OpenCloudOS-Kernel/tools/perf/util/session.c

1673 lines
43 KiB
C

#include <linux/kernel.h>
#include <traceevent/event-parse.h>
#include <byteswap.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include "evlist.h"
#include "evsel.h"
#include "session.h"
#include "tool.h"
#include "sort.h"
#include "util.h"
#include "cpumap.h"
#include "perf_regs.h"
#include "vdso.h"
static int perf_session__open(struct perf_session *session)
{
struct perf_data_file *file = session->file;
if (perf_session__read_header(session) < 0) {
pr_err("incompatible file format (rerun with -v to learn more)");
return -1;
}
if (perf_data_file__is_pipe(file))
return 0;
if (!perf_evlist__valid_sample_type(session->evlist)) {
pr_err("non matching sample_type");
return -1;
}
if (!perf_evlist__valid_sample_id_all(session->evlist)) {
pr_err("non matching sample_id_all");
return -1;
}
if (!perf_evlist__valid_read_format(session->evlist)) {
pr_err("non matching read_format");
return -1;
}
return 0;
}
void perf_session__set_id_hdr_size(struct perf_session *session)
{
u16 id_hdr_size = perf_evlist__id_hdr_size(session->evlist);
machines__set_id_hdr_size(&session->machines, id_hdr_size);
}
int perf_session__create_kernel_maps(struct perf_session *session)
{
int ret = machine__create_kernel_maps(&session->machines.host);
if (ret >= 0)
ret = machines__create_guest_kernel_maps(&session->machines);
return ret;
}
static void perf_session__destroy_kernel_maps(struct perf_session *session)
{
machines__destroy_kernel_maps(&session->machines);
}
struct perf_session *perf_session__new(struct perf_data_file *file,
bool repipe, struct perf_tool *tool)
{
struct perf_session *session = zalloc(sizeof(*session));
if (!session)
goto out;
session->repipe = repipe;
INIT_LIST_HEAD(&session->ordered_samples.samples);
INIT_LIST_HEAD(&session->ordered_samples.sample_cache);
INIT_LIST_HEAD(&session->ordered_samples.to_free);
machines__init(&session->machines);
if (file) {
if (perf_data_file__open(file))
goto out_delete;
session->file = file;
if (perf_data_file__is_read(file)) {
if (perf_session__open(session) < 0)
goto out_close;
perf_session__set_id_hdr_size(session);
}
}
if (!file || perf_data_file__is_write(file)) {
/*
* In O_RDONLY mode this will be performed when reading the
* kernel MMAP event, in perf_event__process_mmap().
*/
if (perf_session__create_kernel_maps(session) < 0)
goto out_delete;
}
if (tool && tool->ordering_requires_timestamps &&
tool->ordered_samples && !perf_evlist__sample_id_all(session->evlist)) {
dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
tool->ordered_samples = false;
}
return session;
out_close:
perf_data_file__close(file);
out_delete:
perf_session__delete(session);
out:
return NULL;
}
static void perf_session__delete_dead_threads(struct perf_session *session)
{
machine__delete_dead_threads(&session->machines.host);
}
static void perf_session__delete_threads(struct perf_session *session)
{
machine__delete_threads(&session->machines.host);
}
static void perf_session_env__delete(struct perf_session_env *env)
{
zfree(&env->hostname);
zfree(&env->os_release);
zfree(&env->version);
zfree(&env->arch);
zfree(&env->cpu_desc);
zfree(&env->cpuid);
zfree(&env->cmdline);
zfree(&env->sibling_cores);
zfree(&env->sibling_threads);
zfree(&env->numa_nodes);
zfree(&env->pmu_mappings);
}
void perf_session__delete(struct perf_session *session)
{
perf_session__destroy_kernel_maps(session);
perf_session__delete_dead_threads(session);
perf_session__delete_threads(session);
perf_session_env__delete(&session->header.env);
machines__exit(&session->machines);
if (session->file)
perf_data_file__close(session->file);
free(session);
vdso__exit();
}
static int process_event_synth_tracing_data_stub(struct perf_tool *tool
__maybe_unused,
union perf_event *event
__maybe_unused,
struct perf_session *session
__maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_synth_attr_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_evlist **pevlist
__maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_sample_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_sample *sample __maybe_unused,
struct perf_evsel *evsel __maybe_unused,
struct machine *machine __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_finished_round_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_session *perf_session
__maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_finished_round(struct perf_tool *tool,
union perf_event *event,
struct perf_session *session);
