OpenCloudOS-Kernel/fs/nfsd/nfs4state.c

4495 lines
116 KiB
C

/*
* Copyright (c) 2001 The Regents of the University of Michigan.
* All rights reserved.
*
* Kendrick Smith <kmsmith@umich.edu>
* Andy Adamson <kandros@umich.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/namei.h>
#include <linux/swap.h>
#include <linux/sunrpc/svcauth_gss.h>
#include <linux/sunrpc/clnt.h>
#include "xdr4.h"
#include "vfs.h"
#define NFSDDBG_FACILITY NFSDDBG_PROC
/* Globals */
time_t nfsd4_lease = 90; /* default lease time */
time_t nfsd4_grace = 90;
static time_t boot_time;
static u32 current_ownerid = 1;
static u32 current_fileid = 1;
static u32 current_delegid = 1;
static stateid_t zerostateid; /* bits all 0 */
static stateid_t onestateid; /* bits all 1 */
static u64 current_sessionid = 1;
#define ZERO_STATEID(stateid) (!memcmp((stateid), &zerostateid, sizeof(stateid_t)))
#define ONE_STATEID(stateid) (!memcmp((stateid), &onestateid, sizeof(stateid_t)))
/* forward declarations */
static struct nfs4_stateid * find_stateid(stateid_t *stid, int flags);
static struct nfs4_delegation * find_delegation_stateid(struct inode *ino, stateid_t *stid);
static char user_recovery_dirname[PATH_MAX] = "/var/lib/nfs/v4recovery";
static void nfs4_set_recdir(char *recdir);
/* Locking: */
/* Currently used for almost all code touching nfsv4 state: */
static DEFINE_MUTEX(client_mutex);
/*
* Currently used for the del_recall_lru and file hash table. In an
* effort to decrease the scope of the client_mutex, this spinlock may
* eventually cover more:
*/
static DEFINE_SPINLOCK(recall_lock);
static struct kmem_cache *stateowner_slab = NULL;
static struct kmem_cache *file_slab = NULL;
static struct kmem_cache *stateid_slab = NULL;
static struct kmem_cache *deleg_slab = NULL;
void
nfs4_lock_state(void)
{
mutex_lock(&client_mutex);
}
void
nfs4_unlock_state(void)
{
mutex_unlock(&client_mutex);
}
static inline u32
opaque_hashval(const void *ptr, int nbytes)
{
unsigned char *cptr = (unsigned char *) ptr;
u32 x = 0;
while (nbytes--) {
x *= 37;
x += *cptr++;
}
return x;
}
static struct list_head del_recall_lru;
static inline void
put_nfs4_file(struct nfs4_file *fi)
{
if (atomic_dec_and_lock(&fi->fi_ref, &recall_lock)) {
list_del(&fi->fi_hash);
spin_unlock(&recall_lock);
iput(fi->fi_inode);
kmem_cache_free(file_slab, fi);
}
}
static inline void
get_nfs4_file(struct nfs4_file *fi)
{
atomic_inc(&fi->fi_ref);
}
static int num_delegations;
unsigned int max_delegations;
/*
* Open owner state (share locks)
*/
/* hash tables for nfs4_stateowner */
#define OWNER_HASH_BITS 8
#define OWNER_HASH_SIZE (1 << OWNER_HASH_BITS)
#define OWNER_HASH_MASK (OWNER_HASH_SIZE - 1)
#define ownerid_hashval(id) \
((id) & OWNER_HASH_MASK)
#define ownerstr_hashval(clientid, ownername) \
(((clientid) + opaque_hashval((ownername.data), (ownername.len))) & OWNER_HASH_MASK)
static struct list_head ownerid_hashtbl[OWNER_HASH_SIZE];
static struct list_head ownerstr_hashtbl[OWNER_HASH_SIZE];
/* hash table for nfs4_file */
#define FILE_HASH_BITS 8
#define FILE_HASH_SIZE (1 << FILE_HASH_BITS)
/* hash table for (open)nfs4_stateid */
#define STATEID_HASH_BITS 10
#define STATEID_HASH_SIZE (1 << STATEID_HASH_BITS)
#define STATEID_HASH_MASK (STATEID_HASH_SIZE - 1)
#define file_hashval(x) \
hash_ptr(x, FILE_HASH_BITS)
#define stateid_hashval(owner_id, file_id) \
(((owner_id) + (file_id)) & STATEID_HASH_MASK)
static struct list_head file_hashtbl[FILE_HASH_SIZE];
static struct list_head stateid_hashtbl[STATEID_HASH_SIZE];
static void __nfs4_file_get_access(struct nfs4_file *fp, int oflag)
{
BUG_ON(!(fp->fi_fds[oflag] || fp->fi_fds[O_RDWR]));
atomic_inc(&fp->fi_access[oflag]);
}
static void nfs4_file_get_access(struct nfs4_file *fp, int oflag)
{
if (oflag == O_RDWR) {
__nfs4_file_get_access(fp, O_RDONLY);
__nfs4_file_get_access(fp, O_WRONLY);
} else
__nfs4_file_get_access(fp, oflag);
}
static void nfs4_file_put_fd(struct nfs4_file *fp, int oflag)
{
if (fp->fi_fds[oflag]) {
fput(fp->fi_fds[oflag]);
fp->fi_fds[oflag] = NULL;
}
}
static void __nfs4_file_put_access(struct nfs4_file *fp, int oflag)
{
if (atomic_dec_and_test(&fp->fi_access[oflag])) {
nfs4_file_put_fd(fp, O_RDWR);
nfs4_file_put_fd(fp, oflag);
}
}
static void nfs4_file_put_access(struct nfs4_file *fp, int oflag)
{
if (oflag == O_RDWR) {
__nfs4_file_put_access(fp, O_RDONLY);
__nfs4_file_put_access(fp, O_WRONLY);
} else
__nfs4_file_put_access(fp, oflag);
}
static struct nfs4_delegation *
alloc_init_deleg(struct nfs4_client *clp, struct nfs4_stateid *stp, struct svc_fh *current_fh, u32 type)
{
struct nfs4_delegation *dp;
struct nfs4_file *fp = stp->st_file;
dprintk("NFSD alloc_init_deleg\n");
/*
* Major work on the lease subsystem (for example, to support
* calbacks on stat) will be required before we can support
* write delegations properly.
*/
if (type != NFS4_OPEN_DELEGATE_READ)
return NULL;
if (fp->fi_had_conflict)
return NULL;
if (num_delegations > max_delegations)
return NULL;
dp = kmem_cache_alloc(deleg_slab, GFP_KERNEL);
if (dp == NULL)
return dp;
num_delegations++;
INIT_LIST_HEAD(&dp->dl_perfile);
INIT_LIST_HEAD(&dp->dl_perclnt);
INIT_LIST_HEAD(&dp->dl_recall_lru);
dp->dl_client = clp;
get_nfs4_file(fp);
dp->dl_file = fp;
dp->dl_type = type;
dp->dl_stateid.si_boot = boot_time;
dp->dl_stateid.si_stateownerid = current_delegid++;
dp->dl_stateid.si_fileid = 0;
dp->dl_stateid.si_generation = 0;
fh_copy_shallow(&dp->dl_fh, &current_fh->fh_handle);
dp->dl_time = 0;
atomic_set(&dp->dl_count, 1);
INIT_WORK(&dp->dl_recall.cb_work, nfsd4_do_callback_rpc);
return dp;
}
void
nfs4_put_delegation(struct nfs4_delegation *dp)
{
if (atomic_dec_and_test(&dp->dl_count)) {
dprintk("NFSD: freeing dp %p\n",dp);
put_nfs4_file(dp->dl_file);
kmem_cache_free(deleg_slab, dp);
num_delegations--;
}
}
static void nfs4_put_deleg_lease(struct nfs4_file *fp)
{
if (atomic_dec_and_test(&fp->fi_delegees)) {
vfs_setlease(fp->fi_deleg_file, F_UNLCK, &fp->fi_lease);
fp->fi_lease = NULL;
fput(fp->fi_deleg_file);
fp->fi_deleg_file = NULL;
}
}
/* Called under the state lock. */
static void
unhash_delegation(struct nfs4_delegation *dp)
{
list_del_init(&dp->dl_perclnt);
spin_lock(&recall_lock);
list_del_init(&dp->dl_perfile);
list_del_init(&dp->dl_recall_lru);
spin_unlock(&recall_lock);
nfs4_put_deleg_lease(dp->dl_file);
nfs4_put_delegation(dp);
}
/*
* SETCLIENTID state
*/
/* client_lock protects the client lru list and session hash table */
static DEFINE_SPINLOCK(client_lock);
/* Hash tables for nfs4_clientid state */
#define CLIENT_HASH_BITS 4
#define CLIENT_HASH_SIZE (1 << CLIENT_HASH_BITS)
#define CLIENT_HASH_MASK (CLIENT_HASH_SIZE - 1)
#define clientid_hashval(id) \
((id) & CLIENT_HASH_MASK)
#define clientstr_hashval(name) \
(opaque_hashval((name), 8) & CLIENT_HASH_MASK)
/*
* reclaim_str_hashtbl[] holds known client info from previous reset/reboot
* used in reboot/reset lease grace period processing
*
* conf_id_hashtbl[], and conf_str_hashtbl[] hold confirmed
* setclientid_confirmed info.
*
* unconf_str_hastbl[] and unconf_id_hashtbl[] hold unconfirmed
* setclientid info.
*
* client_lru holds client queue ordered by nfs4_client.cl_time
* for lease renewal.
*
* close_lru holds (open) stateowner queue ordered by nfs4_stateowner.so_time
* for last close replay.
*/
static struct list_head reclaim_str_hashtbl[CLIENT_HASH_SIZE];
static int reclaim_str_hashtbl_size = 0;
static struct list_head conf_id_hashtbl[CLIENT_HASH_SIZE];
static struct list_head conf_str_hashtbl[CLIENT_HASH_SIZE];
static struct list_head unconf_str_hashtbl[CLIENT_HASH_SIZE];
static struct list_head unconf_id_hashtbl[CLIENT_HASH_SIZE];
static struct list_head client_lru;
static struct list_head close_lru;
/*
* We store the NONE, READ, WRITE, and BOTH bits separately in the
* st_{access,deny}_bmap field of the stateid, in order to track not
* only what share bits are currently in force, but also what
* combinations of share bits previous opens have used. This allows us
* to enforce the recommendation of rfc 3530 14.2.19 that the server
* return an error if the client attempt to downgrade to a combination
* of share bits not explicable by closing some of its previous opens.
*
* XXX: This enforcement is actually incomplete, since we don't keep
* track of access/deny bit combinations; so, e.g., we allow:
*
* OPEN allow read, deny write
* OPEN allow both, deny none
* DOWNGRADE allow read, deny none
*
* which we should reject.
*/
static void
set_access(unsigned int *access, unsigned long bmap) {
int i;
*access = 0;
for (i = 1; i < 4; i++) {
if (test_bit(i, &bmap))
*access |= i;
}
}
static void
set_deny(unsigned int *deny, unsigned long bmap) {
int i;
*deny = 0;
for (i = 0; i < 4; i++) {
if (test_bit(i, &bmap))
*deny |= i ;
}
}
static int
test_share(struct nfs4_stateid *stp, struct nfsd4_open *open) {
unsigned int access, deny;
set_access(&access, stp->st_access_bmap);
set_deny(&deny, stp->st_deny_bmap);
if ((access & open->op_share_deny) || (deny & open->op_share_access))
return 0;
return 1;
}
static int nfs4_access_to_omode(u32 access)
{
switch (access & NFS4_SHARE_ACCESS_BOTH) {
case NFS4_SHARE_ACCESS_READ:
return O_RDONLY;
case NFS4_SHARE_ACCESS_WRITE:
return O_WRONLY;
case NFS4_SHARE_ACCESS_BOTH:
return O_RDWR;
}
BUG();
}
static int nfs4_access_bmap_to_omode(struct nfs4_stateid *stp)
{
unsigned int access;
set_access(&access, stp->st_access_bmap);
return nfs4_access_to_omode(access);
}
static void unhash_generic_stateid(struct nfs4_stateid *stp)
{
list_del(&stp->st_hash);
list_del(&stp->st_perfile);
list_del(&stp->st_perstateowner);
}
static void free_generic_stateid(struct nfs4_stateid *stp)
{
int oflag;
if (stp->st_access_bmap) {
oflag = nfs4_access_bmap_to_omode(stp);
nfs4_file_put_access(stp->st_file, oflag);
}
put_nfs4_file(stp->st_file);
kmem_cache_free(stateid_slab, stp);
}
static void release_lock_stateid(struct nfs4_stateid *stp)
{
struct file *file;
unhash_generic_stateid(stp);
file = find_any_file(stp->st_file);
if (file)
locks_remove_posix(file, (fl_owner_t)stp->st_stateowner);
free_generic_stateid(stp);
}
static void unhash_lockowner(struct nfs4_stateowner *sop)
{
struct nfs4_stateid *stp;
list_del(&sop->so_idhash);
list_del(&sop->so_strhash);
list_del(&sop->so_perstateid);
while (!list_empty(&sop->so_stateids)) {
stp = list_first_entry(&sop->so_stateids,
struct nfs4_stateid, st_perstateowner);
release_lock_stateid(stp);
}
}
static void release_lockowner(struct nfs4_stateowner *sop)
{
unhash_lockowner(sop);
nfs4_put_stateowner(sop);
}
static void
release_stateid_lockowners(struct nfs4_stateid *open_stp)
{
struct nfs4_stateowner *lock_sop;
while (!list_empty(&open_stp->st_lockowners)) {
lock_sop = list_entry(open_stp->st_lockowners.next,
struct nfs4_stateowner, so_perstateid);
/* list_del(&open_stp->st_lockowners); */
BUG_ON(lock_sop->so_is_open_owner);
release_lockowner(lock_sop);
}
}
static void release_open_stateid(struct nfs4_stateid *stp)
{
unhash_generic_stateid(stp);
release_stateid_lockowners(stp);
free_generic_stateid(stp);
}
static void unhash_openowner(struct nfs4_stateowner *sop)
{
struct nfs4_stateid *stp;
list_del(&sop->so_idhash);
list_del(&sop->so_strhash);
list_del(&sop->so_perclient);
list_del(&sop->so_perstateid); /* XXX: necessary? */
while (!list_empty(&sop->so_stateids)) {
stp = list_first_entry(&sop->so_stateids,
struct nfs4_stateid, st_perstateowner);
release_open_stateid(stp);
}
}
static void release_openowner(struct nfs4_stateowner *sop)
{
unhash_openowner(sop);
list_del(&sop->so_close_lru);
nfs4_put_stateowner(sop);
}
#define SESSION_HASH_SIZE 512
static struct list_head sessionid_hashtbl[SESSION_HASH_SIZE];
static inline int
hash_sessionid(struct nfs4_sessionid *sessionid)
{
struct nfsd4_sessionid *sid = (struct nfsd4_sessionid *)sessionid;
return sid->sequence % SESSION_HASH_SIZE;
}
static inline void
dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid)
{
u32 *ptr = (u32 *)(&sessionid->data[0]);
dprintk("%s: %u:%u:%u:%u\n", fn, ptr[0], ptr[1], ptr[2], ptr[3]);
}
static void
gen_sessionid(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd4_sessionid *sid;
sid = (struct nfsd4_sessionid *)ses->se_sessionid.data;
sid->clientid = clp->cl_clientid;
sid->sequence = current_sessionid++;
sid->reserved = 0;
}
/*
* The protocol defines ca_maxresponssize_cached to include the size of
* the rpc header, but all we need to cache is the data starting after
* the end of the initial SEQUENCE operation--the rest we regenerate
* each time. Therefore we can advertise a ca_maxresponssize_cached
* value that is the number of bytes in our cache plus a few additional
* bytes. In order to stay on the safe side, and not promise more than
* we can cache, those additional bytes must be the minimum possible: 24
* bytes of rpc header (xid through accept state, with AUTH_NULL
* verifier), 12 for the compound header (with zero-length tag), and 44
* for the SEQUENCE op response:
*/
#define NFSD_MIN_HDR_SEQ_SZ (24 + 12 + 44)
static void
free_session_slots(struct nfsd4_session *ses)
{
int i;
for (i = 0; i < ses->se_fchannel.maxreqs; i++)
kfree(ses->se_slots[i]);
}
/*
* We don't actually need to cache the rpc and session headers, so we
* can allocate a little less for each slot:
*/
static inline int slot_bytes(struct nfsd4_channel_attrs *ca)
{
return ca->maxresp_cached - NFSD_MIN_HDR_SEQ_SZ;
}
static int nfsd4_sanitize_slot_size(u32 size)
{
size -= NFSD_MIN_HDR_SEQ_SZ; /* We don't cache the rpc header */
size = min_t(u32, size, NFSD_SLOT_CACHE_SIZE);
return size;
}
/*
* XXX: If we run out of reserved DRC memory we could (up to a point)
* re-negotiate active sessions and reduce their slot usage to make
* rooom for new connections. For now we just fail the create session.
