAD_STS 0x03
#define IOREN_CTRL1 0x06
#define IOREN_CTRL2 0x07
#define IOPU_CTRL1 0x08
#define IOPU_CTRL2 0x09
#define ITAP_DELAY 0x0C
#define OTAP_DELAY 0x0D
#define STRB_SEL 0x0E
#define CLKBUF_SEL 0x0F
#define MODE_CTRL 0x11
#define DLL_TRIM 0x12
#define CMD_CTRL 0x20
#define DATA_CTRL 0x21
#define STRB_CTRL 0x22
#define CLK_CTRL 0x23
#define PHY_CTRL 0x24
#define DLL_ENBL BIT(3)
#define RTRIM_EN BIT(1)
#define PDB_ENBL BIT(1)
#define RETB_ENBL BIT(6)
#define ODEN_CMD BIT(1)
#define ODEN_DAT 0xFF
#define REN_STRB BIT(0)
#define REN_CMND BIT(1)
#define REN_DATA 0xFF
#define PU_CMD BIT(1)
#define PU_DAT 0xFF
#define ITAPDLY_EN BIT(0)
#define OTAPDLY_EN BIT(0)
#define OD_REL_CMD BIT(1)
#define OD_REL_DAT 0xFF
#define DLLTRM_ICP 0x8
#define PDB_CMND BIT(0)
#define PDB_DATA 0xFF
#define PDB_STRB BIT(0)
#define PDB_CLOCK BIT(0)
#define CALDONE_MASK 0x10
#define DLL_RDY_MASK 0x10
#define MAX_CLK_BUF 0x7
/* Mode Controls */
#define ENHSTRB_MODE BIT(0)
#define HS400_MODE BIT(1)
#define LEGACY_MODE BIT(2)
#define DDR50_MODE BIT(3)
/*
* Controller has no specific bits for HS200/HS.
* Used BIT(4), BIT(5) for software programming.
*/
#define HS200_MODE BIT(4)
#define HISPD_MODE BIT(5)
#define OTAPDLY(x) (((x) << 1) | OTAPDLY_EN)
#define ITAPDLY(x) (((x) << 1) | ITAPDLY_EN)
#define FREQSEL(x) (((x) << 5) | DLL_ENBL)
#define IOPAD(x, y) ((x) | ((y) << 2))
/* Arasan private data */
struct arasan_host {
u32 chg_clk;
};
static int arasan_phy_addr_poll(struct sdhci_host *host, u32 offset, u32 mask)
{
ktime_t timeout = ktime_add_us(ktime_get(), 100);
bool failed;
u8 val = 0;
while (1) {
failed = ktime_after(ktime_get(), timeout);
val = sdhci_readw(host, PHY_ADDR_REG);
if (!(val & mask))
return 0;
if (failed)
return -EBUSY;
}
}
static int arasan_phy_write(struct sdhci_host *host, u8 data, u8 offset)
{
sdhci_writew(host, data, PHY_DAT_REG);
sdhci_writew(host, (PHY_WRITE | offset), PHY_ADDR_REG);
return arasan_phy_addr_poll(host, PHY_ADDR_REG, PHY_BUSY);
}
static int arasan_phy_read(struct sdhci_host *host, u8 offset, u8 *data)
{
int ret;
sdhci_writew(host, 0, PHY_DAT_REG);
sdhci_writew(host, offset, PHY_ADDR_REG);
ret = arasan_phy_addr_poll(host, PHY_ADDR_REG, PHY_BUSY);
/* Masking valid data bits */
*data = sdhci_readw(host, PHY_DAT_REG) & DATA_MASK;
return ret;
}
static int arasan_phy_sts_poll(struct sdhci_host *host, u32 offset, u32 mask)
{
int ret;
ktime_t timeout = ktime_add_us(ktime_get(), 100);
bool failed;
u8 val = 0;
while (1) {
failed = ktime_after(ktime_get(), timeout);
ret = arasan_phy_read(host, offset, &val);
if (ret)
return -EBUSY;
else if (val & mask)
return 0;
if (failed)
return -EBUSY;
}
}
/* Initialize the Arasan PHY */
static int arasan_phy_init(struct sdhci_host *host)
{
int ret;
u8 val;
/* Program IOPADs and wait for calibration to be done */
if (arasan_phy_read(host, IPAD_CTRL1, &val) ||
arasan_phy_write(host, val | RETB_ENBL | PDB_ENBL, IPAD_CTRL1) ||
arasan_phy_read(host, IPAD_CTRL2, &val) ||
arasan_phy_write(host, val | RTRIM_EN, IPAD_CTRL2))
return -EBUSY;
ret = arasan_phy_sts_poll(host, IPAD_STS, CALDONE_MASK);
if (ret)
return -EBUSY;
/* Program CMD/Data lines */
if (arasan_phy_read(host, IOREN_CTRL1, &val) ||
arasan_phy_write(host, val | REN_CMND | REN_STRB, IOREN_CTRL1) ||
arasan_phy_read(host, IOPU_CTRL1, &val) ||
arasan_phy_write(host, val | PU_CMD, IOPU_CTRL1) ||
arasan_phy_read(host, CMD_CTRL, &val) ||
arasan_phy_write(host, val | PDB_CMND, CMD_CTRL) ||
arasan_phy_read(host, IOREN_CTRL2, &val) ||
arasan_phy_write(host, val | REN_DATA, IOREN_CTRL2) ||
arasan_phy_read(host, IOPU_CTRL2, &val) ||
arasan_phy_write(host, val | PU_DAT, IOPU_CTRL2) ||
arasan_phy_read(host, DATA_CTRL, &val) ||