void perf_tool__fill_defaults(struct perf_tool *tool)
{
if (tool->sample == NULL)
tool->sample = process_event_sample_stub;
if (tool->mmap == NULL)
tool->mmap = process_event_stub;
if (tool->mmap2 == NULL)
tool->mmap2 = process_event_stub;
if (tool->comm == NULL)
tool->comm = process_event_stub;
if (tool->fork == NULL)
tool->fork = process_event_stub;
if (tool->exit == NULL)
tool->exit = process_event_stub;
if (tool->lost == NULL)
tool->lost = perf_event__process_lost;
if (tool->read == NULL)
tool->read = process_event_sample_stub;
if (tool->throttle == NULL)
tool->throttle = process_event_stub;
if (tool->unthrottle == NULL)
tool->unthrottle = process_event_stub;
if (tool->attr == NULL)
tool->attr = process_event_synth_attr_stub;
if (tool->tracing_data == NULL)
tool->tracing_data = process_event_synth_tracing_data_stub;
if (tool->build_id == NULL)
tool->build_id = process_finished_round_stub;
if (tool->finished_round == NULL) {
if (tool->ordered_samples)
tool->finished_round = process_finished_round;
else
tool->finished_round = process_finished_round_stub;
}
}
static void swap_sample_id_all(union perf_event *event, void *data)
{
void *end = (void *) event + event->header.size;
int size = end - data;
BUG_ON(size % sizeof(u64));
mem_bswap_64(data, size);
}
static void perf_event__all64_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
struct perf_event_header *hdr = &event->header;
mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
}
static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
{
event->comm.pid = bswap_32(event->comm.pid);
event->comm.tid = bswap_32(event->comm.tid);
if (sample_id_all) {
void *data = &event->comm.comm;
data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static void perf_event__mmap_swap(union perf_event *event,
bool sample_id_all)
{
event->mmap.pid = bswap_32(event->mmap.pid);
event->mmap.tid = bswap_32(event->mmap.tid);
event->mmap.start = bswap_64(event->mmap.start);
event->mmap.len = bswap_64(event->mmap.len);
event->mmap.pgoff = bswap_64(event->mmap.pgoff);
if (sample_id_all) {
void *data = &event->mmap.filename;
data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static void perf_event__mmap2_swap(union perf_event *event,
bool sample_id_all)
{
event->mmap2.pid = bswap_32(event->mmap2.pid);
event->mmap2.tid = bswap_32(event->mmap2.tid);
event->mmap2.start = bswap_64(event->mmap2.start);
event->mmap2.len = bswap_64(event->mmap2.len);
event->mmap2.pgoff = bswap_64(event->mmap2.pgoff);
event->mmap2.maj = bswap_32(event->mmap2.maj);
event->mmap2.min = bswap_32(event->mmap2.min);
event->mmap2.ino = bswap_64(event->mmap2.ino);
if (sample_id_all) {
void *data = &event->mmap2.filename;
data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
{
event->fork.pid = bswap_32(event->fork.pid);
event->fork.tid = bswap_32(event->fork.tid);
event->fork.ppid = bswap_32(event->fork.ppid);
event->fork.ptid = bswap_32(event->fork.ptid);
event->fork.time = bswap_64(event->fork.time);
if (sample_id_all)
swap_sample_id_all(event, &event->fork + 1);
}
static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
{
event->read.pid = bswap_32(event->read.pid);
event->read.tid = bswap_32(event->read.tid);
event->read.value = bswap_64(event->read.value);
event->read.time_enabled = bswap_64(event->read.time_enabled);
event->read.time_running = bswap_64(event->read.time_running);
event->read.id = bswap_64(event->read.id);
if (sample_id_all)
swap_sample_id_all(event, &event->read + 1);
}
static void perf_event__throttle_swap(union perf_event *event,
bool sample_id_all)
{
event->throttle.time = bswap_64(event->throttle.time);
event->throttle.id = bswap_64(event->throttle.id);
event->throttle.stream_id = bswap_64(event->throttle.stream_id);
if (sample_id_all)
swap_sample_id_all(event, &event->throttle + 1);
}
static u8 revbyte(u8 b)
{
int rev = (b >> 4) | ((b & 0xf) << 4);
rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
return (u8) rev;
}
/*
* XXX this is hack in attempt to carry flags bitfield
* throught endian village. ABI says:
*
* Bit-fields are allocated from right to left (least to most significant)
* on little-endian implementations and from left to right (most to least
* significant) on big-endian implementations.
*
* The above seems to be byte specific, so we need to reverse each
* byte of the bitfield. 'Internet' also says this might be implementation
* specific and we probably need proper fix and carry perf_event_attr
* bitfield flags in separate data file FEAT_ section. Thought this seems
* to work for now.