*/
static int nfsd4_get_drc_mem(int slotsize, u32 num)
{
int avail;
num = min_t(u32, num, NFSD_MAX_SLOTS_PER_SESSION);
spin_lock(&nfsd_drc_lock);
avail = min_t(int, NFSD_MAX_MEM_PER_SESSION,
nfsd_drc_max_mem - nfsd_drc_mem_used);
num = min_t(int, num, avail / slotsize);
nfsd_drc_mem_used += num * slotsize;
spin_unlock(&nfsd_drc_lock);
return num;
}
static void nfsd4_put_drc_mem(int slotsize, int num)
{
spin_lock(&nfsd_drc_lock);
nfsd_drc_mem_used -= slotsize * num;
spin_unlock(&nfsd_drc_lock);
}
static struct nfsd4_session *alloc_session(int slotsize, int numslots)
{
struct nfsd4_session *new;
int mem, i;
BUILD_BUG_ON(NFSD_MAX_SLOTS_PER_SESSION * sizeof(struct nfsd4_slot *)
+ sizeof(struct nfsd4_session) > PAGE_SIZE);
mem = numslots * sizeof(struct nfsd4_slot *);
new = kzalloc(sizeof(*new) + mem, GFP_KERNEL);
if (!new)
return NULL;
/* allocate each struct nfsd4_slot and data cache in one piece */
for (i = 0; i < numslots; i++) {
mem = sizeof(struct nfsd4_slot) + slotsize;
new->se_slots[i] = kzalloc(mem, GFP_KERNEL);
if (!new->se_slots[i])
goto out_free;
}
return new;
out_free:
while (i--)
kfree(new->se_slots[i]);
kfree(new);
return NULL;
}
static void init_forechannel_attrs(struct nfsd4_channel_attrs *new, struct nfsd4_channel_attrs *req, int numslots, int slotsize)
{
u32 maxrpc = nfsd_serv->sv_max_mesg;
new->maxreqs = numslots;
new->maxresp_cached = min_t(u32, req->maxresp_cached,
slotsize + NFSD_MIN_HDR_SEQ_SZ);
new->maxreq_sz = min_t(u32, req->maxreq_sz, maxrpc);
new->maxresp_sz = min_t(u32, req->maxresp_sz, maxrpc);
new->maxops = min_t(u32, req->maxops, NFSD_MAX_OPS_PER_COMPOUND);
}
static void free_conn(struct nfsd4_conn *c)
{
svc_xprt_put(c->cn_xprt);
kfree(c);
}
static void nfsd4_conn_lost(struct svc_xpt_user *u)
{
struct nfsd4_conn *c = container_of(u, struct nfsd4_conn, cn_xpt_user);
struct nfs4_client *clp = c->cn_session->se_client;
spin_lock(&clp->cl_lock);
if (!list_empty(&c->cn_persession)) {
list_del(&c->cn_persession);
free_conn(c);
}
spin_unlock(&clp->cl_lock);
nfsd4_probe_callback(clp);
}
static struct nfsd4_conn *alloc_conn(struct svc_rqst *rqstp, u32 flags)
{
struct nfsd4_conn *conn;
conn = kmalloc(sizeof(struct nfsd4_conn), GFP_KERNEL);
if (!conn)
return NULL;
svc_xprt_get(rqstp->rq_xprt);
conn->cn_xprt = rqstp->rq_xprt;
conn->cn_flags = flags;
INIT_LIST_HEAD(&conn->cn_xpt_user.list);
return conn;
}
static void __nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses)
{
conn->cn_session = ses;
list_add(&conn->cn_persession, &ses->se_conns);
}
static void nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
spin_lock(&clp->cl_lock);
__nfsd4_hash_conn(conn, ses);
spin_unlock(&clp->cl_lock);
}
static int nfsd4_register_conn(struct nfsd4_conn *conn)
{
conn->cn_xpt_user.callback = nfsd4_conn_lost;
return register_xpt_user(conn->cn_xprt, &conn->cn_xpt_user);
}
static __be32 nfsd4_new_conn(struct svc_rqst *rqstp, struct nfsd4_session *ses, u32 dir)
{
struct nfsd4_conn *conn;
int ret;
conn = alloc_conn(rqstp, dir);
if (!conn)
return nfserr_jukebox;
nfsd4_hash_conn(conn, ses);
ret = nfsd4_register_conn(conn);
if (ret)
/* oops; xprt is already down: */
nfsd4_conn_lost(&conn->cn_xpt_user);
return nfs_ok;
}
static __be32 nfsd4_new_conn_from_crses(struct svc_rqst *rqstp, struct nfsd4_session *ses)
{
u32 dir = NFS4_CDFC4_FORE;
if (ses->se_flags & SESSION4_BACK_CHAN)
dir |= NFS4_CDFC4_BACK;
return nfsd4_new_conn(rqstp, ses, dir);
}
/* must be called under client_lock */
static void nfsd4_del_conns(struct nfsd4_session *s)
{
struct nfs4_client *clp = s->se_client;
struct nfsd4_conn *c;
spin_lock(&clp->cl_lock);
while (!list_empty(&s->se_conns)) {
c = list_first_entry(&s->se_conns, struct nfsd4_conn, cn_persession);
list_del_init(&c->cn_persession);
spin_unlock(&clp->cl_lock);
unregister_xpt_user(c->cn_xprt, &c->cn_xpt_user);
free_conn(c);
spin_lock(&clp->cl_lock);
}
spin_unlock(&clp->cl_lock);
}
void free_session(struct kref *kref)
{
struct nfsd4_session *ses;
int mem;
ses = container_of(kref, struct nfsd4_session, se_ref);
nfsd4_del_conns(ses);
spin_lock(&nfsd_drc_lock);
mem = ses->se_fchannel.maxreqs * slot_bytes(&ses->se_fchannel);
nfsd_drc_mem_used -= mem;
spin_unlock(&nfsd_drc_lock);
free_session_slots(ses);
kfree(ses);
}
static struct nfsd4_session *alloc_init_session(struct svc_rqst *rqstp, struct nfs4_client *clp, struct nfsd4_create_session *cses)
{
struct nfsd4_session *new;
struct nfsd4_channel_attrs *fchan = &cses->fore_channel;
int numslots, slotsize;
int status;
int idx;
/*
* Note decreasing slot size below client's request may
* make it difficult for client to function correctly, whereas
* decreasing the number of slots will (just?) affect
* performance. When short on memory we therefore prefer to
* decrease number of slots instead of their size.
*/
slotsize = nfsd4_sanitize_slot_size(fchan->maxresp_cached);
numslots = nfsd4_get_drc_mem(slotsize, fchan->maxreqs);
if (numslots < 1)
return NULL;
new = alloc_session(slotsize, numslots);
if (!new) {
nfsd4_put_drc_mem(slotsize, fchan->maxreqs);
return NULL;
}
init_forechannel_attrs(&new->se_fchannel, fchan, numslots, slotsize);
new->se_client = clp;
gen_sessionid(new);
INIT_LIST_HEAD(&new->se_conns);
new->se_cb_seq_nr = 1;
new->se_flags = cses->flags;
new->se_cb_prog = cses->callback_prog;
kref_init(&new->se_ref);
idx = hash_sessionid(&new->se_sessionid);
spin_lock(&client_lock);
list_add(&new->se_hash, &sessionid_hashtbl[idx]);
spin_lock(&clp->cl_lock);
list_add(&new->se_perclnt, &clp->cl_sessions);
spin_unlock(&clp->cl_lock);
spin_unlock(&client_lock);
status = nfsd4_new_conn_from_crses(rqstp, new);
/* whoops: benny points out, status is ignored! (err, or bogus) */
if (status) {
free_session(&new->se_ref);
return NULL;
}
if (cses->flags & SESSION4_BACK_CHAN) {
struct sockaddr *sa = svc_addr(rqstp);
/*
* This is a little silly; with sessions there's no real
* use for the callback address. Use the peer address
* as a reasonable default for now, but consider fixing
* the rpc client not to require an address in the
* future:
*/
rpc_copy_addr((struct sockaddr *)&clp->cl_cb_conn.cb_addr, sa);
clp->cl_cb_conn.cb_addrlen = svc_addr_len(sa);
}
nfsd4_probe_callback(clp);
return new;
}
/* caller must hold client_lock */
static struct nfsd4_session *
find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid)
{
struct nfsd4_session *elem;
int idx;
dump_sessionid(__func__, sessionid);
idx = hash_sessionid(sessionid);
/* Search in the appropriate list */
list_for_each_entry(elem, &sessionid_hashtbl[idx], se_hash) {
if (!memcmp(elem->se_sessionid.data, sessionid->data,
NFS4_MAX_SESSIONID_LEN)) {
return elem;
}
}
dprintk("%s: session not found\n", __func__);
return NULL;
}
/* caller must hold client_lock */
static void
unhash_session(struct nfsd4_session *ses)
{
list_del(&ses->se_hash);
spin_lock(&ses->se_client->cl_lock);
list_del(&ses->se_perclnt);
spin_unlock(&ses->se_client->cl_lock);
}
/* must be called under the client_lock */
static inline void
renew_client_locked(struct nfs4_client *clp)
{
if (is_client_expired(clp)) {
dprintk("%s: client (clientid %08x/%08x) already expired\n",
__func__,
clp->cl_clientid.cl_boot,
clp->cl_clientid.cl_id);
return;
}
/*
* Move client to the end to the LRU list.
*/
dprintk("renewing client (clientid %08x/%08x)\n",
clp->cl_clientid.cl_boot,
clp->cl_clientid.cl_id);
list_move_tail(&clp->cl_lru, &client_lru);
clp->cl_time = get_seconds();
}
static inline void
renew_client(struct nfs4_client *clp)
{
spin_lock(&client_lock);
renew_client_locked(clp);
spin_unlock(&client_lock);
}
/* SETCLIENTID and SETCLIENTID_CONFIRM Helper functions */
static int
STALE_CLIENTID(clientid_t *clid)
{
if (clid->cl_boot == boot_time)
return 0;
dprintk("NFSD stale clientid (%08x/%08x) boot_time %08lx\n",
clid->cl_boot, clid->cl_id, boot_time);
return 1;
}
/*
* XXX Should we use a slab cache ?
* This type of memory management is somewhat inefficient, but we use it
* anyway since SETCLIENTID is not a common operation.
*/
static struct nfs4_client *alloc_client(struct xdr_netobj name)
{
struct nfs4_client *clp;
clp = kzalloc(sizeof(struct nfs4_client), GFP_KERNEL);
if (clp == NULL)
return NULL;
clp->cl_name.data = kmalloc(name.len, GFP_KERNEL);
if (clp->cl_name.data == NULL) {
kfree(clp);
return NULL;
}
memcpy(clp->cl_name.data, name.data, name.len);
clp->cl_name.len = name.len;
return clp;
}
static inline void
free_client(struct nfs4_client *clp)
{
while (!list_empty(&clp->cl_sessions)) {
struct nfsd4_session *ses;
ses = list_entry(clp->cl_sessions.next, struct nfsd4_session,
se_perclnt);
list_del(&ses->se_perclnt);
nfsd4_put_session(ses);
}
if (clp->cl_cred.cr_group_info)
put_group_info(clp->cl_cred.cr_group_info);
kfree(clp->cl_principal);
kfree(clp->cl_name.data);
kfree(clp);
}
void
release_session_client(struct nfsd4_session *session)
{
struct nfs4_client *clp = session->se_client;
if (!atomic_dec_and_lock(&clp->cl_refcount, &client_lock))
return;
if (is_client_expired(clp)) {
free_client(clp);
session->se_client = NULL;
} else
renew_client_locked(clp);
spin_unlock(&client_lock);
}
/* must be called under the client_lock */
static inline void
unhash_client_locked(struct nfs4_client *clp)
{
struct nfsd4_session *ses;
mark_client_expired(clp);
list_del(&clp->cl_lru);
spin_lock(&clp->cl_lock);
list_for_each_entry(ses, &clp->cl_sessions, se_perclnt)
list_del_init(&ses->se_hash);
spin_unlock(&clp->cl_lock);
}
static void
expire_client(struct nfs4_client *clp)
{
struct nfs4_stateowner *sop;
struct nfs4_delegation *dp;
struct list_head reaplist;
INIT_LIST_HEAD(&reaplist);
spin_lock(&recall_lock);
while (!list_empty(&clp->cl_delegations)) {
dp = list_entry(clp->cl_delegations.next, struct nfs4_delegation, dl_perclnt);
list_del_init(&dp->dl_perclnt);
list_move(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&recall_lock);
while (!list_empty(&reaplist)) {
dp = list_entry(reaplist.next, struct nfs4_delegation, dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
unhash_delegation(dp);
}
while (!list_empty(&clp->cl_openowners)) {
sop = list_entry(clp->cl_openowners.next, struct nfs4_stateowner, so_perclient);
release_openowner(sop);
}
nfsd4_shutdown_callback(clp);
if (clp->cl_cb_conn.cb_xprt)
svc_xprt_put(clp->cl_cb_conn.cb_xprt);
list_del(&clp->cl_idhash);
list_del(&clp->cl_strhash);
spin_lock(&client_lock);
unhash_client_locked(clp);
if (atomic_read(&clp->cl_refcount) == 0)
free_client(clp);
spin_unlock(&client_lock);
}
static void copy_verf(struct nfs4_client *target, nfs4_verifier *source)
{
memcpy(target->cl_verifier.data, source->data,
sizeof(target->cl_verifier.data));
}
static void copy_clid(struct nfs4_client *target, struct nfs4_client *source)
{
target->cl_clientid.cl_boot = source->cl_clientid.cl_boot;
target->cl_clientid.cl_id = source->cl_clientid.cl_id;
}
static void copy_cred(struct svc_cred *target, struct svc_cred *source)
{
target->cr_uid = source->cr_uid;
target->cr_gid = source->cr_gid;
target->cr_group_info = source->cr_group_info;
get_group_info(target->cr_group_info);
}
static int same_name(const char *n1, const char *n2)
{
return 0 == memcmp(n1, n2, HEXDIR_LEN);
}
static int
same_verf(nfs4_verifier *v1, nfs4_verifier *v2)
{
return 0 == memcmp(v1->data, v2->data, sizeof(v1->data));
}
static int
same_clid(clientid_t *cl1, clientid_t *cl2)
{
return (cl1->cl_boot == cl2->cl_boot) && (cl1->cl_id == cl2->cl_id);
}
/* XXX what about NGROUP */
static int
same_creds(struct svc_cred *cr1, struct svc_cred *cr2)
{
return cr1->cr_uid == cr2->cr_uid;
}
static void gen_clid(struct nfs4_client *clp)
{
static u32 current_clientid = 1;
clp->cl_clientid.cl_boot = boot_time;