arasan_phy_write(host, val | PDB_DATA, DATA_CTRL) ||
arasan_phy_read(host, STRB_CTRL, &val) ||
arasan_phy_write(host, val | PDB_STRB, STRB_CTRL) ||
arasan_phy_read(host, CLK_CTRL, &val) ||
arasan_phy_write(host, val | PDB_CLOCK, CLK_CTRL) ||
arasan_phy_read(host, CLKBUF_SEL, &val) ||
arasan_phy_write(host, val | MAX_CLK_BUF, CLKBUF_SEL) ||
arasan_phy_write(host, LEGACY_MODE, MODE_CTRL))
return -EBUSY;
return 0;
}
/* Set Arasan PHY for different modes */
static int arasan_phy_set(struct sdhci_host *host, u8 mode, u8 otap,
u8 drv_type, u8 itap, u8 trim, u8 clk)
{
u8 val;
int ret;
if (mode == HISPD_MODE || mode == HS200_MODE)
ret = arasan_phy_write(host, 0x0, MODE_CTRL);
else
ret = arasan_phy_write(host, mode, MODE_CTRL);
if (ret)
return ret;
if (mode == HS400_MODE || mode == HS200_MODE) {
ret = arasan_phy_read(host, IPAD_CTRL1, &val);
if (ret)
return ret;
ret = arasan_phy_write(host, IOPAD(val, drv_type), IPAD_CTRL1);
if (ret)
return ret;
}
if (mode == LEGACY_MODE) {
ret = arasan_phy_write(host, 0x0, OTAP_DELAY);
if (ret)
return ret;
ret = arasan_phy_write(host, 0x0, ITAP_DELAY);
} else {
ret = arasan_phy_write(host, OTAPDLY(otap), OTAP_DELAY);
if (ret)
return ret;
if (mode != HS200_MODE)
ret = arasan_phy_write(host, ITAPDLY(itap), ITAP_DELAY);
else
ret = arasan_phy_write(host, 0x0, ITAP_DELAY);
}
if (ret)
return ret;
if (mode != LEGACY_MODE) {
ret = arasan_phy_write(host, trim, DLL_TRIM);
if (ret)
return ret;
}
ret = arasan_phy_write(host, 0, DLL_STATUS);
if (ret)
return ret;
if (mode != LEGACY_MODE) {
ret = arasan_phy_write(host, FREQSEL(clk), DLL_STATUS);
if (ret)
return ret;
ret = arasan_phy_sts_poll(host, DLL_STATUS, DLL_RDY_MASK);
if (ret)
return -EBUSY;
}
return 0;
}
static int arasan_select_phy_clock(struct sdhci_host *host)
{
struct sdhci_pci_slot *slot = sdhci_priv(host);
struct arasan_host *arasan_host = sdhci_pci_priv(slot);
u8 clk;
if (arasan_host->chg_clk == host->mmc->ios.clock)
return 0;
arasan_host->chg_clk = host->mmc->ios.clock;
if (host->mmc->ios.clock == 200000000)
clk = 0x0;
else if (host->mmc->ios.clock == 100000000)
clk = 0x2;
else if (host->mmc->ios.clock == 50000000)
clk = 0x1;
else
clk = 0x0;
if (host->mmc_host_ops.hs400_enhanced_strobe) {
arasan_phy_set(host, ENHSTRB_MODE, 1, 0x0, 0x0,
DLLTRM_ICP, clk);
} else {
switch (host->mmc->ios.timing) {
case MMC_TIMING_LEGACY:
arasan_phy_set(host, LEGACY_MODE, 0x0, 0x0, 0x0,
0x0, 0x0);
break;
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
arasan_phy_set(host, HISPD_MODE, 0x3, 0x0, 0x2,
DLLTRM_ICP, clk);
break;
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_UHS_SDR104:
arasan_phy_set(host, HS200_MODE, 0x2,
host->mmc->ios.drv_type, 0x0,
DLLTRM_ICP, clk);
break;
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
arasan_phy_set(host, DDR50_MODE, 0x1, 0x0,
0x0, DLLTRM_ICP, clk);
break;
case MMC_TIMING_MMC_HS400:
arasan_phy_set(host, HS400_MODE, 0x1,
host->mmc->ios.drv_type, 0xa,
DLLTRM_ICP, clk);
break;
default:
break;
}
}
return 0;
}
static int arasan_pci_probe_slot(struct sdhci_pci_slot *slot)
{
int err;
slot->host->mmc->caps |= MMC_CAP_NONREMOVABLE | MMC_CAP_8_BIT_DATA;
err = arasan_phy_init(slot->host);
if (err)
return -ENODEV;
return 0;
}
static void arasan_sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
sdhci_set_clock(host, clock);
/* Change phy settings for the new clock */
arasan_select_phy_clock(host);
}
static const struct sdhci_ops arasan_sdhci_pci_ops = {
.set_clock = arasan_sdhci_set_clock,
.enable_dma = sdhci_pci_enable_dma,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
};
const struct sdhci_pci_fixes sdhci_arasan = {
.probe_slot = arasan_pci_probe_slot,
.ops = &arasan_sdhci_pci_ops,
.priv_size = sizeof(struct arasan_host),
};