*/
static void swap_bitfield(u8 *p, unsigned len)
{
unsigned i;
for (i = 0; i < len; i++) {
*p = revbyte(*p);
p++;
}
}
/* exported for swapping attributes in file header */
void perf_event__attr_swap(struct perf_event_attr *attr)
{
attr->type = bswap_32(attr->type);
attr->size = bswap_32(attr->size);
attr->config = bswap_64(attr->config);
attr->sample_period = bswap_64(attr->sample_period);
attr->sample_type = bswap_64(attr->sample_type);
attr->read_format = bswap_64(attr->read_format);
attr->wakeup_events = bswap_32(attr->wakeup_events);
attr->bp_type = bswap_32(attr->bp_type);
attr->bp_addr = bswap_64(attr->bp_addr);
attr->bp_len = bswap_64(attr->bp_len);
attr->branch_sample_type = bswap_64(attr->branch_sample_type);
attr->sample_regs_user = bswap_64(attr->sample_regs_user);
attr->sample_stack_user = bswap_32(attr->sample_stack_user);
swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
}
static void perf_event__hdr_attr_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
size_t size;
perf_event__attr_swap(&event->attr.attr);
size = event->header.size;
size -= (void *)&event->attr.id - (void *)event;
mem_bswap_64(event->attr.id, size);
}
static void perf_event__event_type_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->event_type.event_type.event_id =
bswap_64(event->event_type.event_type.event_id);
}
static void perf_event__tracing_data_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->tracing_data.size = bswap_32(event->tracing_data.size);
}
typedef void (*perf_event__swap_op)(union perf_event *event,
bool sample_id_all);
static perf_event__swap_op perf_event__swap_ops[] = {
[PERF_RECORD_MMAP] = perf_event__mmap_swap,
[PERF_RECORD_MMAP2] = perf_event__mmap2_swap,
[PERF_RECORD_COMM] = perf_event__comm_swap,
[PERF_RECORD_FORK] = perf_event__task_swap,
[PERF_RECORD_EXIT] = perf_event__task_swap,
[PERF_RECORD_LOST] = perf_event__all64_swap,
[PERF_RECORD_READ] = perf_event__read_swap,
[PERF_RECORD_THROTTLE] = perf_event__throttle_swap,
[PERF_RECORD_UNTHROTTLE] = perf_event__throttle_swap,
[PERF_RECORD_SAMPLE] = perf_event__all64_swap,
[PERF_RECORD_HEADER_ATTR] = perf_event__hdr_attr_swap,
[PERF_RECORD_HEADER_EVENT_TYPE] = perf_event__event_type_swap,
[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
[PERF_RECORD_HEADER_BUILD_ID] = NULL,
[PERF_RECORD_HEADER_MAX] = NULL,
};
struct sample_queue {
u64 timestamp;
u64 file_offset;
union perf_event *event;
struct list_head list;
};
static void perf_session_free_sample_buffers(struct perf_session *session)
{
struct ordered_samples *os = &session->ordered_samples;
while (!list_empty(&os->to_free)) {
struct sample_queue *sq;
sq = list_entry(os->to_free.next, struct sample_queue, list);
list_del(&sq->list);
free(sq);
}
}
static int perf_session_deliver_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool,
u64 file_offset);
static int flush_sample_queue(struct perf_session *s,
struct perf_tool *tool)
{
struct ordered_samples *os = &s->ordered_samples;
struct list_head *head = &os->samples;
struct sample_queue *tmp, *iter;
struct perf_sample sample;
u64 limit = os->next_flush;
u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
bool show_progress = limit == ULLONG_MAX;
struct ui_progress prog;
int ret;
if (!tool->ordered_samples || !limit)
return 0;
if (show_progress)
ui_progress__init(&prog, os->nr_samples, "Processing time ordered events...");
list_for_each_entry_safe(iter, tmp, head, list) {
if (session_done())
return 0;
if (iter->timestamp > limit)
break;
ret = perf_evlist__parse_sample(s->evlist, iter->event, &sample);
if (ret)
pr_err("Can't parse sample, err = %d\n", ret);
else {
ret = perf_session_deliver_event(s, iter->event, &sample, tool,
iter->file_offset);
if (ret)
return ret;
}
os->last_flush = iter->timestamp;
list_del(&iter->list);
list_add(&iter->list, &os->sample_cache);
if (show_progress)
ui_progress__update(&prog, 1);
}
if (list_empty(head)) {
os->last_sample = NULL;
} else if (last_ts <= limit) {
os->last_sample =
list_entry(head->prev, struct sample_queue, list);
}
os->nr_samples = 0;
return 0;
}
/*
* When perf record finishes a pass on every buffers, it records this pseudo
* event.
* We record the max timestamp t found in the pass n.
* Assuming these timestamps are monotonic across cpus, we know that if
* a buffer still has events with timestamps below t, they will be all
* available and then read in the pass n + 1.
* Hence when we start to read the pass n + 2, we can safely flush every
* events with timestamps below t.
*
* ============ PASS n =================
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 1 | 2
* 2 | 3
* - | 4 <--- max recorded
*
* ============ PASS n + 1 ==============
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 3 | 5
* 4 | 6
* 5 | 7 <---- max recorded
*
* Flush every events below timestamp 4
*
* ============ PASS n + 2 ==============
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 6 | 8
* 7 | 9
* - | 10
*
* Flush every events below timestamp 7
* etc...
*/
static int process_finished_round(struct perf_tool *tool,
union perf_event *event __maybe_unused,
struct perf_session *session)
{
int ret = flush_sample_queue(session, tool);
if (!ret)
session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
return ret;
}
/* The queue is ordered by time */
static void __queue_event(struct sample_queue *new, struct perf_session *s)
{
struct ordered_samples *os = &s->ordered_samples;
struct sample_queue *sample = os->last_sample;
u64 timestamp = new->timestamp;
struct list_head *p;
++os->nr_samples;
os->last_sample = new;
if (!sample) {
list_add(&new->list, &os->samples);
os->max_timestamp = timestamp;
return;
}
/*
* last_sample might point to some random place in the list as it's
* the last queued event. We expect that the new event is close to
* this.