clp->cl_clientid.cl_id = current_clientid++;
}
static void gen_confirm(struct nfs4_client *clp)
{
static u32 i;
u32 *p;
p = (u32 *)clp->cl_confirm.data;
*p++ = get_seconds();
*p++ = i++;
}
static struct nfs4_client *create_client(struct xdr_netobj name, char *recdir,
struct svc_rqst *rqstp, nfs4_verifier *verf)
{
struct nfs4_client *clp;
struct sockaddr *sa = svc_addr(rqstp);
char *princ;
clp = alloc_client(name);
if (clp == NULL)
return NULL;
INIT_LIST_HEAD(&clp->cl_sessions);
princ = svc_gss_principal(rqstp);
if (princ) {
clp->cl_principal = kstrdup(princ, GFP_KERNEL);
if (clp->cl_principal == NULL) {
free_client(clp);
return NULL;
}
}
memcpy(clp->cl_recdir, recdir, HEXDIR_LEN);
atomic_set(&clp->cl_refcount, 0);
clp->cl_cb_state = NFSD4_CB_UNKNOWN;
INIT_LIST_HEAD(&clp->cl_idhash);
INIT_LIST_HEAD(&clp->cl_strhash);
INIT_LIST_HEAD(&clp->cl_openowners);
INIT_LIST_HEAD(&clp->cl_delegations);
INIT_LIST_HEAD(&clp->cl_lru);
INIT_LIST_HEAD(&clp->cl_callbacks);
spin_lock_init(&clp->cl_lock);
INIT_WORK(&clp->cl_cb_null.cb_work, nfsd4_do_callback_rpc);
clp->cl_time = get_seconds();
clear_bit(0, &clp->cl_cb_slot_busy);
rpc_init_wait_queue(&clp->cl_cb_waitq, "Backchannel slot table");
copy_verf(clp, verf);
rpc_copy_addr((struct sockaddr *) &clp->cl_addr, sa);
clp->cl_flavor = rqstp->rq_flavor;
copy_cred(&clp->cl_cred, &rqstp->rq_cred);
gen_confirm(clp);
clp->cl_cb_session = NULL;
return clp;
}
static int check_name(struct xdr_netobj name)
{
if (name.len == 0)
return 0;
if (name.len > NFS4_OPAQUE_LIMIT) {
dprintk("NFSD: check_name: name too long(%d)!\n", name.len);
return 0;
}
return 1;
}
static void
add_to_unconfirmed(struct nfs4_client *clp, unsigned int strhashval)
{
unsigned int idhashval;
list_add(&clp->cl_strhash, &unconf_str_hashtbl[strhashval]);
idhashval = clientid_hashval(clp->cl_clientid.cl_id);
list_add(&clp->cl_idhash, &unconf_id_hashtbl[idhashval]);
renew_client(clp);
}
static void
move_to_confirmed(struct nfs4_client *clp)
{
unsigned int idhashval = clientid_hashval(clp->cl_clientid.cl_id);
unsigned int strhashval;
dprintk("NFSD: move_to_confirm nfs4_client %p\n", clp);
list_move(&clp->cl_idhash, &conf_id_hashtbl[idhashval]);
strhashval = clientstr_hashval(clp->cl_recdir);
list_move(&clp->cl_strhash, &conf_str_hashtbl[strhashval]);
renew_client(clp);
}
static struct nfs4_client *
find_confirmed_client(clientid_t *clid)
{
struct nfs4_client *clp;
unsigned int idhashval = clientid_hashval(clid->cl_id);
list_for_each_entry(clp, &conf_id_hashtbl[idhashval], cl_idhash) {
if (same_clid(&clp->cl_clientid, clid))
return clp;
}
return NULL;
}
static struct nfs4_client *
find_unconfirmed_client(clientid_t *clid)
{
struct nfs4_client *clp;
unsigned int idhashval = clientid_hashval(clid->cl_id);
list_for_each_entry(clp, &unconf_id_hashtbl[idhashval], cl_idhash) {
if (same_clid(&clp->cl_clientid, clid))
return clp;
}
return NULL;
}
static bool clp_used_exchangeid(struct nfs4_client *clp)
{
return clp->cl_exchange_flags != 0;
}
static struct nfs4_client *
find_confirmed_client_by_str(const char *dname, unsigned int hashval)
{
struct nfs4_client *clp;
list_for_each_entry(clp, &conf_str_hashtbl[hashval], cl_strhash) {
if (same_name(clp->cl_recdir, dname))
return clp;
}
return NULL;
}
static struct nfs4_client *
find_unconfirmed_client_by_str(const char *dname, unsigned int hashval)
{
struct nfs4_client *clp;
list_for_each_entry(clp, &unconf_str_hashtbl[hashval], cl_strhash) {
if (same_name(clp->cl_recdir, dname))
return clp;
}
return NULL;
}
static void rpc_svcaddr2sockaddr(struct sockaddr *sa, unsigned short family, union svc_addr_u *svcaddr)
{
switch (family) {
case AF_INET:
((struct sockaddr_in *)sa)->sin_family = AF_INET;
((struct sockaddr_in *)sa)->sin_addr = svcaddr->addr;
return;
case AF_INET6:
((struct sockaddr_in6 *)sa)->sin6_family = AF_INET6;
((struct sockaddr_in6 *)sa)->sin6_addr = svcaddr->addr6;
return;
}
}
static void
gen_callback(struct nfs4_client *clp, struct nfsd4_setclientid *se, struct svc_rqst *rqstp)
{
struct nfs4_cb_conn *conn = &clp->cl_cb_conn;
struct sockaddr *sa = svc_addr(rqstp);
u32 scopeid = rpc_get_scope_id(sa);
unsigned short expected_family;
/* Currently, we only support tcp and tcp6 for the callback channel */
if (se->se_callback_netid_len == 3 &&
!memcmp(se->se_callback_netid_val, "tcp", 3))
expected_family = AF_INET;
else if (se->se_callback_netid_len == 4 &&
!memcmp(se->se_callback_netid_val, "tcp6", 4))
expected_family = AF_INET6;
else
goto out_err;
conn->cb_addrlen = rpc_uaddr2sockaddr(se->se_callback_addr_val,
se->se_callback_addr_len,
(struct sockaddr *)&conn->cb_addr,
sizeof(conn->cb_addr));
if (!conn->cb_addrlen || conn->cb_addr.ss_family != expected_family)
goto out_err;
if (conn->cb_addr.ss_family == AF_INET6)
((struct sockaddr_in6 *)&conn->cb_addr)->sin6_scope_id = scopeid;
conn->cb_prog = se->se_callback_prog;
conn->cb_ident = se->se_callback_ident;
rpc_svcaddr2sockaddr((struct sockaddr *)&conn->cb_saddr, expected_family, &rqstp->rq_daddr);
return;
out_err:
conn->cb_addr.ss_family = AF_UNSPEC;
conn->cb_addrlen = 0;
dprintk(KERN_INFO "NFSD: this client (clientid %08x/%08x) "
"will not receive delegations\n",
clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id);
return;
}
/*
* Cache a reply. nfsd4_check_drc_limit() has bounded the cache size.
*/
void
nfsd4_store_cache_entry(struct nfsd4_compoundres *resp)
{
struct nfsd4_slot *slot = resp->cstate.slot;
unsigned int base;
dprintk("--> %s slot %p\n", __func__, slot);
slot->sl_opcnt = resp->opcnt;
slot->sl_status = resp->cstate.status;
if (nfsd4_not_cached(resp)) {
slot->sl_datalen = 0;
return;
}
slot->sl_datalen = (char *)resp->p - (char *)resp->cstate.datap;
base = (char *)resp->cstate.datap -
(char *)resp->xbuf->head[0].iov_base;
if (read_bytes_from_xdr_buf(resp->xbuf, base, slot->sl_data,
slot->sl_datalen))
WARN("%s: sessions DRC could not cache compound\n", __func__);
return;
}
/*
* Encode the replay sequence operation from the slot values.
* If cachethis is FALSE encode the uncached rep error on the next
* operation which sets resp->p and increments resp->opcnt for
* nfs4svc_encode_compoundres.
*
*/
static __be32
nfsd4_enc_sequence_replay(struct nfsd4_compoundargs *args,
struct nfsd4_compoundres *resp)
{
struct nfsd4_op *op;
struct nfsd4_slot *slot = resp->cstate.slot;
dprintk("--> %s resp->opcnt %d cachethis %u \n", __func__,
resp->opcnt, resp->cstate.slot->sl_cachethis);
/* Encode the replayed sequence operation */
op = &args->ops[resp->opcnt - 1];
nfsd4_encode_operation(resp, op);
/* Return nfserr_retry_uncached_rep in next operation. */
if (args->opcnt > 1 && slot->sl_cachethis == 0) {
op = &args->ops[resp->opcnt++];
op->status = nfserr_retry_uncached_rep;
nfsd4_encode_operation(resp, op);
}
return op->status;
}
/*
* The sequence operation is not cached because we can use the slot and
* session values.
*/
__be32
nfsd4_replay_cache_entry(struct nfsd4_compoundres *resp,
struct nfsd4_sequence *seq)
{
struct nfsd4_slot *slot = resp->cstate.slot;
__be32 status;
dprintk("--> %s slot %p\n", __func__, slot);
/* Either returns 0 or nfserr_retry_uncached */
status = nfsd4_enc_sequence_replay(resp->rqstp->rq_argp, resp);
if (status == nfserr_retry_uncached_rep)
return status;
/* The sequence operation has been encoded, cstate->datap set. */
memcpy(resp->cstate.datap, slot->sl_data, slot->sl_datalen);
resp->opcnt = slot->sl_opcnt;
resp->p = resp->cstate.datap + XDR_QUADLEN(slot->sl_datalen);
status = slot->sl_status;
return status;
}
/*
* Set the exchange_id flags returned by the server.
*/
static void
nfsd4_set_ex_flags(struct nfs4_client *new, struct nfsd4_exchange_id *clid)
{
/* pNFS is not supported */
new->cl_exchange_flags |= EXCHGID4_FLAG_USE_NON_PNFS;
/* Referrals are supported, Migration is not. */
new->cl_exchange_flags |= EXCHGID4_FLAG_SUPP_MOVED_REFER;
/* set the wire flags to return to client. */
clid->flags = new->cl_exchange_flags;
}
__be32
nfsd4_exchange_id(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_exchange_id *exid)
{
struct nfs4_client *unconf, *conf, *new;
int status;
unsigned int strhashval;
char dname[HEXDIR_LEN];
char addr_str[INET6_ADDRSTRLEN];
nfs4_verifier verf = exid->verifier;
struct sockaddr *sa = svc_addr(rqstp);
rpc_ntop(sa, addr_str, sizeof(addr_str));
dprintk("%s rqstp=%p exid=%p clname.len=%u clname.data=%p "
"ip_addr=%s flags %x, spa_how %d\n",
__func__, rqstp, exid, exid->clname.len, exid->clname.data,
addr_str, exid->flags, exid->spa_how);
if (!check_name(exid->clname) || (exid->flags & ~EXCHGID4_FLAG_MASK_A))
return nfserr_inval;
/* Currently only support SP4_NONE */
switch (exid->spa_how) {
case SP4_NONE:
break;
case SP4_SSV:
return nfserr_serverfault;
default:
BUG(); /* checked by xdr code */
case SP4_MACH_CRED:
return nfserr_serverfault; /* no excuse :-/ */
}
status = nfs4_make_rec_clidname(dname, &exid->clname);
if (status)
goto error;
strhashval = clientstr_hashval(dname);
nfs4_lock_state();
status = nfs_ok;
conf = find_confirmed_client_by_str(dname, strhashval);
if (conf) {
if (!clp_used_exchangeid(conf)) {
status = nfserr_clid_inuse; /* XXX: ? */
goto out;
}
if (!same_verf(&verf, &conf->cl_verifier)) {
/* 18.35.4 case 8 */
if (exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A) {
status = nfserr_not_same;
goto out;
}
/* Client reboot: destroy old state */
expire_client(conf);
goto out_new;
}
if (!same_creds(&conf->cl_cred, &rqstp->rq_cred)) {
/* 18.35.4 case 9 */
if (exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A) {
status = nfserr_perm;
goto out;
}
expire_client(conf);
goto out_new;
}
/*
* Set bit when the owner id and verifier map to an already
* confirmed client id (18.35.3).
*/
exid->flags |= EXCHGID4_FLAG_CONFIRMED_R;
/*
* Falling into 18.35.4 case 2, possible router replay.
* Leave confirmed record intact and return same result.
*/
copy_verf(conf, &verf);
new = conf;
goto out_copy;
}
/* 18.35.4 case 7 */
if (exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A) {
status = nfserr_noent;
goto out;
}
unconf = find_unconfirmed_client_by_str(dname, strhashval);
if (unconf) {
/*
* Possible retry or client restart. Per 18.35.4 case 4,
* a new unconfirmed record should be generated regardless
* of whether any properties have changed.
*/
expire_client(unconf);
}
out_new:
/* Normal case */
new = create_client(exid->clname, dname, rqstp, &verf);
if (new == NULL) {
status = nfserr_jukebox;
goto out;
}
gen_clid(new);
add_to_unconfirmed(new, strhashval);
out_copy:
exid->clientid.cl_boot = new->cl_clientid.cl_boot;
exid->clientid.cl_id = new->cl_clientid.cl_id;
exid->seqid = 1;
nfsd4_set_ex_flags(new, exid);
dprintk("nfsd4_exchange_id seqid %d flags %x\n",
new->cl_cs_slot.sl_seqid, new->cl_exchange_flags);
status = nfs_ok;
out:
nfs4_unlock_state();
error:
dprintk("nfsd4_exchange_id returns %d\n", ntohl(status));
return status;
}
static int
check_slot_seqid(u32 seqid, u32 slot_seqid, int slot_inuse)
{
dprintk("%s enter. seqid %d slot_seqid %d\n", __func__, seqid,
slot_seqid);
/* The slot is in use, and no response has been sent. */
if (slot_inuse) {
if (seqid == slot_seqid)
return nfserr_jukebox;
else
return nfserr_seq_misordered;
}
/* Normal */
if (likely(seqid == slot_seqid + 1))
return nfs_ok;
/* Replay */
if (seqid == slot_seqid)
return nfserr_replay_cache;
/* Wraparound */
if (seqid == 1 && (slot_seqid + 1) == 0)
return nfs_ok;
/* Misordered replay or misordered new request */
return nfserr_seq_misordered;
}
/*
* Cache the create session result into the create session single DRC
* slot cache by saving the xdr structure. sl_seqid has been set.
* Do this for solo or embedded create session operations.