*/
if (sample->timestamp <= timestamp) {
while (sample->timestamp <= timestamp) {
p = sample->list.next;
if (p == &os->samples) {
list_add_tail(&new->list, &os->samples);
os->max_timestamp = timestamp;
return;
}
sample = list_entry(p, struct sample_queue, list);
}
list_add_tail(&new->list, &sample->list);
} else {
while (sample->timestamp > timestamp) {
p = sample->list.prev;
if (p == &os->samples) {
list_add(&new->list, &os->samples);
return;
}
sample = list_entry(p, struct sample_queue, list);
}
list_add(&new->list, &sample->list);
}
}
#define MAX_SAMPLE_BUFFER (64 * 1024 / sizeof(struct sample_queue))
int perf_session_queue_event(struct perf_session *s, union perf_event *event,
struct perf_sample *sample, u64 file_offset)
{
struct ordered_samples *os = &s->ordered_samples;
struct list_head *sc = &os->sample_cache;
u64 timestamp = sample->time;
struct sample_queue *new;
if (!timestamp || timestamp == ~0ULL)
return -ETIME;
if (timestamp < s->ordered_samples.last_flush) {
printf("Warning: Timestamp below last timeslice flush\n");
return -EINVAL;
}
if (!list_empty(sc)) {
new = list_entry(sc->next, struct sample_queue, list);
list_del(&new->list);
} else if (os->sample_buffer) {
new = os->sample_buffer + os->sample_buffer_idx;
if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
os->sample_buffer = NULL;
} else {
os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
if (!os->sample_buffer)
return -ENOMEM;
list_add(&os->sample_buffer->list, &os->to_free);
os->sample_buffer_idx = 2;
new = os->sample_buffer + 1;
}
new->timestamp = timestamp;
new->file_offset = file_offset;
new->event = event;
__queue_event(new, s);
return 0;
}
static void callchain__printf(struct perf_sample *sample)
{
unsigned int i;
printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
for (i = 0; i < sample->callchain->nr; i++)
printf("..... %2d: %016" PRIx64 "\n",
i, sample->callchain->ips[i]);
}
static void branch_stack__printf(struct perf_sample *sample)
{
uint64_t i;
printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);
for (i = 0; i < sample->branch_stack->nr; i++)
printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
i, sample->branch_stack->entries[i].from,
sample->branch_stack->entries[i].to);
}
static void regs_dump__printf(u64 mask, u64 *regs)
{
unsigned rid, i = 0;
for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) {
u64 val = regs[i++];
printf(".... %-5s 0x%" PRIx64 "\n",
perf_reg_name(rid), val);
}
}
static void regs_user__printf(struct perf_sample *sample)
{
struct regs_dump *user_regs = &sample->user_regs;
if (user_regs->regs) {
u64 mask = user_regs->mask;
printf("... user regs: mask 0x%" PRIx64 "\n", mask);
regs_dump__printf(mask, user_regs->regs);
}
}
static void stack_user__printf(struct stack_dump *dump)
{
printf("... ustack: size %" PRIu64 ", offset 0x%x\n",
dump->size, dump->offset);
}
static void perf_session__print_tstamp(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample)
{
u64 sample_type = __perf_evlist__combined_sample_type(session->evlist);
if (event->header.type != PERF_RECORD_SAMPLE &&
!perf_evlist__sample_id_all(session->evlist)) {
fputs("-1 -1 ", stdout);
return;
}
if ((sample_type & PERF_SAMPLE_CPU))
printf("%u ", sample->cpu);
if (sample_type & PERF_SAMPLE_TIME)
printf("%" PRIu64 " ", sample->time);
}
static void sample_read__printf(struct perf_sample *sample, u64 read_format)
{
printf("... sample_read:\n");
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
printf("...... time enabled %016" PRIx64 "\n",
sample->read.time_enabled);
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
printf("...... time running %016" PRIx64 "\n",
sample->read.time_running);
if (read_format & PERF_FORMAT_GROUP) {
u64 i;
printf(".... group nr %" PRIu64 "\n", sample->read.group.nr);
for (i = 0; i < sample->read.group.nr; i++) {
struct sample_read_value *value;
value = &sample->read.group.values[i];
printf("..... id %016" PRIx64
", value %016" PRIx64 "\n",
value->id, value->value);
}
} else
printf("..... id %016" PRIx64 ", value %016" PRIx64 "\n",
sample->read.one.id, sample->read.one.value);
}
static void dump_event(struct perf_session *session, union perf_event *event,
u64 file_offset, struct perf_sample *sample)
{
if (!dump_trace)
return;
printf("\n%#" PRIx64 " [%#x]: event: %d\n",
file_offset, event->header.size, event->header.type);
trace_event(event);
if (sample)
perf_session__print_tstamp(session, event, sample);
printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
event->header.size, perf_event__name(event->header.type));
}
static void dump_sample(struct perf_evsel *evsel, union perf_event *event,
struct perf_sample *sample)
{
u64 sample_type;
if (!dump_trace)
return;
printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
event->header.misc, sample->pid, sample->tid, sample->ip,
sample->period, sample->addr);
sample_type = evsel->attr.sample_type;
if (sample_type & PERF_SAMPLE_CALLCHAIN)
callchain__printf(sample);
if (sample_type & PERF_SAMPLE_BRANCH_STACK)
branch_stack__printf(sample);
if (sample_type & PERF_SAMPLE_REGS_USER)
regs_user__printf(sample);
if (sample_type & PERF_SAMPLE_STACK_USER)
stack_user__printf(&sample->user_stack);
if (sample_type & PERF_SAMPLE_WEIGHT)
printf("... weight: %" PRIu64 "\n", sample->weight);
if (sample_type & PERF_SAMPLE_DATA_SRC)
printf(" . data_src: 0x%"PRIx64"\n", sample->data_src);
if (sample_type & PERF_SAMPLE_TRANSACTION)
printf("... transaction: %" PRIx64 "\n", sample->transaction);
if (sample_type & PERF_SAMPLE_READ)
sample_read__printf(sample, evsel->attr.read_format);
}
static struct machine *
perf_session__find_machine_for_cpumode(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample)
{
const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
struct machine *machine;
if (perf_guest &&
((cpumode == PERF_RECORD_MISC_GUEST_KERNEL) ||
(cpumode == PERF_RECORD_MISC_GUEST_USER))) {
u32 pid;
if (event->header.type == PERF_RECORD_MMAP
|| event->header.type == PERF_RECORD_MMAP2)
pid = event->mmap.pid;
else
pid = sample->pid;
machine = perf_session__find_machine(session, pid);
if (!machine)
machine = perf_session__findnew_machine(session,
DEFAULT_GUEST_KERNEL_ID);
return machine;
}
return &session->machines.host;
}
static int deliver_sample_value(struct perf_session *session,
struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample,
struct sample_read_value *v,
struct machine *machine)
{
struct perf_sample_id *sid;
sid = perf_evlist__id2sid(session->evlist, v->id);
if (sid) {
sample->id = v->id;
sample->period = v->value - sid->period;
sid->period = v->value;
}
if (!sid || sid->evsel == NULL) {
++session->stats.nr_unknown_id;
return 0;
}
return tool->sample(tool, event, sample, sid->evsel, machine);
}
static int deliver_sample_group(struct perf_session *session,
struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample,
struct machine *machine)
{
int ret = -EINVAL;
u64 i;
for (i = 0; i < sample->read.group.nr; i++) {
ret = deliver_sample_value(session, tool, event, sample,
&sample->read.group.values[i],
machine);
if (ret)
break;
}
return ret;
}
static int
perf_session__deliver_sample(struct perf_session *session,
struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample,
struct perf_evsel *evsel,
struct machine *machine)
{
/* We know evsel != NULL. */
u64 sample_type = evsel->attr.sample_type;
u64 read_format = evsel->attr.read_format;
/* Standard sample delievery. */
if (!(sample_type & PERF_SAMPLE_READ))
return tool->sample(tool, event, sample, evsel, machine);
/* For PERF_SAMPLE_READ we have either single or group mode. */
if (read_format & PERF_FORMAT_GROUP)
return deliver_sample_group(session, tool, event, sample,
machine);
else
return deliver_sample_value(session, tool, event, sample,
&sample->read.one, machine);
}
static int perf_session_deliver_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool,
u64 file_offset)
{
struct perf_evsel *evsel;
struct machine *machine;
dump_event(session, event, file_offset, sample);
evsel = perf_evlist__id2evsel(session->evlist, sample->id);
if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
/*
* XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
* because the tools right now may apply filters, discarding
* some of the samples. For consistency, in the future we
* should have something like nr_filtered_samples and remove
* the sample->period from total_sample_period, etc, KISS for
* now tho.
*
* Also testing against NULL allows us to handle files without
* attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
* future probably it'll be a good idea to restrict event
* processing via perf_session to files with both set.
*/
hists__inc_nr_events(&evsel->hists, event->header.type);
}
machine = perf_session__find_machine_for_cpumode(session, event,
sample);
switch (event->header.type) {
case PERF_RECORD_SAMPLE:
dump_sample(evsel, event, sample);
if (evsel == NULL) {
++session->stats.nr_unknown_id;
return 0;
}
if (machine == NULL) {
++session->stats.nr_unprocessable_samples;
return 0;
}
return perf_session__deliver_sample(session, tool, event,
sample, evsel, machine);
case PERF_RECORD_MMAP:
return tool->mmap(tool, event, sample, machine);
case PERF_RECORD_MMAP2:
return tool->mmap2(tool, event, sample, machine);
case PERF_RECORD_COMM:
return tool->comm(tool, event, sample, machine);
case PERF_RECORD_FORK:
return tool->fork(tool, event, sample, machine);
case PERF_RECORD_EXIT:
return tool->exit(tool, event, sample, machine);
case PERF_RECORD_LOST:
if (tool->lost == perf_event__process_lost)
session->stats.total_lost += event->lost.lost;
return tool->lost(tool, event, sample, machine);
case PERF_RECORD_READ:
return tool->read(tool, event, sample, evsel, machine);
case PERF_RECORD_THROTTLE:
return tool->throttle(tool, event, sample, machine);
case PERF_RECORD_UNTHROTTLE:
return tool->unthrottle(tool, event, sample, machine);
default:
++session->stats.nr_unknown_events;
return -1;
}
}
static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
struct perf_tool *tool, u64 file_offset)
{
int fd = perf_data_file__fd(session->file);
int err;
dump_event(session, event, file_offset, NULL);
/* These events are processed right away */
switch (event->header.type) {
case PERF_RECORD_HEADER_ATTR:
err = tool->attr(tool, event, &session->evlist);
if (err == 0)
perf_session__set_id_hdr_size(session);
return err;
case PERF_RECORD_HEADER_EVENT_TYPE:
/*
* Depreceated, but we need to handle it for sake
* of old data files create in pipe mode.