*/
static void
nfsd4_cache_create_session(struct nfsd4_create_session *cr_ses,
struct nfsd4_clid_slot *slot, int nfserr)
{
slot->sl_status = nfserr;
memcpy(&slot->sl_cr_ses, cr_ses, sizeof(*cr_ses));
}
static __be32
nfsd4_replay_create_session(struct nfsd4_create_session *cr_ses,
struct nfsd4_clid_slot *slot)
{
memcpy(cr_ses, &slot->sl_cr_ses, sizeof(*cr_ses));
return slot->sl_status;
}
__be32
nfsd4_create_session(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_create_session *cr_ses)
{
struct sockaddr *sa = svc_addr(rqstp);
struct nfs4_client *conf, *unconf;
struct nfsd4_session *new;
struct nfsd4_clid_slot *cs_slot = NULL;
bool confirm_me = false;
int status = 0;
if (cr_ses->flags & ~SESSION4_FLAG_MASK_A)
return nfserr_inval;
nfs4_lock_state();
unconf = find_unconfirmed_client(&cr_ses->clientid);
conf = find_confirmed_client(&cr_ses->clientid);
if (conf) {
cs_slot = &conf->cl_cs_slot;
status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0);
if (status == nfserr_replay_cache) {
dprintk("Got a create_session replay! seqid= %d\n",
cs_slot->sl_seqid);
/* Return the cached reply status */
status = nfsd4_replay_create_session(cr_ses, cs_slot);
goto out;
} else if (cr_ses->seqid != cs_slot->sl_seqid + 1) {
status = nfserr_seq_misordered;
dprintk("Sequence misordered!\n");
dprintk("Expected seqid= %d but got seqid= %d\n",
cs_slot->sl_seqid, cr_ses->seqid);
goto out;
}
} else if (unconf) {
if (!same_creds(&unconf->cl_cred, &rqstp->rq_cred) ||
!rpc_cmp_addr(sa, (struct sockaddr *) &unconf->cl_addr)) {
status = nfserr_clid_inuse;
goto out;
}
cs_slot = &unconf->cl_cs_slot;
status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0);
if (status) {
/* an unconfirmed replay returns misordered */
status = nfserr_seq_misordered;
goto out;
}
confirm_me = true;
conf = unconf;
} else {
status = nfserr_stale_clientid;
goto out;
}
/*
* XXX: we should probably set this at creation time, and check
* for consistent minorversion use throughout:
*/
conf->cl_minorversion = 1;
/*
* We do not support RDMA or persistent sessions
*/
cr_ses->flags &= ~SESSION4_PERSIST;
cr_ses->flags &= ~SESSION4_RDMA;
status = nfserr_jukebox;
new = alloc_init_session(rqstp, conf, cr_ses);
if (!new)
goto out;
status = nfs_ok;
memcpy(cr_ses->sessionid.data, new->se_sessionid.data,
NFS4_MAX_SESSIONID_LEN);
memcpy(&cr_ses->fore_channel, &new->se_fchannel,
sizeof(struct nfsd4_channel_attrs));
cs_slot->sl_seqid++;
cr_ses->seqid = cs_slot->sl_seqid;
/* cache solo and embedded create sessions under the state lock */
nfsd4_cache_create_session(cr_ses, cs_slot, status);
if (confirm_me)
move_to_confirmed(conf);
out:
nfs4_unlock_state();
dprintk("%s returns %d\n", __func__, ntohl(status));
return status;
}
static bool nfsd4_last_compound_op(struct svc_rqst *rqstp)
{
struct nfsd4_compoundres *resp = rqstp->rq_resp;
struct nfsd4_compoundargs *argp = rqstp->rq_argp;
return argp->opcnt == resp->opcnt;
}
static __be32 nfsd4_map_bcts_dir(u32 *dir)
{
switch (*dir) {
case NFS4_CDFC4_FORE:
case NFS4_CDFC4_BACK:
return nfs_ok;
case NFS4_CDFC4_FORE_OR_BOTH:
case NFS4_CDFC4_BACK_OR_BOTH:
*dir = NFS4_CDFC4_BOTH;
return nfs_ok;
};
return nfserr_inval;
}
__be32 nfsd4_bind_conn_to_session(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_bind_conn_to_session *bcts)
{
__be32 status;
if (!nfsd4_last_compound_op(rqstp))
return nfserr_not_only_op;
spin_lock(&client_lock);
cstate->session = find_in_sessionid_hashtbl(&bcts->sessionid);
/* Sorta weird: we only need the refcnt'ing because new_conn acquires
* client_lock iself: */
if (cstate->session) {
nfsd4_get_session(cstate->session);
atomic_inc(&cstate->session->se_client->cl_refcount);
}
spin_unlock(&client_lock);
if (!cstate->session)
return nfserr_badsession;
status = nfsd4_map_bcts_dir(&bcts->dir);
if (!status)
nfsd4_new_conn(rqstp, cstate->session, bcts->dir);
return status;
}
static bool nfsd4_compound_in_session(struct nfsd4_session *session, struct nfs4_sessionid *sid)
{
if (!session)
return 0;
return !memcmp(sid, &session->se_sessionid, sizeof(*sid));
}
__be32
nfsd4_destroy_session(struct svc_rqst *r,
struct nfsd4_compound_state *cstate,
struct nfsd4_destroy_session *sessionid)
{
struct nfsd4_session *ses;
u32 status = nfserr_badsession;
/* Notes:
* - The confirmed nfs4_client->cl_sessionid holds destroyed sessinid
* - Should we return nfserr_back_chan_busy if waiting for
* callbacks on to-be-destroyed session?
* - Do we need to clear any callback info from previous session?
*/
if (nfsd4_compound_in_session(cstate->session, &sessionid->sessionid)) {
if (!nfsd4_last_compound_op(r))
return nfserr_not_only_op;
}
dump_sessionid(__func__, &sessionid->sessionid);
spin_lock(&client_lock);
ses = find_in_sessionid_hashtbl(&sessionid->sessionid);
if (!ses) {
spin_unlock(&client_lock);
goto out;
}
unhash_session(ses);
spin_unlock(&client_lock);
nfs4_lock_state();
nfsd4_probe_callback_sync(ses->se_client);
nfs4_unlock_state();
nfsd4_del_conns(ses);
nfsd4_put_session(ses);
status = nfs_ok;
out:
dprintk("%s returns %d\n", __func__, ntohl(status));
return status;
}
static struct nfsd4_conn *__nfsd4_find_conn(struct svc_xprt *xpt, struct nfsd4_session *s)
{
struct nfsd4_conn *c;
list_for_each_entry(c, &s->se_conns, cn_persession) {
if (c->cn_xprt == xpt) {
return c;
}
}
return NULL;
}
static void nfsd4_sequence_check_conn(struct nfsd4_conn *new, struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd4_conn *c;
int ret;
spin_lock(&clp->cl_lock);
c = __nfsd4_find_conn(new->cn_xprt, ses);
if (c) {
spin_unlock(&clp->cl_lock);
free_conn(new);
return;
}
__nfsd4_hash_conn(new, ses);
spin_unlock(&clp->cl_lock);
ret = nfsd4_register_conn(new);
if (ret)
/* oops; xprt is already down: */
nfsd4_conn_lost(&new->cn_xpt_user);
return;
}
static bool nfsd4_session_too_many_ops(struct svc_rqst *rqstp, struct nfsd4_session *session)
{
struct nfsd4_compoundargs *args = rqstp->rq_argp;
return args->opcnt > session->se_fchannel.maxops;
}
__be32
nfsd4_sequence(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_sequence *seq)
{
struct nfsd4_compoundres *resp = rqstp->rq_resp;
struct nfsd4_session *session;
struct nfsd4_slot *slot;
struct nfsd4_conn *conn;
int status;
if (resp->opcnt != 1)
return nfserr_sequence_pos;
/*
* Will be either used or freed by nfsd4_sequence_check_conn
* below.
*/
conn = alloc_conn(rqstp, NFS4_CDFC4_FORE);
if (!conn)
return nfserr_jukebox;
spin_lock(&client_lock);
status = nfserr_badsession;
session = find_in_sessionid_hashtbl(&seq->sessionid);
if (!session)
goto out;
status = nfserr_too_many_ops;
if (nfsd4_session_too_many_ops(rqstp, session))
goto out;
status = nfserr_badslot;
if (seq->slotid >= session->se_fchannel.maxreqs)
goto out;
slot = session->se_slots[seq->slotid];
dprintk("%s: slotid %d\n", __func__, seq->slotid);
/* We do not negotiate the number of slots yet, so set the
* maxslots to the session maxreqs which is used to encode
* sr_highest_slotid and the sr_target_slot id to maxslots */
seq->maxslots = session->se_fchannel.maxreqs;
status = check_slot_seqid(seq->seqid, slot->sl_seqid, slot->sl_inuse);
if (status == nfserr_replay_cache) {
cstate->slot = slot;
cstate->session = session;
/* Return the cached reply status and set cstate->status
* for nfsd4_proc_compound processing */
status = nfsd4_replay_cache_entry(resp, seq);
cstate->status = nfserr_replay_cache;
goto out;
}
if (status)
goto out;
nfsd4_sequence_check_conn(conn, session);
conn = NULL;
/* Success! bump slot seqid */
slot->sl_inuse = true;
slot->sl_seqid = seq->seqid;
slot->sl_cachethis = seq->cachethis;
cstate->slot = slot;
cstate->session = session;
out:
/* Hold a session reference until done processing the compound. */
if (cstate->session) {
struct nfs4_client *clp = session->se_client;
nfsd4_get_session(cstate->session);
atomic_inc(&clp->cl_refcount);
if (clp->cl_cb_state == NFSD4_CB_DOWN)
seq->status_flags |= SEQ4_STATUS_CB_PATH_DOWN;
}
kfree(conn);
spin_unlock(&client_lock);
dprintk("%s: return %d\n", __func__, ntohl(status));
return status;
}
__be32
nfsd4_reclaim_complete(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_reclaim_complete *rc)
{
int status = 0;
if (rc->rca_one_fs) {
if (!cstate->current_fh.fh_dentry)
return nfserr_nofilehandle;
/*
* We don't take advantage of the rca_one_fs case.
* That's OK, it's optional, we can safely ignore it.
*/
return nfs_ok;
}
nfs4_lock_state();
status = nfserr_complete_already;
if (cstate->session->se_client->cl_firststate)
goto out;
status = nfserr_stale_clientid;
if (is_client_expired(cstate->session->se_client))
/*
* The following error isn't really legal.
* But we only get here if the client just explicitly
* destroyed the client. Surely it no longer cares what
* error it gets back on an operation for the dead
* client.
*/
goto out;
status = nfs_ok;
nfsd4_create_clid_dir(cstate->session->se_client);
out:
nfs4_unlock_state();
return status;
}
__be32
nfsd4_setclientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_setclientid *setclid)
{
struct xdr_netobj clname = {
.len = setclid->se_namelen,
.data = setclid->se_name,
};
nfs4_verifier clverifier = setclid->se_verf;
unsigned int strhashval;
struct nfs4_client *conf, *unconf, *new;
__be32 status;
char dname[HEXDIR_LEN];
if (!check_name(clname))
return nfserr_inval;
status = nfs4_make_rec_clidname(dname, &clname);
if (status)
return status;
/*
* XXX The Duplicate Request Cache (DRC) has been checked (??)
* We get here on a DRC miss.
*/
strhashval = clientstr_hashval(dname);
nfs4_lock_state();
conf = find_confirmed_client_by_str(dname, strhashval);
if (conf) {
/* RFC 3530 14.2.33 CASE 0: */
status = nfserr_clid_inuse;
if (clp_used_exchangeid(conf))
goto out;
if (!same_creds(&conf->cl_cred, &rqstp->rq_cred)) {
char addr_str[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *) &conf->cl_addr, addr_str,
sizeof(addr_str));
dprintk("NFSD: setclientid: string in use by client "
"at %s\n", addr_str);
goto out;
}
}
/*
* section 14.2.33 of RFC 3530 (under the heading "IMPLEMENTATION")
* has a description of SETCLIENTID request processing consisting
* of 5 bullet points, labeled as CASE0 - CASE4 below.
*/
unconf = find_unconfirmed_client_by_str(dname, strhashval);
status = nfserr_resource;
if (!conf) {
/*
* RFC 3530 14.2.33 CASE 4:
* placed first, because it is the normal case
*/
if (unconf)
expire_client(unconf);
new = create_client(clname, dname, rqstp, &clverifier);
if (new == NULL)
goto out;
gen_clid(new);
} else if (same_verf(&conf->cl_verifier, &clverifier)) {
/*
* RFC 3530 14.2.33 CASE 1:
* probable callback update
*/
if (unconf) {
/* Note this is removing unconfirmed {*x***},
* which is stronger than RFC recommended {vxc**}.
* This has the advantage that there is at most
* one {*x***} in either list at any time.
*/
expire_client(unconf);
}
new = create_client(clname, dname, rqstp, &clverifier);
if (new == NULL)
goto out;
copy_clid(new, conf);
} else if (!unconf) {
/*
* RFC 3530 14.2.33 CASE 2:
* probable client reboot; state will be removed if
* confirmed.
*/
new = create_client(clname, dname, rqstp, &clverifier);
if (new == NULL)
goto out;
gen_clid(new);
} else {
/*
* RFC 3530 14.2.33 CASE 3:
* probable client reboot; state will be removed if
* confirmed.
*/
expire_client(unconf);
new = create_client(clname, dname, rqstp, &clverifier);
if (new == NULL)
goto out;
gen_clid(new);
}
/*
* XXX: we should probably set this at creation time, and check
* for consistent minorversion use throughout:
*/
new->cl_minorversion = 0;
gen_callback(new, setclid, rqstp);
add_to_unconfirmed(new, strhashval);
setclid->se_clientid.cl_boot = new->cl_clientid.cl_boot;
setclid->se_clientid.cl_id = new->cl_clientid.cl_id;
memcpy(setclid->se_confirm.data, new->cl_confirm.data, sizeof(setclid->se_confirm.data));
status = nfs_ok;
out:
nfs4_unlock_state();
return status;
}
/*
* Section 14.2.34 of RFC 3530 (under the heading "IMPLEMENTATION") has
* a description of SETCLIENTID_CONFIRM request processing consisting of 4
* bullets, labeled as CASE1 - CASE4 below.
*/
__be32
nfsd4_setclientid_confirm(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_setclientid_confirm *setclientid_confirm)
{
struct sockaddr *sa = svc_addr(rqstp);
struct nfs4_client *conf, *unconf;
nfs4_verifier confirm = setclientid_confirm->sc_confirm;
clientid_t * clid = &setclientid_confirm->sc_clientid;
__be32 status;
if (STALE_CLIENTID(clid))
return nfserr_stale_clientid;
/*
* XXX The Duplicate Request Cache (DRC) has been checked (??)
* We get here on a DRC miss.
*/
nfs4_lock_state();
conf = find_confirmed_client(clid);
unconf = find_unconfirmed_client(clid);
status = nfserr_clid_inuse;
if (conf && !rpc_cmp_addr((struct sockaddr *) &conf->cl_addr, sa))
goto out;
if (unconf && !rpc_cmp_addr((struct sockaddr *) &unconf->cl_addr, sa))
goto out;
/*
* section 14.2.34 of RFC 3530 has a description of
* SETCLIENTID_CONFIRM request processing consisting
* of 4 bullet points, labeled as CASE1 - CASE4 below.
*/
if (conf && unconf && same_verf(&confirm, &unconf->cl_confirm)) {
/*
* RFC 3530 14.2.34 CASE 1:
* callback update
*/
if (!same_creds(&conf->cl_cred, &unconf->cl_cred))
status = nfserr_clid_inuse;
else {
nfsd4_change_callback(conf, &unconf->cl_cb_conn);
nfsd4_probe_callback(conf);
expire_client(unconf);
status = nfs_ok;
}
} else if (conf && !unconf) {
/*
* RFC 3530 14.2.34 CASE 2:
* probable retransmitted request; play it safe and
* do nothing.
*/
if (!same_creds(&conf->cl_cred, &rqstp->rq_cred))
status = nfserr_clid_inuse;
else
status = nfs_ok;
} else if (!conf && unconf
&& same_verf(&unconf->cl_confirm, &confirm)) {
/*
* RFC 3530 14.2.34 CASE 3:
* Normal case; new or rebooted client:
*/
if (!same_creds(&unconf->cl_cred, &rqstp->rq_cred)) {
status = nfserr_clid_inuse;
} else {
unsigned int hash =
clientstr_hashval(unconf->cl_recdir);
conf = find_confirmed_client_by_str(unconf->cl_recdir,
hash);
if (conf) {
nfsd4_remove_clid_dir(conf);
expire_client(conf);
}
move_to_confirmed(unconf);
conf = unconf;
nfsd4_probe_callback(conf);
status = nfs_ok;
}
} else if ((!conf || (conf && !same_verf(&conf->cl_confirm, &confirm)))
&& (!unconf || (unconf && !same_verf(&unconf->cl_confirm,
&confirm)))) {
/*
* RFC 3530 14.2.34 CASE 4:
* Client probably hasn't noticed that we rebooted yet.
*/
status = nfserr_stale_clientid;
} else {
/* check that we have hit one of the cases...*/
status = nfserr_clid_inuse;
}
out:
nfs4_unlock_state();
return status;
}
/* OPEN Share state helper functions */
static inline struct nfs4_file *
alloc_init_file(struct inode *ino)
{
struct nfs4_file *fp;
unsigned int hashval = file_hashval(ino);
fp = kmem_cache_alloc(file_slab, GFP_KERNEL);
if (fp) {
atomic_set(&fp->fi_ref, 1);
INIT_LIST_HEAD(&fp->fi_hash);
INIT_LIST_HEAD(&fp->fi_stateids);
INIT_LIST_HEAD(&fp->fi_delegations);
fp->fi_inode = igrab(ino);
fp->fi_id = current_fileid++;
fp->fi_had_conflict = false;
fp->fi_lease = NULL;
memset(fp->fi_fds, 0, sizeof(fp->fi_fds));
memset(fp->fi_access, 0, sizeof(fp->fi_access));
spin_lock(&recall_lock);
list_add(&fp->fi_hash, &file_hashtbl[hashval]);
spin_unlock(&recall_lock);
return fp;
}
return NULL;
}
static void
nfsd4_free_slab(struct kmem_cache **slab)
{
if (*slab == NULL)
return;
kmem_cache_destroy(*slab);
*slab = NULL;
}
void
nfsd4_free_slabs(void)
{
nfsd4_free_slab(&stateowner_slab);
nfsd4_free_slab(&file_slab);
nfsd4_free_slab(&stateid_slab);
nfsd4_free_slab(&deleg_slab);
}
static int
nfsd4_init_slabs(void)
{
stateowner_slab = kmem_cache_create("nfsd4_stateowners",
sizeof(struct nfs4_stateowner), 0, 0, NULL);
if (stateowner_slab == NULL)
goto out_nomem;
file_slab = kmem_cache_create("nfsd4_files",
sizeof(struct nfs4_file), 0, 0, NULL);
if (file_slab == NULL)
goto out_nomem;
stateid_slab = kmem_cache_create("nfsd4_stateids",
sizeof(struct nfs4_stateid), 0, 0, NULL);
if (stateid_slab == NULL)
goto out_nomem;
deleg_slab = kmem_cache_create("nfsd4_delegations",
sizeof(struct nfs4_delegation), 0, 0, NULL);
if (deleg_slab == NULL)
goto out_nomem;
return 0;
out_nomem:
nfsd4_free_slabs();
dprintk("nfsd4: out of memory while initializing nfsv4\n");
return -ENOMEM;
}
void
nfs4_free_stateowner(struct kref *kref)
{
struct nfs4_stateowner *sop =
container_of(kref, struct nfs4_stateowner, so_ref);
kfree(sop->so_owner.data);
kmem_cache_free(stateowner_slab, sop);
}
static inline struct nfs4_stateowner *
alloc_stateowner(struct xdr_netobj *owner)
{
struct nfs4_stateowner *sop;
if ((sop = kmem_cache_alloc(stateowner_slab, GFP_KERNEL))) {
if ((sop->so_owner.data = kmalloc(owner->len, GFP_KERNEL))) {
memcpy(sop->so_owner.data, owner->data, owner->len);
sop->so_owner.len = owner->len;
kref_init(&sop->so_ref);
return sop;
}
kmem_cache_free(stateowner_slab, sop);
}
return NULL;
}
static struct nfs4_stateowner *
alloc_init_open_stateowner(unsigned int strhashval, struct nfs4_client *clp, struct nfsd4_open *open) {
struct nfs4_stateowner *sop;
struct nfs4_replay *rp;
unsigned int idhashval;
if (!(sop = alloc_stateowner(&open->op_owner)))
return NULL;
idhashval = ownerid_hashval(current_ownerid);
INIT_LIST_HEAD(&sop->so_idhash);
INIT_LIST_HEAD(&sop->so_strhash);
INIT_LIST_HEAD(&sop->so_perclient);
INIT_LIST_HEAD(&sop->so_stateids);
INIT_LIST_HEAD(&sop->so_perstateid); /* not used */
INIT_LIST_HEAD(&sop->so_close_lru);
sop->so_time = 0;
list_add(&sop->so_idhash, &ownerid_hashtbl[idhashval]);
list_add(&sop->so_strhash, &ownerstr_hashtbl[strhashval]);
list_add(&sop->so_perclient, &clp->cl_openowners);
sop->so_is_open_owner = 1;
sop->so_id = current_ownerid++;
sop->so_client = clp;
sop->so_seqid = open->op_seqid;
sop->so_confirmed = 0;
rp = &sop->so_replay;
rp->rp_status = nfserr_serverfault;
rp->rp_buflen = 0;
rp->rp_buf = rp->rp_ibuf;
return sop;
}
static inline void
init_stateid(struct nfs4_stateid *stp, struct nfs4_file *fp, struct nfsd4_open *open) {
struct nfs4_stateowner *sop = open->op_stateowner;
unsigned int hashval = stateid_hashval(sop->so_id, fp->fi_id);
INIT_LIST_HEAD(&stp->st_hash);
INIT_LIST_HEAD(&stp->st_perstateowner);
INIT_LIST_HEAD(&stp->st_lockowners);
INIT_LIST_HEAD(&stp->st_perfile);
list_add(&stp->st_hash, &stateid_hashtbl[hashval]);
list_add(&stp->st_perstateowner, &sop->so_stateids);
list_add(&stp->st_perfile, &fp->fi_stateids);
stp->st_stateowner = sop;
get_nfs4_file(fp);
stp->st_file = fp;
stp->st_stateid.si_boot = boot_time;
stp->st_stateid.si_stateownerid = sop->so_id;
stp->st_stateid.si_fileid = fp->fi_id;
stp->st_stateid.si_generation = 0;
stp->st_access_bmap = 0;
stp->st_deny_bmap = 0;
__set_bit(open->op_share_access & ~NFS4_SHARE_WANT_MASK,
&stp->st_access_bmap);
__set_bit(open->op_share_deny, &stp->st_deny_bmap);
stp->st_openstp = NULL;
}
static void
move_to_close_lru(struct nfs4_stateowner *sop)
{
dprintk("NFSD: move_to_close_lru nfs4_stateowner %p\n", sop);
list_move_tail(&sop->so_close_lru, &close_lru);
sop->so_time = get_seconds();
}
static int
same_owner_str(struct nfs4_stateowner *sop, struct xdr_netobj *owner,
clientid_t *clid)
{
return (sop->so_owner.len == owner->len) &&
0 == memcmp(sop->so_owner.data, owner->data, owner->len) &&
(sop->so_client->cl_clientid.cl_id == clid->cl_id);
}
static struct nfs4_stateowner *
find_openstateowner_str(unsigned int hashval, struct nfsd4_open *open)
{
struct nfs4_stateowner *so = NULL;
list_for_each_entry(so, &ownerstr_hashtbl[hashval], so_strhash) {
if (same_owner_str(so, &open->op_owner, &open->op_clientid))
return so;
}
return NULL;
}
/* search file_hashtbl[] for file */
static struct nfs4_file *
find_file(struct inode *ino)
{
unsigned int hashval = file_hashval(ino);
struct nfs4_file *fp;
spin_lock(&recall_lock);
list_for_each_entry(fp, &file_hashtbl[hashval], fi_hash) {
if (fp->fi_inode == ino) {
get_nfs4_file(fp);
spin_unlock(&recall_lock);
return fp;
}
}
spin_unlock(&recall_lock);
return NULL;
}
static inline int access_valid(u32 x, u32 minorversion)
{
if ((x & NFS4_SHARE_ACCESS_MASK) < NFS4_SHARE_ACCESS_READ)
return 0;
if ((x & NFS4_SHARE_ACCESS_MASK) > NFS4_SHARE_ACCESS_BOTH)
return 0;
x &= ~NFS4_SHARE_ACCESS_MASK;
if (minorversion && x) {
if ((x & NFS4_SHARE_WANT_MASK) > NFS4_SHARE_WANT_CANCEL)
return 0;
if ((x & NFS4_SHARE_WHEN_MASK) > NFS4_SHARE_PUSH_DELEG_WHEN_UNCONTENDED)
return 0;
x &= ~(NFS4_SHARE_WANT_MASK | NFS4_SHARE_WHEN_MASK);
}
if (x)
return 0;
return 1;
}
static inline int deny_valid(u32 x)
{
/* Note: unlike access bits, deny bits may be zero. */
return x <= NFS4_SHARE_DENY_BOTH;
}
/*
* Called to check deny when READ with all zero stateid or
* WRITE with all zero or all one stateid
*/
static __be32
nfs4_share_conflict(struct svc_fh *current_fh, unsigned int deny_type)
{
struct inode *ino = current_fh->fh_dentry->d_inode;
struct nfs4_file *fp;
struct nfs4_stateid *stp;
__be32 ret;
dprintk("NFSD: nfs4_share_conflict\n");
fp = find_file(ino);
if (!fp)
return nfs_ok;
ret = nfserr_locked;
/* Search for conflicting share reservations */
list_for_each_entry(stp, &fp->fi_stateids, st_perfile) {
if (test_bit(deny_type, &stp->st_deny_bmap) ||
test_bit(NFS4_SHARE_DENY_BOTH, &stp->st_deny_bmap))
goto out;
}
ret = nfs_ok;
out:
put_nfs4_file(fp);
return ret;
}
static inline void
nfs4_file_downgrade(struct nfs4_file *fp, unsigned int share_access)
{
if (share_access & NFS4_SHARE_ACCESS_WRITE)
nfs4_file_put_access(fp, O_WRONLY);
if (share_access & NFS4_SHARE_ACCESS_READ)
nfs4_file_put_access(fp, O_RDONLY);
}
static void nfsd_break_one_deleg(struct nfs4_delegation *dp)
{
/* We're assuming the state code never drops its reference
* without first removing the lease. Since we're in this lease
* callback (and since the lease code is serialized by the kernel
* lock) we know the server hasn't removed the lease yet, we know
* it's safe to take a reference: */
atomic_inc(&dp->dl_count);
list_add_tail(&dp->dl_recall_lru, &del_recall_lru);
/* only place dl_time is set. protected by lock_flocks*/
dp->dl_time = get_seconds();
nfsd4_cb_recall(dp);
}
/* Called from break_lease() with lock_flocks() held. */
static void nfsd_break_deleg_cb(struct file_lock *fl)
{
struct nfs4_file *fp = (struct nfs4_file *)fl->fl_owner;
struct nfs4_delegation *dp;
BUG_ON(!fp);
/* We assume break_lease is only called once per lease: */
BUG_ON(fp->fi_had_conflict);
/*
* We don't want the locks code to timeout the lease for us;
* we'll remove it ourself if a delegation isn't returned
* in time:
*/
fl->fl_break_time = 0;
spin_lock(&recall_lock);
fp->fi_had_conflict = true;
list_for_each_entry(dp, &fp->fi_delegations, dl_perfile)
nfsd_break_one_deleg(dp);
spin_unlock(&recall_lock);
}
static
int nfsd_change_deleg_cb(struct file_lock **onlist, int arg)
{
if (arg & F_UNLCK)
return lease_modify(onlist, arg);
else
return -EAGAIN;
}
static const struct lock_manager_operations nfsd_lease_mng_ops = {
.fl_break = nfsd_break_deleg_cb,
.fl_change = nfsd_change_deleg_cb,
};
__be32
nfsd4_process_open1(struct nfsd4_compound_state *cstate,
struct nfsd4_open *open)
{
clientid_t *clientid = &open->op_clientid;
struct nfs4_client *clp = NULL;
unsigned int strhashval;
struct nfs4_stateowner *sop = NULL;
if (!check_name(open->op_owner))
return nfserr_inval;
if (STALE_CLIENTID(&open->op_clientid))
return nfserr_stale_clientid;
strhashval = ownerstr_hashval(clientid->cl_id, open->op_owner);
sop = find_openstateowner_str(strhashval, open);
open->op_stateowner = sop;
if (!sop) {
/* Make sure the client's lease hasn't expired. */
clp = find_confirmed_client(clientid);
if (clp == NULL)
return nfserr_expired;
goto renew;
}
/* When sessions are used, skip open sequenceid processing */
if (nfsd4_has_session(cstate))
goto renew;
if (!sop->so_confirmed) {
/* Replace unconfirmed owners without checking for replay. */
clp = sop->so_client;
release_openowner(sop);
open->op_stateowner = NULL;
goto renew;
}
if (open->op_seqid == sop->so_seqid - 1) {
if (sop->so_replay.rp_buflen)
return nfserr_replay_me;
/* The original OPEN failed so spectacularly
* that we don't even have replay data saved!
* Therefore, we have no choice but to continue
* processing this OPEN; presumably, we'll
* fail again for the same reason.
*/
dprintk("nfsd4_process_open1: replay with no replay cache\n");
goto renew;
}
if (open->op_seqid != sop->so_seqid)
return nfserr_bad_seqid;
renew:
if (open->op_stateowner == NULL) {
sop = alloc_init_open_stateowner(strhashval, clp, open);
if (sop == NULL)
return nfserr_resource;
open->op_stateowner = sop;
}
list_del_init(&sop->so_close_lru);
renew_client(sop->so_client);
return nfs_ok;
}
static inline __be32
nfs4_check_delegmode(struct nfs4_delegation *dp, int flags)
{
if ((flags & WR_STATE) && (dp->dl_type == NFS4_OPEN_DELEGATE_READ))
return nfserr_openmode;
else
return nfs_ok;
}
static struct nfs4_delegation *
find_delegation_file(struct nfs4_file *fp, stateid_t *stid)
{
struct nfs4_delegation *dp;
spin_lock(&recall_lock);
list_for_each_entry(dp, &fp->fi_delegations, dl_perfile)
if (dp->dl_stateid.si_stateownerid == stid->si_stateownerid) {
spin_unlock(&recall_lock);
return dp;
}
spin_unlock(&recall_lock);
return NULL;
}
static int share_access_to_flags(u32 share_access)
{
share_access &= ~NFS4_SHARE_WANT_MASK;
return share_access == NFS4_SHARE_ACCESS_READ ? RD_STATE : WR_STATE;
}
static __be32
nfs4_check_deleg(struct nfs4_file *fp, struct nfsd4_open *open,
struct nfs4_delegation **dp)
{
int flags;
__be32 status = nfserr_bad_stateid;
*dp = find_delegation_file(fp, &open->op_delegate_stateid);
if (*dp == NULL)
goto out;
flags = share_access_to_flags(open->op_share_access);
status = nfs4_check_delegmode(*dp, flags);
if (status)
*dp = NULL;
out:
if (open->op_claim_type != NFS4_OPEN_CLAIM_DELEGATE_CUR)
return nfs_ok;
if (status)
return status;
open->op_stateowner->so_confirmed = 1;
return nfs_ok;
}
static __be32
nfs4_check_open(struct nfs4_file *fp, struct nfsd4_open *open, struct nfs4_stateid **stpp)
{
struct nfs4_stateid *local;
__be32 status = nfserr_share_denied;
struct nfs4_stateowner *sop = open->op_stateowner;
list_for_each_entry(local, &fp->fi_stateids, st_perfile) {
/* ignore lock owners */
if (local->st_stateowner->so_is_open_owner == 0)
continue;
/* remember if we have seen this open owner */
if (local->st_stateowner == sop)
*stpp = local;
/* check for conflicting share reservations */
if (!test_share(local, open))
goto out;
}
status = 0;
out:
return status;
}
static inline struct nfs4_stateid *
nfs4_alloc_stateid(void)
{
return kmem_cache_alloc(stateid_slab, GFP_KERNEL);
}
static inline int nfs4_access_to_access(u32 nfs4_access)
{
int flags = 0;
if (nfs4_access & NFS4_SHARE_ACCESS_READ)
flags |= NFSD_MAY_READ;
if (nfs4_access & NFS4_SHARE_ACCESS_WRITE)
flags |= NFSD_MAY_WRITE;
return flags;
}
static __be32 nfs4_get_vfs_file(struct svc_rqst *rqstp, struct nfs4_file
*fp, struct svc_fh *cur_fh, u32 nfs4_access)
{
__be32 status;
int oflag = nfs4_access_to_omode(nfs4_access);
int access = nfs4_access_to_access(nfs4_access);
if (!fp->fi_fds[oflag]) {
status = nfsd_open(rqstp, cur_fh, S_IFREG, access,
&fp->fi_fds[oflag]);
if (status)
return status;
}
nfs4_file_get_access(fp, oflag);
return nfs_ok;
}
static __be32
nfs4_new_open(struct svc_rqst *rqstp, struct nfs4_stateid **stpp,
struct nfs4_file *fp, struct svc_fh *cur_fh,
struct nfsd4_open *open)
{
struct nfs4_stateid *stp;
__be32 status;
stp = nfs4_alloc_stateid();
if (stp == NULL)
return nfserr_resource;
status = nfs4_get_vfs_file(rqstp, fp, cur_fh, open->op_share_access);
if (status) {
kmem_cache_free(stateid_slab, stp);
return status;
}
*stpp = stp;
return 0;
}
static inline __be32
nfsd4_truncate(struct svc_rqst *rqstp, struct svc_fh *fh,
struct nfsd4_open *open)
{
struct iattr iattr = {
.ia_valid = ATTR_SIZE,
.ia_size = 0,
};
if (!open->op_truncate)
return 0;
if (!(open->op_share_access & NFS4_SHARE_ACCESS_WRITE))
return nfserr_inval;
return nfsd_setattr(rqstp, fh, &iattr, 0, (time_t)0);
}
static __be32
nfs4_upgrade_open(struct svc_rqst *rqstp, struct nfs4_file *fp, struct svc_fh *cur_fh, struct nfs4_stateid *stp, struct nfsd4_open *open)
{
u32 op_share_access = open->op_share_access & ~NFS4_SHARE_WANT_MASK;
bool new_access;
__be32 status;
new_access = !test_bit(op_share_access, &stp->st_access_bmap);
if (new_access) {
status = nfs4_get_vfs_file(rqstp, fp, cur_fh, op_share_access);
if (status)
return status;
}
status = nfsd4_truncate(rqstp, cur_fh, open);
if (status) {
if (new_access) {
int oflag = nfs4_access_to_omode(new_access);
nfs4_file_put_access(fp, oflag);
}
return status;
}
/* remember the open */
__set_bit(op_share_access, &stp->st_access_bmap);
__set_bit(open->op_share_deny, &stp->st_deny_bmap);
return nfs_ok;
}
static void
nfs4_set_claim_prev(struct nfsd4_open *open)
{
open->op_stateowner->so_confirmed = 1;
open->op_stateowner->so_client->cl_firststate = 1;
}
/* Should we give out recallable state?: */
static bool nfsd4_cb_channel_good(struct nfs4_client *clp)
{
if (clp->cl_cb_state == NFSD4_CB_UP)
return true;
/*
* In the sessions case, since we don't have to establish a
* separate connection for callbacks, we assume it's OK
* until we hear otherwise:
*/
return clp->cl_minorversion && clp->cl_cb_state == NFSD4_CB_UNKNOWN;
}
static struct file_lock *nfs4_alloc_init_lease(struct nfs4_delegation *dp, int flag)
{
struct file_lock *fl;
fl = locks_alloc_lock();
if (!fl)
return NULL;
locks_init_lock(fl);
fl->fl_lmops = &nfsd_lease_mng_ops;
fl->fl_flags = FL_LEASE;
fl->fl_type = flag == NFS4_OPEN_DELEGATE_READ? F_RDLCK: F_WRLCK;
fl->fl_end = OFFSET_MAX;
fl->fl_owner = (fl_owner_t)(dp->dl_file);
fl->fl_pid = current->tgid;
return fl;
}
static int nfs4_setlease(struct nfs4_delegation *dp, int flag)
{
struct nfs4_file *fp = dp->dl_file;
struct file_lock *fl;
int status;
fl = nfs4_alloc_init_lease(dp, flag);
if (!fl)
return -ENOMEM;
fl->fl_file = find_readable_file(fp);
list_add(&dp->dl_perclnt, &dp->dl_client->cl_delegations);
status = vfs_setlease(fl->fl_file, fl->fl_type, &fl);
if (status) {
list_del_init(&dp->dl_perclnt);
locks_free_lock(fl);
return -ENOMEM;
}
fp->fi_lease = fl;
fp->fi_deleg_file = fl->fl_file;
get_file(fp->fi_deleg_file);
atomic_set(&fp->fi_delegees, 1);
list_add(&dp->dl_perfile, &fp->fi_delegations);
return 0;
}
static int nfs4_set_delegation(struct nfs4_delegation *dp, int flag)
{
struct nfs4_file *fp = dp->dl_file;
if (!fp->fi_lease)
return nfs4_setlease(dp, flag);
spin_lock(&recall_lock);
if (fp->fi_had_conflict) {
spin_unlock(&recall_lock);
return -EAGAIN;
}
atomic_inc(&fp->fi_delegees);
list_add(&dp->dl_perfile, &fp->fi_delegations);
spin_unlock(&recall_lock);
list_add(&dp->dl_perclnt, &dp->dl_client->cl_delegations);
return 0;
}
/*
* Attempt to hand out a delegation.