*/
return 0;
case PERF_RECORD_HEADER_TRACING_DATA:
/* setup for reading amidst mmap */
lseek(fd, file_offset, SEEK_SET);
return tool->tracing_data(tool, event, session);
case PERF_RECORD_HEADER_BUILD_ID:
return tool->build_id(tool, event, session);
case PERF_RECORD_FINISHED_ROUND:
return tool->finished_round(tool, event, session);
default:
return -EINVAL;
}
}
static void event_swap(union perf_event *event, bool sample_id_all)
{
perf_event__swap_op swap;
swap = perf_event__swap_ops[event->header.type];
if (swap)
swap(event, sample_id_all);
}
static int perf_session__process_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool,
u64 file_offset)
{
struct perf_sample sample;
int ret;
if (session->header.needs_swap)
event_swap(event, perf_evlist__sample_id_all(session->evlist));
if (event->header.type >= PERF_RECORD_HEADER_MAX)
return -EINVAL;
events_stats__inc(&session->stats, event->header.type);
if (event->header.type >= PERF_RECORD_USER_TYPE_START)
return perf_session__process_user_event(session, event, tool, file_offset);
/*
* For all kernel events we get the sample data
*/
ret = perf_evlist__parse_sample(session->evlist, event, &sample);
if (ret)
return ret;
if (tool->ordered_samples) {
ret = perf_session_queue_event(session, event, &sample,
file_offset);
if (ret != -ETIME)
return ret;
}
return perf_session_deliver_event(session, event, &sample, tool,
file_offset);
}
void perf_event_header__bswap(struct perf_event_header *hdr)
{
hdr->type = bswap_32(hdr->type);
hdr->misc = bswap_16(hdr->misc);
hdr->size = bswap_16(hdr->size);
}
struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
{
return machine__findnew_thread(&session->machines.host, 0, pid);
}
static struct thread *perf_session__register_idle_thread(struct perf_session *session)
{
struct thread *thread = perf_session__findnew(session, 0);
if (thread == NULL || thread__set_comm(thread, "swapper", 0)) {
pr_err("problem inserting idle task.\n");
thread = NULL;
}
return thread;
}
static void perf_session__warn_about_errors(const struct perf_session *session,
const struct perf_tool *tool)
{
if (tool->lost == perf_event__process_lost &&
session->stats.nr_events[PERF_RECORD_LOST] != 0) {
ui__warning("Processed %d events and lost %d chunks!\n\n"
"Check IO/CPU overload!\n\n",
session->stats.nr_events[0],
session->stats.nr_events[PERF_RECORD_LOST]);
}
if (session->stats.nr_unknown_events != 0) {
ui__warning("Found %u unknown events!\n\n"
"Is this an older tool processing a perf.data "
"file generated by a more recent tool?\n\n"
"If that is not the case, consider "
"reporting to linux-kernel@vger.kernel.org.\n\n",
session->stats.nr_unknown_events);
}
if (session->stats.nr_unknown_id != 0) {
ui__warning("%u samples with id not present in the header\n",
session->stats.nr_unknown_id);
}
if (session->stats.nr_invalid_chains != 0) {
ui__warning("Found invalid callchains!\n\n"
"%u out of %u events were discarded for this reason.\n\n"
"Consider reporting to linux-kernel@vger.kernel.org.\n\n",
session->stats.nr_invalid_chains,
session->stats.nr_events[PERF_RECORD_SAMPLE]);
}
if (session->stats.nr_unprocessable_samples != 0) {
ui__warning("%u unprocessable samples recorded.\n"
"Do you have a KVM guest running and not using 'perf kvm'?\n",
session->stats.nr_unprocessable_samples);
}
}
volatile int session_done;
static int __perf_session__process_pipe_events(struct perf_session *session,
struct perf_tool *tool)
{
int fd = perf_data_file__fd(session->file);
union perf_event *event;
uint32_t size, cur_size = 0;
void *buf = NULL;
int skip = 0;
u64 head;
ssize_t err;
void *p;
perf_tool__fill_defaults(tool);
head = 0;
cur_size = sizeof(union perf_event);
buf = malloc(cur_size);
if (!buf)
return -errno;
more:
event = buf;
err = readn(fd, event, sizeof(struct perf_event_header));
if (err <= 0) {
if (err == 0)
goto done;
pr_err("failed to read event header\n");
goto out_err;
}
if (session->header.needs_swap)
perf_event_header__bswap(&event->header);
size = event->header.size;
if (size < sizeof(struct perf_event_header)) {
pr_err("bad event header size\n");
goto out_err;
}
if (size > cur_size) {
void *new = realloc(buf, size);
if (!new) {
pr_err("failed to allocate memory to read event\n");
goto out_err;
}
buf = new;
cur_size = size;
event = buf;
}
p = event;
p += sizeof(struct perf_event_header);
if (size - sizeof(struct perf_event_header)) {
err = readn(fd, p, size - sizeof(struct perf_event_header));
if (err <= 0) {
if (err == 0) {
pr_err("unexpected end of event stream\n");
goto done;
}
pr_err("failed to read event data\n");
goto out_err;
}
}
if ((skip = perf_session__process_event(session, event, tool, head)) < 0) {
pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
head, event->header.size, event->header.type);
err = -EINVAL;
goto out_err;
}
head += size;
if (skip > 0)
head += skip;
if (!session_done())
goto more;
done:
/* do the final flush for ordered samples */
session->ordered_samples.next_flush = ULLONG_MAX;
err = flush_sample_queue(session, tool);
out_err:
free(buf);
perf_session__warn_about_errors(session, tool);
perf_session_free_sample_buffers(session);
return err;
}
static union perf_event *
fetch_mmaped_event(struct perf_session *session,
u64 head, size_t mmap_size, char *buf)
{
union perf_event *event;
/*
* Ensure we have enough space remaining to read
* the size of the event in the headers.