*/
static void
nfs4_open_delegation(struct svc_fh *fh, struct nfsd4_open *open, struct nfs4_stateid *stp)
{
struct nfs4_delegation *dp;
struct nfs4_stateowner *sop = stp->st_stateowner;
int cb_up;
int status, flag = 0;
cb_up = nfsd4_cb_channel_good(sop->so_client);
flag = NFS4_OPEN_DELEGATE_NONE;
open->op_recall = 0;
switch (open->op_claim_type) {
case NFS4_OPEN_CLAIM_PREVIOUS:
if (!cb_up)
open->op_recall = 1;
flag = open->op_delegate_type;
if (flag == NFS4_OPEN_DELEGATE_NONE)
goto out;
break;
case NFS4_OPEN_CLAIM_NULL:
/* Let's not give out any delegations till everyone's
* had the chance to reclaim theirs.... */
if (locks_in_grace())
goto out;
if (!cb_up || !sop->so_confirmed)
goto out;
if (open->op_share_access & NFS4_SHARE_ACCESS_WRITE)
flag = NFS4_OPEN_DELEGATE_WRITE;
else
flag = NFS4_OPEN_DELEGATE_READ;
break;
default:
goto out;
}
dp = alloc_init_deleg(sop->so_client, stp, fh, flag);
if (dp == NULL)
goto out_no_deleg;
status = nfs4_set_delegation(dp, flag);
if (status)
goto out_free;
memcpy(&open->op_delegate_stateid, &dp->dl_stateid, sizeof(dp->dl_stateid));
dprintk("NFSD: delegation stateid=" STATEID_FMT "\n",
STATEID_VAL(&dp->dl_stateid));
out:
if (open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS
&& flag == NFS4_OPEN_DELEGATE_NONE
&& open->op_delegate_type != NFS4_OPEN_DELEGATE_NONE)
dprintk("NFSD: WARNING: refusing delegation reclaim\n");
open->op_delegate_type = flag;
return;
out_free:
nfs4_put_delegation(dp);
out_no_deleg:
flag = NFS4_OPEN_DELEGATE_NONE;
goto out;
}
/*
* called with nfs4_lock_state() held.
*/
__be32
nfsd4_process_open2(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_open *open)
{
struct nfsd4_compoundres *resp = rqstp->rq_resp;
struct nfs4_file *fp = NULL;
struct inode *ino = current_fh->fh_dentry->d_inode;
struct nfs4_stateid *stp = NULL;
struct nfs4_delegation *dp = NULL;
__be32 status;
status = nfserr_inval;
if (!access_valid(open->op_share_access, resp->cstate.minorversion)
|| !deny_valid(open->op_share_deny))
goto out;
/*
* Lookup file; if found, lookup stateid and check open request,
* and check for delegations in the process of being recalled.
* If not found, create the nfs4_file struct
*/
fp = find_file(ino);
if (fp) {
if ((status = nfs4_check_open(fp, open, &stp)))
goto out;
status = nfs4_check_deleg(fp, open, &dp);
if (status)
goto out;
} else {
status = nfserr_bad_stateid;
if (open->op_claim_type == NFS4_OPEN_CLAIM_DELEGATE_CUR)
goto out;
status = nfserr_resource;
fp = alloc_init_file(ino);
if (fp == NULL)
goto out;
}
/*
* OPEN the file, or upgrade an existing OPEN.
* If truncate fails, the OPEN fails.
*/
if (stp) {
/* Stateid was found, this is an OPEN upgrade */
status = nfs4_upgrade_open(rqstp, fp, current_fh, stp, open);
if (status)
goto out;
update_stateid(&stp->st_stateid);
} else {
status = nfs4_new_open(rqstp, &stp, fp, current_fh, open);
if (status)
goto out;
init_stateid(stp, fp, open);
status = nfsd4_truncate(rqstp, current_fh, open);
if (status) {
release_open_stateid(stp);
goto out;
}
if (nfsd4_has_session(&resp->cstate))
update_stateid(&stp->st_stateid);
}
memcpy(&open->op_stateid, &stp->st_stateid, sizeof(stateid_t));
if (nfsd4_has_session(&resp->cstate))
open->op_stateowner->so_confirmed = 1;
/*
* Attempt to hand out a delegation. No error return, because the
* OPEN succeeds even if we fail.
*/
nfs4_open_delegation(current_fh, open, stp);
status = nfs_ok;
dprintk("%s: stateid=" STATEID_FMT "\n", __func__,
STATEID_VAL(&stp->st_stateid));
out:
if (fp)
put_nfs4_file(fp);
if (status == 0 && open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS)
nfs4_set_claim_prev(open);
/*
* To finish the open response, we just need to set the rflags.
*/
open->op_rflags = NFS4_OPEN_RESULT_LOCKTYPE_POSIX;
if (!open->op_stateowner->so_confirmed &&
!nfsd4_has_session(&resp->cstate))
open->op_rflags |= NFS4_OPEN_RESULT_CONFIRM;
return status;
}
__be32
nfsd4_renew(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
clientid_t *clid)
{
struct nfs4_client *clp;
__be32 status;
nfs4_lock_state();
dprintk("process_renew(%08x/%08x): starting\n",
clid->cl_boot, clid->cl_id);
status = nfserr_stale_clientid;
if (STALE_CLIENTID(clid))
goto out;
clp = find_confirmed_client(clid);
status = nfserr_expired;
if (clp == NULL) {
/* We assume the client took too long to RENEW. */
dprintk("nfsd4_renew: clientid not found!\n");
goto out;
}
renew_client(clp);
status = nfserr_cb_path_down;
if (!list_empty(&clp->cl_delegations)
&& clp->cl_cb_state != NFSD4_CB_UP)
goto out;
status = nfs_ok;
out:
nfs4_unlock_state();
return status;
}
static struct lock_manager nfsd4_manager = {
};
static void
nfsd4_end_grace(void)
{
dprintk("NFSD: end of grace period\n");
nfsd4_recdir_purge_old();
locks_end_grace(&nfsd4_manager);
/*
* Now that every NFSv4 client has had the chance to recover and
* to see the (possibly new, possibly shorter) lease time, we
* can safely set the next grace time to the current lease time:
*/
nfsd4_grace = nfsd4_lease;
}
static time_t
nfs4_laundromat(void)
{
struct nfs4_client *clp;
struct nfs4_stateowner *sop;
struct nfs4_delegation *dp;
struct list_head *pos, *next, reaplist;
time_t cutoff = get_seconds() - nfsd4_lease;
time_t t, clientid_val = nfsd4_lease;
time_t u, test_val = nfsd4_lease;
nfs4_lock_state();
dprintk("NFSD: laundromat service - starting\n");
if (locks_in_grace())
nfsd4_end_grace();
INIT_LIST_HEAD(&reaplist);
spin_lock(&client_lock);
list_for_each_safe(pos, next, &client_lru) {
clp = list_entry(pos, struct nfs4_client, cl_lru);
if (time_after((unsigned long)clp->cl_time, (unsigned long)cutoff)) {
t = clp->cl_time - cutoff;
if (clientid_val > t)
clientid_val = t;
break;
}
if (atomic_read(&clp->cl_refcount)) {
dprintk("NFSD: client in use (clientid %08x)\n",
clp->cl_clientid.cl_id);
continue;
}
unhash_client_locked(clp);
list_add(&clp->cl_lru, &reaplist);
}
spin_unlock(&client_lock);
list_for_each_safe(pos, next, &reaplist) {
clp = list_entry(pos, struct nfs4_client, cl_lru);
dprintk("NFSD: purging unused client (clientid %08x)\n",
clp->cl_clientid.cl_id);
nfsd4_remove_clid_dir(clp);
expire_client(clp);
}
spin_lock(&recall_lock);
list_for_each_safe(pos, next, &del_recall_lru) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
if (time_after((unsigned long)dp->dl_time, (unsigned long)cutoff)) {
u = dp->dl_time - cutoff;
if (test_val > u)
test_val = u;
break;
}
list_move(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&recall_lock);
list_for_each_safe(pos, next, &reaplist) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
unhash_delegation(dp);
}
test_val = nfsd4_lease;
list_for_each_safe(pos, next, &close_lru) {
sop = list_entry(pos, struct nfs4_stateowner, so_close_lru);
if (time_after((unsigned long)sop->so_time, (unsigned long)cutoff)) {
u = sop->so_time - cutoff;
if (test_val > u)
test_val = u;
break;
}
dprintk("NFSD: purging unused open stateowner (so_id %d)\n",
sop->so_id);
release_openowner(sop);
}
if (clientid_val < NFSD_LAUNDROMAT_MINTIMEOUT)
clientid_val = NFSD_LAUNDROMAT_MINTIMEOUT;
nfs4_unlock_state();
return clientid_val;
}
static struct workqueue_struct *laundry_wq;
static void laundromat_main(struct work_struct *);
static DECLARE_DELAYED_WORK(laundromat_work, laundromat_main);
static void
laundromat_main(struct work_struct *not_used)
{
time_t t;
t = nfs4_laundromat();
dprintk("NFSD: laundromat_main - sleeping for %ld seconds\n", t);
queue_delayed_work(laundry_wq, &laundromat_work, t*HZ);
}
static struct nfs4_stateowner *
search_close_lru(u32 st_id, int flags)
{
struct nfs4_stateowner *local = NULL;
if (flags & CLOSE_STATE) {
list_for_each_entry(local, &close_lru, so_close_lru) {
if (local->so_id == st_id)
return local;
}
}
return NULL;
}
static inline int
nfs4_check_fh(struct svc_fh *fhp, struct nfs4_stateid *stp)
{
return fhp->fh_dentry->d_inode != stp->st_file->fi_inode;
}
static int
STALE_STATEID(stateid_t *stateid)
{
if (stateid->si_boot == boot_time)
return 0;
dprintk("NFSD: stale stateid " STATEID_FMT "!\n",
STATEID_VAL(stateid));
return 1;
}
static inline int
access_permit_read(unsigned long access_bmap)
{
return test_bit(NFS4_SHARE_ACCESS_READ, &access_bmap) ||
test_bit(NFS4_SHARE_ACCESS_BOTH, &access_bmap) ||
test_bit(NFS4_SHARE_ACCESS_WRITE, &access_bmap);
}
static inline int
access_permit_write(unsigned long access_bmap)
{
return test_bit(NFS4_SHARE_ACCESS_WRITE, &access_bmap) ||
test_bit(NFS4_SHARE_ACCESS_BOTH, &access_bmap);
}
static
__be32 nfs4_check_openmode(struct nfs4_stateid *stp, int flags)
{
__be32 status = nfserr_openmode;
/* For lock stateid's, we test the parent open, not the lock: */
if (stp->st_openstp)
stp = stp->st_openstp;
if ((flags & WR_STATE) && (!access_permit_write(stp->st_access_bmap)))
goto out;
if ((flags & RD_STATE) && (!access_permit_read(stp->st_access_bmap)))
goto out;
status = nfs_ok;
out:
return status;
}
static inline __be32
check_special_stateids(svc_fh *current_fh, stateid_t *stateid, int flags)
{
if (ONE_STATEID(stateid) && (flags & RD_STATE))
return nfs_ok;
else if (locks_in_grace()) {
/* Answer in remaining cases depends on existence of
* conflicting state; so we must wait out the grace period. */
return nfserr_grace;
} else if (flags & WR_STATE)
return nfs4_share_conflict(current_fh,
NFS4_SHARE_DENY_WRITE);
else /* (flags & RD_STATE) && ZERO_STATEID(stateid) */
return nfs4_share_conflict(current_fh,
NFS4_SHARE_DENY_READ);
}
/*
* Allow READ/WRITE during grace period on recovered state only for files
* that are not able to provide mandatory locking.
*/
static inline int
grace_disallows_io(struct inode *inode)
{
return locks_in_grace() && mandatory_lock(inode);
}
static int check_stateid_generation(stateid_t *in, stateid_t *ref, int flags)
{
/*
* When sessions are used the stateid generation number is ignored
* when it is zero.
*/
if ((flags & HAS_SESSION) && in->si_generation == 0)
goto out;
/* If the client sends us a stateid from the future, it's buggy: */
if (in->si_generation > ref->si_generation)
return nfserr_bad_stateid;
/*
* The following, however, can happen. For example, if the
* client sends an open and some IO at the same time, the open
* may bump si_generation while the IO is still in flight.
* Thanks to hard links and renames, the client never knows what
* file an open will affect. So it could avoid that situation
* only by serializing all opens and IO from the same open
* owner. To recover from the old_stateid error, the client
* will just have to retry the IO:
*/
if (in->si_generation < ref->si_generation)
return nfserr_old_stateid;
out:
return nfs_ok;
}
static int is_delegation_stateid(stateid_t *stateid)
{
return stateid->si_fileid == 0;
}
/*
* Checks for stateid operations
*/
__be32
nfs4_preprocess_stateid_op(struct nfsd4_compound_state *cstate,
stateid_t *stateid, int flags, struct file **filpp)
{
struct nfs4_stateid *stp = NULL;
struct nfs4_delegation *dp = NULL;
struct svc_fh *current_fh = &cstate->current_fh;
struct inode *ino = current_fh->fh_dentry->d_inode;
__be32 status;
if (filpp)
*filpp = NULL;
if (grace_disallows_io(ino))
return nfserr_grace;
if (nfsd4_has_session(cstate))
flags |= HAS_SESSION;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid))
return check_special_stateids(current_fh, stateid, flags);
status = nfserr_stale_stateid;
if (STALE_STATEID(stateid))
goto out;
/*
* We assume that any stateid that has the current boot time,
* but that we can't find, is expired:
*/
status = nfserr_expired;
if (is_delegation_stateid(stateid)) {
dp = find_delegation_stateid(ino, stateid);
if (!dp)
goto out;
status = check_stateid_generation(stateid, &dp->dl_stateid,
flags);
if (status)
goto out;
status = nfs4_check_delegmode(dp, flags);
if (status)
goto out;
renew_client(dp->dl_client);
if (filpp) {
*filpp = dp->dl_file->fi_deleg_file;
BUG_ON(!*filpp);
}
} else { /* open or lock stateid */
stp = find_stateid(stateid, flags);
if (!stp)
goto out;
status = nfserr_bad_stateid;
if (nfs4_check_fh(current_fh, stp))
goto out;
if (!stp->st_stateowner->so_confirmed)
goto out;
status = check_stateid_generation(stateid, &stp->st_stateid,
flags);
if (status)
goto out;
status = nfs4_check_openmode(stp, flags);
if (status)
goto out;
renew_client(stp->st_stateowner->so_client);
if (filpp) {
if (flags & RD_STATE)
*filpp = find_readable_file(stp->st_file);
else
*filpp = find_writeable_file(stp->st_file);
}
}
status = nfs_ok;
out:
return status;
}
static inline int
setlkflg (int type)
{
return (type == NFS4_READW_LT || type == NFS4_READ_LT) ?
RD_STATE : WR_STATE;
}
/*
* Checks for sequence id mutating operations.
*/
static __be32
nfs4_preprocess_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid,
stateid_t *stateid, int flags,
struct nfs4_stateowner **sopp,
struct nfs4_stateid **stpp, struct nfsd4_lock *lock)
{
struct nfs4_stateid *stp;
struct nfs4_stateowner *sop;
struct svc_fh *current_fh = &cstate->current_fh;
__be32 status;
dprintk("NFSD: %s: seqid=%d stateid = " STATEID_FMT "\n", __func__,
seqid, STATEID_VAL(stateid));
*stpp = NULL;
*sopp = NULL;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) {
dprintk("NFSD: preprocess_seqid_op: magic stateid!\n");
return nfserr_bad_stateid;
}
if (STALE_STATEID(stateid))
return nfserr_stale_stateid;
if (nfsd4_has_session(cstate))
flags |= HAS_SESSION;
/*
* We return BAD_STATEID if filehandle doesn't match stateid,
* the confirmed flag is incorrecly set, or the generation
* number is incorrect.
*/
stp = find_stateid(stateid, flags);
if (stp == NULL) {
/*
* Also, we should make sure this isn't just the result of
* a replayed close:
*/
sop = search_close_lru(stateid->si_stateownerid, flags);
/* It's not stale; let's assume it's expired: */
if (sop == NULL)
return nfserr_expired;
*sopp = sop;
goto check_replay;
}
*stpp = stp;
*sopp = sop = stp->st_stateowner;
if (lock) {
clientid_t *lockclid = &lock->v.new.clientid;
struct nfs4_client *clp = sop->so_client;
int lkflg = 0;
__be32 status;
lkflg = setlkflg(lock->lk_type);
if (lock->lk_is_new) {
if (!sop->so_is_open_owner)
return nfserr_bad_stateid;
if (!(flags & HAS_SESSION) &&
!same_clid(&clp->cl_clientid, lockclid))
return nfserr_bad_stateid;
/* stp is the open stateid */
status = nfs4_check_openmode(stp, lkflg);
if (status)
return status;
} else {
/* stp is the lock stateid */
status = nfs4_check_openmode(stp->st_openstp, lkflg);
if (status)
return status;
}
}
if (nfs4_check_fh(current_fh, stp)) {
dprintk("NFSD: preprocess_seqid_op: fh-stateid mismatch!\n");
return nfserr_bad_stateid;
}
/*
* We now validate the seqid and stateid generation numbers.
* For the moment, we ignore the possibility of
* generation number wraparound.
*/
if (!(flags & HAS_SESSION) && seqid != sop->so_seqid)
goto check_replay;
if (sop->so_confirmed && flags & CONFIRM) {
dprintk("NFSD: preprocess_seqid_op: expected"
" unconfirmed stateowner!\n");
return nfserr_bad_stateid;
}
if (!sop->so_confirmed && !(flags & CONFIRM)) {
dprintk("NFSD: preprocess_seqid_op: stateowner not"
" confirmed yet!\n");
return nfserr_bad_stateid;
}
status = check_stateid_generation(stateid, &stp->st_stateid, flags);
if (status)
return status;
renew_client(sop->so_client);
return nfs_ok;
check_replay:
if (seqid == sop->so_seqid - 1) {
dprintk("NFSD: preprocess_seqid_op: retransmission?\n");
/* indicate replay to calling function */
return nfserr_replay_me;
}
dprintk("NFSD: preprocess_seqid_op: bad seqid (expected %d, got %d)\n",
sop->so_seqid, seqid);
*sopp = NULL;
return nfserr_bad_seqid;
}
__be32
nfsd4_open_confirm(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_open_confirm *oc)
{
__be32 status;
struct nfs4_stateowner *sop;
struct nfs4_stateid *stp;
dprintk("NFSD: nfsd4_open_confirm on file %.*s\n",
(int)cstate->current_fh.fh_dentry->d_name.len,
cstate->current_fh.fh_dentry->d_name.name);
status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0);
if (status)
return status;
nfs4_lock_state();
if ((status = nfs4_preprocess_seqid_op(cstate,
oc->oc_seqid, &oc->oc_req_stateid,
CONFIRM | OPEN_STATE,
&oc->oc_stateowner, &stp, NULL)))
goto out;
sop = oc->oc_stateowner;
sop->so_confirmed = 1;
update_stateid(&stp->st_stateid);
memcpy(&oc->oc_resp_stateid, &stp->st_stateid, sizeof(stateid_t));
dprintk("NFSD: %s: success, seqid=%d stateid=" STATEID_FMT "\n",
__func__, oc->oc_seqid, STATEID_VAL(&stp->st_stateid));
nfsd4_create_clid_dir(sop->so_client);
out:
if (oc->oc_stateowner) {
nfs4_get_stateowner(oc->oc_stateowner);
cstate->replay_owner = oc->oc_stateowner;
}
nfs4_unlock_state();
return status;
}
/*
* unset all bits in union bitmap (bmap) that
* do not exist in share (from successful OPEN_DOWNGRADE)
*/
static void
reset_union_bmap_access(unsigned long access, unsigned long *bmap)
{
int i;
for (i = 1; i < 4; i++) {
if ((i & access) != i)
__clear_bit(i, bmap);
}
}
static void
reset_union_bmap_deny(unsigned long deny, unsigned long *bmap)
{
int i;
for (i = 0; i < 4; i++) {
if ((i & deny) != i)
__clear_bit(i, bmap);
}
}
__be32
nfsd4_open_downgrade(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_open_downgrade *od)
{
__be32 status;
struct nfs4_stateid *stp;
unsigned int share_access;
dprintk("NFSD: nfsd4_open_downgrade on file %.*s\n",
(int)cstate->current_fh.fh_dentry->d_name.len,
cstate->current_fh.fh_dentry->d_name.name);
if (!access_valid(od->od_share_access, cstate->minorversion)
|| !deny_valid(od->od_share_deny))
return nfserr_inval;
nfs4_lock_state();
if ((status = nfs4_preprocess_seqid_op(cstate,
od->od_seqid,
&od->od_stateid,
OPEN_STATE,
&od->od_stateowner, &stp, NULL)))
goto out;
status = nfserr_inval;
if (!test_bit(od->od_share_access, &stp->st_access_bmap)) {
dprintk("NFSD:access not a subset current bitmap: 0x%lx, input access=%08x\n",
stp->st_access_bmap, od->od_share_access);
goto out;
}
if (!test_bit(od->od_share_deny, &stp->st_deny_bmap)) {
dprintk("NFSD:deny not a subset current bitmap: 0x%lx, input deny=%08x\n",
stp->st_deny_bmap, od->od_share_deny);
goto out;
}
set_access(&share_access, stp->st_access_bmap);
nfs4_file_downgrade(stp->st_file, share_access & ~od->od_share_access);
reset_union_bmap_access(od->od_share_access, &stp->st_access_bmap);
reset_union_bmap_deny(od->od_share_deny, &stp->st_deny_bmap);
update_stateid(&stp->st_stateid);
memcpy(&od->od_stateid, &stp->st_stateid, sizeof(stateid_t));
status = nfs_ok;
out:
if (od->od_stateowner) {
nfs4_get_stateowner(od->od_stateowner);
cstate->replay_owner = od->od_stateowner;
}
nfs4_unlock_state();
return status;
}
/*
* nfs4_unlock_state() called after encode
*/
__be32
nfsd4_close(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_close *close)
{
__be32 status;
struct nfs4_stateid *stp;
dprintk("NFSD: nfsd4_close on file %.*s\n",
(int)cstate->current_fh.fh_dentry->d_name.len,
cstate->current_fh.fh_dentry->d_name.name);
nfs4_lock_state();
/* check close_lru for replay */
if ((status = nfs4_preprocess_seqid_op(cstate,
close->cl_seqid,
&close->cl_stateid,
OPEN_STATE | CLOSE_STATE,
&close->cl_stateowner, &stp, NULL)))
goto out;
status = nfs_ok;
update_stateid(&stp->st_stateid);
memcpy(&close->cl_stateid, &stp->st_stateid, sizeof(stateid_t));
/* release_stateid() calls nfsd_close() if needed */
release_open_stateid(stp);
/* place unused nfs4_stateowners on so_close_lru list to be
* released by the laundromat service after the lease period
* to enable us to handle CLOSE replay
*/
if (list_empty(&close->cl_stateowner->so_stateids))
move_to_close_lru(close->cl_stateowner);
out:
if (close->cl_stateowner) {
nfs4_get_stateowner(close->cl_stateowner);
cstate->replay_owner = close->cl_stateowner;
}
nfs4_unlock_state();
return status;
}
__be32
nfsd4_delegreturn(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_delegreturn *dr)
{
struct nfs4_delegation *dp;
stateid_t *stateid = &dr->dr_stateid;
struct inode *inode;
__be32 status;
int flags = 0;
if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0)))
return status;
inode = cstate->current_fh.fh_dentry->d_inode;
if (nfsd4_has_session(cstate))
flags |= HAS_SESSION;
nfs4_lock_state();
status = nfserr_bad_stateid;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid))
goto out;
status = nfserr_stale_stateid;
if (STALE_STATEID(stateid))
goto out;
status = nfserr_bad_stateid;
if (!is_delegation_stateid(stateid))
goto out;
status = nfserr_expired;
dp = find_delegation_stateid(inode, stateid);
if (!dp)
goto out;
status = check_stateid_generation(stateid, &dp->dl_stateid, flags);
if (status)
goto out;
renew_client(dp->dl_client);
unhash_delegation(dp);
out:
nfs4_unlock_state();
return status;
}
/*
* Lock owner state (byte-range locks)
*/
#define LOFF_OVERFLOW(start, len) ((u64)(len) > ~(u64)(start))
#define LOCK_HASH_BITS 8
#define LOCK_HASH_SIZE (1 << LOCK_HASH_BITS)
#define LOCK_HASH_MASK (LOCK_HASH_SIZE - 1)
static inline u64
end_offset(u64 start, u64 len)
{
u64 end;
end = start + len;
return end >= start ? end: NFS4_MAX_UINT64;
}
/* last octet in a range */
static inline u64
last_byte_offset(u64 start, u64 len)
{
u64 end;
BUG_ON(!len);
end = start + len;
return end > start ? end - 1: NFS4_MAX_UINT64;
}
#define lockownerid_hashval(id) \
((id) & LOCK_HASH_MASK)
static inline unsigned int
lock_ownerstr_hashval(struct inode *inode, u32 cl_id,
struct xdr_netobj *ownername)
{
return (file_hashval(inode) + cl_id
+ opaque_hashval(ownername->data, ownername->len))
& LOCK_HASH_MASK;
}
static struct list_head lock_ownerid_hashtbl[LOCK_HASH_SIZE];
static struct list_head lock_ownerstr_hashtbl[LOCK_HASH_SIZE];
static struct list_head lockstateid_hashtbl[STATEID_HASH_SIZE];
static struct nfs4_stateid *
find_stateid(stateid_t *stid, int flags)
{
struct nfs4_stateid *local;
u32 st_id = stid->si_stateownerid;
u32 f_id = stid->si_fileid;
unsigned int hashval;
dprintk("NFSD: find_stateid flags 0x%x\n",flags);
if (flags & (LOCK_STATE | RD_STATE | WR_STATE)) {
hashval = stateid_hashval(st_id, f_id);
list_for_each_entry(local, &lockstateid_hashtbl[hashval], st_hash) {
if ((local->st_stateid.si_stateownerid == st_id) &&
(local->st_stateid.si_fileid == f_id))
return local;
}
}
if (flags & (OPEN_STATE | RD_STATE | WR_STATE)) {
hashval = stateid_hashval(st_id, f_id);
list_for_each_entry(local, &stateid_hashtbl[hashval], st_hash) {
if ((local->st_stateid.si_stateownerid == st_id) &&
(local->st_stateid.si_fileid == f_id))
return local;
}
}
return NULL;
}
static struct nfs4_delegation *
find_delegation_stateid(struct inode *ino, stateid_t *stid)
{
struct nfs4_file *fp;
struct nfs4_delegation *dl;
dprintk("NFSD: %s: stateid=" STATEID_FMT "\n", __func__,
STATEID_VAL(stid));
fp = find_file(ino);
if (!fp)
return NULL;
dl = find_delegation_file(fp, stid);
put_nfs4_file(fp);
return dl;
}
/*
* TODO: Linux file offsets are _signed_ 64-bit quantities, which means that
* we can't properly handle lock requests that go beyond the (2^63 - 1)-th
* byte, because of sign extension problems. Since NFSv4 calls for 64-bit
* locking, this prevents us from being completely protocol-compliant. The
* real solution to this problem is to start using unsigned file offsets in
* the VFS, but this is a very deep change!