*/
if (head + sizeof(event->header) > mmap_size)
return NULL;
event = (union perf_event *)(buf + head);
if (session->header.needs_swap)
perf_event_header__bswap(&event->header);
if (head + event->header.size > mmap_size) {
/* We're not fetching the event so swap back again */
if (session->header.needs_swap)
perf_event_header__bswap(&event->header);
return NULL;
}
return event;
}
/*
* On 64bit we can mmap the data file in one go. No need for tiny mmap
* slices. On 32bit we use 32MB.
*/
#if BITS_PER_LONG == 64
#define MMAP_SIZE ULLONG_MAX
#define NUM_MMAPS 1
#else
#define MMAP_SIZE (32 * 1024 * 1024ULL)
#define NUM_MMAPS 128
#endif
int __perf_session__process_events(struct perf_session *session,
u64 data_offset, u64 data_size,
u64 file_size, struct perf_tool *tool)
{
int fd = perf_data_file__fd(session->file);
u64 head, page_offset, file_offset, file_pos;
int err, mmap_prot, mmap_flags, map_idx = 0;
size_t mmap_size;
char *buf, *mmaps[NUM_MMAPS];
union perf_event *event;
uint32_t size;
struct ui_progress prog;
perf_tool__fill_defaults(tool);
page_offset = page_size * (data_offset / page_size);
file_offset = page_offset;
head = data_offset - page_offset;
if (data_size && (data_offset + data_size < file_size))
file_size = data_offset + data_size;
ui_progress__init(&prog, file_size, "Processing events...");
mmap_size = MMAP_SIZE;
if (mmap_size > file_size)
mmap_size = file_size;
memset(mmaps, 0, sizeof(mmaps));
mmap_prot = PROT_READ;
mmap_flags = MAP_SHARED;
if (session->header.needs_swap) {
mmap_prot |= PROT_WRITE;
mmap_flags = MAP_PRIVATE;
}
remap:
buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, fd,
file_offset);
if (buf == MAP_FAILED) {
pr_err("failed to mmap file\n");
err = -errno;
goto out_err;
}
mmaps[map_idx] = buf;
map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
file_pos = file_offset + head;
more:
event = fetch_mmaped_event(session, head, mmap_size, buf);
if (!event) {
if (mmaps[map_idx]) {
munmap(mmaps[map_idx], mmap_size);
mmaps[map_idx] = NULL;
}
page_offset = page_size * (head / page_size);
file_offset += page_offset;
head -= page_offset;
goto remap;
}
size = event->header.size;
if (size < sizeof(struct perf_event_header) ||
perf_session__process_event(session, event, tool, file_pos) < 0) {
pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
file_offset + head, event->header.size,
event->header.type);
err = -EINVAL;
goto out_err;
}
head += size;
file_pos += size;
ui_progress__update(&prog, size);
if (session_done())
goto out;
if (file_pos < file_size)
goto more;
out:
/* do the final flush for ordered samples */
session->ordered_samples.next_flush = ULLONG_MAX;
err = flush_sample_queue(session, tool);
out_err:
ui_progress__finish();
perf_session__warn_about_errors(session, tool);
perf_session_free_sample_buffers(session);
return err;
}
int perf_session__process_events(struct perf_session *session,
struct perf_tool *tool)
{
u64 size = perf_data_file__size(session->file);
int err;
if (perf_session__register_idle_thread(session) == NULL)
return -ENOMEM;
if (!perf_data_file__is_pipe(session->file))
err = __perf_session__process_events(session,
session->header.data_offset,
session->header.data_size,
size, tool);
else
err = __perf_session__process_pipe_events(session, tool);
return err;
}
bool perf_session__has_traces(struct perf_session *session, const char *msg)
{
struct perf_evsel *evsel;
evlist__for_each(session->evlist, evsel) {
if (evsel->attr.type == PERF_TYPE_TRACEPOINT)
return true;
}
pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
return false;
}
int maps__set_kallsyms_ref_reloc_sym(struct map **maps,
const char *symbol_name, u64 addr)
{
char *bracket;
enum map_type i;
struct ref_reloc_sym *ref;
ref = zalloc(sizeof(struct ref_reloc_sym));
if (ref == NULL)
return -ENOMEM;
ref->name = strdup(symbol_name);
if (ref->name == NULL) {
free(ref);
return -ENOMEM;
}
bracket = strchr(ref->name, ']');
if (bracket)
*bracket = '\0';
ref->addr = addr;
for (i = 0; i < MAP__NR_TYPES; ++i) {
struct kmap *kmap = map__kmap(maps[i]);
kmap->ref_reloc_sym = ref;
}
return 0;
}
size_t perf_session__fprintf_dsos(struct perf_session *session, FILE *fp)
{
return machines__fprintf_dsos(&session->machines, fp);
}
size_t perf_session__fprintf_dsos_buildid(struct perf_session *session, FILE *fp,
bool (skip)(struct dso *dso, int parm), int parm)
{
return machines__fprintf_dsos_buildid(&session->machines, fp, skip, parm);
}
size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
{
struct perf_evsel *pos;
size_t ret = fprintf(fp, "Aggregated stats:\n");
ret += events_stats__fprintf(&session->stats, fp);
evlist__for_each(session->evlist, pos) {
ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
ret += events_stats__fprintf(&pos->hists.stats, fp);
}
return ret;
}
size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
{
/*
* FIXME: Here we have to actually print all the machines in this
* session, not just the host...
*/
return machine__fprintf(&session->machines.host, fp);
}
struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
unsigned int type)
{
struct perf_evsel *pos;
evlist__for_each(session->evlist, pos) {
if (pos->attr.type == type)
return pos;
}
return NULL;
}
void perf_evsel__print_ip(struct perf_evsel *evsel, struct perf_sample *sample,
struct addr_location *al,
unsigned int print_opts, unsigned int stack_depth)
{
struct callchain_cursor_node *node;
int print_ip = print_opts & PRINT_IP_OPT_IP;
int print_sym = print_opts & PRINT_IP_OPT_SYM;
int print_dso = print_opts & PRINT_IP_OPT_DSO;
int print_symoffset = print_opts & PRINT_IP_OPT_SYMOFFSET;
int print_oneline = print_opts & PRINT_IP_OPT_ONELINE;
int print_srcline = print_opts & PRINT_IP_OPT_SRCLINE;
char s = print_oneline ? ' ' : '\t';
if (symbol_conf.use_callchain && sample->callchain) {
struct addr_location node_al;
if (machine__resolve_callchain(al->machine, evsel, al->thread,
sample, NULL, NULL,
PERF_MAX_STACK_DEPTH) != 0) {
if (verbose)
error("Failed to resolve callchain. Skipping\n");
return;
}
callchain_cursor_commit(&callchain_cursor);
if (print_symoffset)
node_al = *al;
while (stack_depth) {
u64 addr = 0;
node = callchain_cursor_current(&callchain_cursor);
if (!node)
break;
if (node->sym && node->sym->ignore)
goto next;
if (print_ip)
printf("%c%16" PRIx64, s, node->ip);
if (node->map)
addr = node->map->map_ip(node->map, node->ip);
if (print_sym) {
printf(" ");
if (print_symoffset) {
node_al.addr = addr;
node_al.map = node->map;
symbol__fprintf_symname_offs(node->sym, &node_al, stdout);
} else
symbol__fprintf_symname(node->sym, stdout);
}
if (print_dso) {
printf(" (");
map__fprintf_dsoname(node->map, stdout);
printf(")");
}
if (print_srcline)
map__fprintf_srcline(node->map, addr, "\n ",
stdout);
if (!print_oneline)
printf("\n");
stack_depth--;
next:
callchain_cursor_advance(&callchain_cursor);
}
} else {
if (al->sym && al->sym->ignore)
return;
if (print_ip)
printf("%16" PRIx64, sample->ip);
if (print_sym) {
printf(" ");
if (print_symoffset)
symbol__fprintf_symname_offs(al->sym, al,
stdout);
else
symbol__fprintf_symname(al->sym, stdout);
}
if (print_dso) {
printf(" (");
map__fprintf_dsoname(al->map, stdout);
printf(")");
}
if (print_srcline)
map__fprintf_srcline(al->map, al->addr, "\n ", stdout);
}
}
int perf_session__cpu_bitmap(struct perf_session *session,
const char *cpu_list, unsigned long *cpu_bitmap)
{
int i, err = -1;
struct cpu_map *map;
for (i = 0; i < PERF_TYPE_MAX; ++i) {
struct perf_evsel *evsel;
evsel = perf_session__find_first_evtype(session, i);
if (!evsel)
continue;
if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
pr_err("File does not contain CPU events. "
"Remove -c option to proceed.\n");
return -1;
}
}
map = cpu_map__new(cpu_list);
if (map == NULL) {
pr_err("Invalid cpu_list\n");
return -1;
}
for (i = 0; i < map->nr; i++) {
int cpu = map->map[i];
if (cpu >= MAX_NR_CPUS) {
pr_err("Requested CPU %d too large. "
"Consider raising MAX_NR_CPUS\n", cpu);
goto out_delete_map;
}
set_bit(cpu, cpu_bitmap);
}
err = 0;
out_delete_map:
cpu_map__delete(map);
return err;
}
void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
bool full)
{
int fd = perf_data_file__fd(session->file);
struct stat st;
int ret;
if (session == NULL || fp == NULL)
return;
ret = fstat(fd, &st);
if (ret == -1)
return;
fprintf(fp, "# ========\n");
fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
perf_header__fprintf_info(session, fp, full);
fprintf(fp, "# ========\n#\n");
}
int __perf_session__set_tracepoints_handlers(struct perf_session *session,
const struct perf_evsel_str_handler *assocs,
size_t nr_assocs)
{
struct perf_evsel *evsel;
size_t i;
int err;
for (i = 0; i < nr_assocs; i++) {
/*
* Adding a handler for an event not in the session,
* just ignore it.
*/
evsel = perf_evlist__find_tracepoint_by_name(session->evlist, assocs[i].name);
if (evsel == NULL)
continue;
err = -EEXIST;
if (evsel->handler != NULL)
goto out;
evsel->handler = assocs[i].handler;
}
err = 0;
out:
return err;
}