*/
static inline void
nfs4_transform_lock_offset(struct file_lock *lock)
{
if (lock->fl_start < 0)
lock->fl_start = OFFSET_MAX;
if (lock->fl_end < 0)
lock->fl_end = OFFSET_MAX;
}
/* Hack!: For now, we're defining this just so we can use a pointer to it
* as a unique cookie to identify our (NFSv4's) posix locks. */
static const struct lock_manager_operations nfsd_posix_mng_ops = {
};
static inline void
nfs4_set_lock_denied(struct file_lock *fl, struct nfsd4_lock_denied *deny)
{
struct nfs4_stateowner *sop;
if (fl->fl_lmops == &nfsd_posix_mng_ops) {
sop = (struct nfs4_stateowner *) fl->fl_owner;
kref_get(&sop->so_ref);
deny->ld_sop = sop;
deny->ld_clientid = sop->so_client->cl_clientid;
} else {
deny->ld_sop = NULL;
deny->ld_clientid.cl_boot = 0;
deny->ld_clientid.cl_id = 0;
}
deny->ld_start = fl->fl_start;
deny->ld_length = NFS4_MAX_UINT64;
if (fl->fl_end != NFS4_MAX_UINT64)
deny->ld_length = fl->fl_end - fl->fl_start + 1;
deny->ld_type = NFS4_READ_LT;
if (fl->fl_type != F_RDLCK)
deny->ld_type = NFS4_WRITE_LT;
}
static struct nfs4_stateowner *
find_lockstateowner_str(struct inode *inode, clientid_t *clid,
struct xdr_netobj *owner)
{
unsigned int hashval = lock_ownerstr_hashval(inode, clid->cl_id, owner);
struct nfs4_stateowner *op;
list_for_each_entry(op, &lock_ownerstr_hashtbl[hashval], so_strhash) {
if (same_owner_str(op, owner, clid))
return op;
}
return NULL;
}
/*
* Alloc a lock owner structure.
* Called in nfsd4_lock - therefore, OPEN and OPEN_CONFIRM (if needed) has
* occurred.
*
* strhashval = lock_ownerstr_hashval
*/
static struct nfs4_stateowner *
alloc_init_lock_stateowner(unsigned int strhashval, struct nfs4_client *clp, struct nfs4_stateid *open_stp, struct nfsd4_lock *lock) {
struct nfs4_stateowner *sop;
struct nfs4_replay *rp;
unsigned int idhashval;
if (!(sop = alloc_stateowner(&lock->lk_new_owner)))
return NULL;
idhashval = lockownerid_hashval(current_ownerid);
INIT_LIST_HEAD(&sop->so_idhash);
INIT_LIST_HEAD(&sop->so_strhash);
INIT_LIST_HEAD(&sop->so_perclient);
INIT_LIST_HEAD(&sop->so_stateids);
INIT_LIST_HEAD(&sop->so_perstateid);
INIT_LIST_HEAD(&sop->so_close_lru); /* not used */
sop->so_time = 0;
list_add(&sop->so_idhash, &lock_ownerid_hashtbl[idhashval]);
list_add(&sop->so_strhash, &lock_ownerstr_hashtbl[strhashval]);
list_add(&sop->so_perstateid, &open_stp->st_lockowners);
sop->so_is_open_owner = 0;
sop->so_id = current_ownerid++;
sop->so_client = clp;
/* It is the openowner seqid that will be incremented in encode in the
* case of new lockowners; so increment the lock seqid manually: */
sop->so_seqid = lock->lk_new_lock_seqid + 1;
sop->so_confirmed = 1;
rp = &sop->so_replay;
rp->rp_status = nfserr_serverfault;
rp->rp_buflen = 0;
rp->rp_buf = rp->rp_ibuf;
return sop;
}
static struct nfs4_stateid *
alloc_init_lock_stateid(struct nfs4_stateowner *sop, struct nfs4_file *fp, struct nfs4_stateid *open_stp)
{
struct nfs4_stateid *stp;
unsigned int hashval = stateid_hashval(sop->so_id, fp->fi_id);
stp = nfs4_alloc_stateid();
if (stp == NULL)
goto out;
INIT_LIST_HEAD(&stp->st_hash);
INIT_LIST_HEAD(&stp->st_perfile);
INIT_LIST_HEAD(&stp->st_perstateowner);
INIT_LIST_HEAD(&stp->st_lockowners); /* not used */
list_add(&stp->st_hash, &lockstateid_hashtbl[hashval]);
list_add(&stp->st_perfile, &fp->fi_stateids);
list_add(&stp->st_perstateowner, &sop->so_stateids);
stp->st_stateowner = sop;
get_nfs4_file(fp);
stp->st_file = fp;
stp->st_stateid.si_boot = boot_time;
stp->st_stateid.si_stateownerid = sop->so_id;
stp->st_stateid.si_fileid = fp->fi_id;
stp->st_stateid.si_generation = 0;
stp->st_access_bmap = 0;
stp->st_deny_bmap = open_stp->st_deny_bmap;
stp->st_openstp = open_stp;
out:
return stp;
}
static int
check_lock_length(u64 offset, u64 length)
{
return ((length == 0) || ((length != NFS4_MAX_UINT64) &&
LOFF_OVERFLOW(offset, length)));
}
static void get_lock_access(struct nfs4_stateid *lock_stp, u32 access)
{
struct nfs4_file *fp = lock_stp->st_file;
int oflag = nfs4_access_to_omode(access);
if (test_bit(access, &lock_stp->st_access_bmap))
return;
nfs4_file_get_access(fp, oflag);
__set_bit(access, &lock_stp->st_access_bmap);
}
/*
* LOCK operation
*/
__be32
nfsd4_lock(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_lock *lock)
{
struct nfs4_stateowner *open_sop = NULL;
struct nfs4_stateowner *lock_sop = NULL;
struct nfs4_stateid *lock_stp;
struct nfs4_file *fp;
struct file *filp = NULL;
struct file_lock file_lock;
struct file_lock conflock;
__be32 status = 0;
unsigned int strhashval;
int err;
dprintk("NFSD: nfsd4_lock: start=%Ld length=%Ld\n",
(long long) lock->lk_offset,
(long long) lock->lk_length);
if (check_lock_length(lock->lk_offset, lock->lk_length))
return nfserr_inval;
if ((status = fh_verify(rqstp, &cstate->current_fh,
S_IFREG, NFSD_MAY_LOCK))) {
dprintk("NFSD: nfsd4_lock: permission denied!\n");
return status;
}
nfs4_lock_state();
if (lock->lk_is_new) {
/*
* Client indicates that this is a new lockowner.
* Use open owner and open stateid to create lock owner and
* lock stateid.
*/
struct nfs4_stateid *open_stp = NULL;
status = nfserr_stale_clientid;
if (!nfsd4_has_session(cstate) &&
STALE_CLIENTID(&lock->lk_new_clientid))
goto out;
/* validate and update open stateid and open seqid */
status = nfs4_preprocess_seqid_op(cstate,
lock->lk_new_open_seqid,
&lock->lk_new_open_stateid,
OPEN_STATE,
&lock->lk_replay_owner, &open_stp,
lock);
if (status)
goto out;
open_sop = lock->lk_replay_owner;
/* create lockowner and lock stateid */
fp = open_stp->st_file;
strhashval = lock_ownerstr_hashval(fp->fi_inode,
open_sop->so_client->cl_clientid.cl_id,
&lock->v.new.owner);
/* XXX: Do we need to check for duplicate stateowners on
* the same file, or should they just be allowed (and
* create new stateids)? */
status = nfserr_resource;
lock_sop = alloc_init_lock_stateowner(strhashval,
open_sop->so_client, open_stp, lock);
if (lock_sop == NULL)
goto out;
lock_stp = alloc_init_lock_stateid(lock_sop, fp, open_stp);
if (lock_stp == NULL)
goto out;
} else {
/* lock (lock owner + lock stateid) already exists */
status = nfs4_preprocess_seqid_op(cstate,
lock->lk_old_lock_seqid,
&lock->lk_old_lock_stateid,
LOCK_STATE,
&lock->lk_replay_owner, &lock_stp, lock);
if (status)
goto out;
lock_sop = lock->lk_replay_owner;
fp = lock_stp->st_file;
}
/* lock->lk_replay_owner and lock_stp have been created or found */
status = nfserr_grace;
if (locks_in_grace() && !lock->lk_reclaim)
goto out;
status = nfserr_no_grace;
if (!locks_in_grace() && lock->lk_reclaim)
goto out;
locks_init_lock(&file_lock);
switch (lock->lk_type) {
case NFS4_READ_LT:
case NFS4_READW_LT:
filp = find_readable_file(lock_stp->st_file);
if (filp)
get_lock_access(lock_stp, NFS4_SHARE_ACCESS_READ);
file_lock.fl_type = F_RDLCK;
break;
case NFS4_WRITE_LT:
case NFS4_WRITEW_LT:
filp = find_writeable_file(lock_stp->st_file);
if (filp)
get_lock_access(lock_stp, NFS4_SHARE_ACCESS_WRITE);
file_lock.fl_type = F_WRLCK;
break;
default:
status = nfserr_inval;
goto out;
}
if (!filp) {
status = nfserr_openmode;
goto out;
}
file_lock.fl_owner = (fl_owner_t)lock_sop;
file_lock.fl_pid = current->tgid;
file_lock.fl_file = filp;
file_lock.fl_flags = FL_POSIX;
file_lock.fl_lmops = &nfsd_posix_mng_ops;
file_lock.fl_start = lock->lk_offset;
file_lock.fl_end = last_byte_offset(lock->lk_offset, lock->lk_length);
nfs4_transform_lock_offset(&file_lock);
/*
* Try to lock the file in the VFS.
* Note: locks.c uses the BKL to protect the inode's lock list.
*/
err = vfs_lock_file(filp, F_SETLK, &file_lock, &conflock);
switch (-err) {
case 0: /* success! */
update_stateid(&lock_stp->st_stateid);
memcpy(&lock->lk_resp_stateid, &lock_stp->st_stateid,
sizeof(stateid_t));
status = 0;
break;
case (EAGAIN): /* conflock holds conflicting lock */
status = nfserr_denied;
dprintk("NFSD: nfsd4_lock: conflicting lock found!\n");
nfs4_set_lock_denied(&conflock, &lock->lk_denied);
break;
case (EDEADLK):
status = nfserr_deadlock;
break;
default:
dprintk("NFSD: nfsd4_lock: vfs_lock_file() failed! status %d\n",err);
status = nfserr_resource;
break;
}
out:
if (status && lock->lk_is_new && lock_sop)
release_lockowner(lock_sop);
if (lock->lk_replay_owner) {
nfs4_get_stateowner(lock->lk_replay_owner);
cstate->replay_owner = lock->lk_replay_owner;
}
nfs4_unlock_state();
return status;
}
/*
* The NFSv4 spec allows a client to do a LOCKT without holding an OPEN,
* so we do a temporary open here just to get an open file to pass to
* vfs_test_lock. (Arguably perhaps test_lock should be done with an
* inode operation.)
*/
static int nfsd_test_lock(struct svc_rqst *rqstp, struct svc_fh *fhp, struct file_lock *lock)
{
struct file *file;
int err;
err = nfsd_open(rqstp, fhp, S_IFREG, NFSD_MAY_READ, &file);
if (err)
return err;
err = vfs_test_lock(file, lock);
nfsd_close(file);
return err;
}
/*
* LOCKT operation
*/
__be32
nfsd4_lockt(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_lockt *lockt)
{
struct inode *inode;
struct file_lock file_lock;
int error;
__be32 status;
if (locks_in_grace())
return nfserr_grace;
if (check_lock_length(lockt->lt_offset, lockt->lt_length))
return nfserr_inval;
lockt->lt_stateowner = NULL;
nfs4_lock_state();
status = nfserr_stale_clientid;
if (!nfsd4_has_session(cstate) && STALE_CLIENTID(&lockt->lt_clientid))
goto out;
if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0))) {
dprintk("NFSD: nfsd4_lockt: fh_verify() failed!\n");
if (status == nfserr_symlink)
status = nfserr_inval;
goto out;
}
inode = cstate->current_fh.fh_dentry->d_inode;
locks_init_lock(&file_lock);
switch (lockt->lt_type) {
case NFS4_READ_LT:
case NFS4_READW_LT:
file_lock.fl_type = F_RDLCK;
break;
case NFS4_WRITE_LT:
case NFS4_WRITEW_LT:
file_lock.fl_type = F_WRLCK;
break;
default:
dprintk("NFSD: nfs4_lockt: bad lock type!\n");
status = nfserr_inval;
goto out;
}
lockt->lt_stateowner = find_lockstateowner_str(inode,
&lockt->lt_clientid, &lockt->lt_owner);
if (lockt->lt_stateowner)
file_lock.fl_owner = (fl_owner_t)lockt->lt_stateowner;
file_lock.fl_pid = current->tgid;
file_lock.fl_flags = FL_POSIX;
file_lock.fl_start = lockt->lt_offset;
file_lock.fl_end = last_byte_offset(lockt->lt_offset, lockt->lt_length);
nfs4_transform_lock_offset(&file_lock);
status = nfs_ok;
error = nfsd_test_lock(rqstp, &cstate->current_fh, &file_lock);
if (error) {
status = nfserrno(error);
goto out;
}
if (file_lock.fl_type != F_UNLCK) {
status = nfserr_denied;
nfs4_set_lock_denied(&file_lock, &lockt->lt_denied);
}
out:
nfs4_unlock_state();
return status;
}
__be32
nfsd4_locku(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
struct nfsd4_locku *locku)
{
struct nfs4_stateid *stp;
struct file *filp = NULL;
struct file_lock file_lock;
__be32 status;
int err;
dprintk("NFSD: nfsd4_locku: start=%Ld length=%Ld\n",
(long long) locku->lu_offset,
(long long) locku->lu_length);
if (check_lock_length(locku->lu_offset, locku->lu_length))
return nfserr_inval;
nfs4_lock_state();
if ((status = nfs4_preprocess_seqid_op(cstate,
locku->lu_seqid,
&locku->lu_stateid,
LOCK_STATE,
&locku->lu_stateowner, &stp, NULL)))
goto out;
filp = find_any_file(stp->st_file);
if (!filp) {
status = nfserr_lock_range;
goto out;
}
BUG_ON(!filp);
locks_init_lock(&file_lock);
file_lock.fl_type = F_UNLCK;
file_lock.fl_owner = (fl_owner_t) locku->lu_stateowner;
file_lock.fl_pid = current->tgid;
file_lock.fl_file = filp;
file_lock.fl_flags = FL_POSIX;
file_lock.fl_lmops = &nfsd_posix_mng_ops;
file_lock.fl_start = locku->lu_offset;
file_lock.fl_end = last_byte_offset(locku->lu_offset, locku->lu_length);
nfs4_transform_lock_offset(&file_lock);
/*
* Try to unlock the file in the VFS.
*/
err = vfs_lock_file(filp, F_SETLK, &file_lock, NULL);
if (err) {
dprintk("NFSD: nfs4_locku: vfs_lock_file failed!\n");
goto out_nfserr;
}
/*
* OK, unlock succeeded; the only thing left to do is update the stateid.
*/
update_stateid(&stp->st_stateid);
memcpy(&locku->lu_stateid, &stp->st_stateid, sizeof(stateid_t));
out:
if (locku->lu_stateowner) {
nfs4_get_stateowner(locku->lu_stateowner);
cstate->replay_owner = locku->lu_stateowner;
}
nfs4_unlock_state();
return status;
out_nfserr:
status = nfserrno(err);
goto out;
}
/*
* returns
* 1: locks held by lockowner
* 0: no locks held by lockowner
*/
static int
check_for_locks(struct nfs4_file *filp, struct nfs4_stateowner *lowner)
{
struct file_lock **flpp;
struct inode *inode = filp->fi_inode;
int status = 0;
lock_flocks();
for (flpp = &inode->i_flock; *flpp != NULL; flpp = &(*flpp)->fl_next) {
if ((*flpp)->fl_owner == (fl_owner_t)lowner) {
status = 1;
goto out;
}
}
out:
unlock_flocks();
return status;
}
__be32
nfsd4_release_lockowner(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
struct nfsd4_release_lockowner *rlockowner)
{
clientid_t *clid = &rlockowner->rl_clientid;
struct nfs4_stateowner *sop;
struct nfs4_stateid *stp;
struct xdr_netobj *owner = &rlockowner->rl_owner;
struct list_head matches;
int i;
__be32 status;
dprintk("nfsd4_release_lockowner clientid: (%08x/%08x):\n",
clid->cl_boot, clid->cl_id);
/* XXX check for lease expiration */
status = nfserr_stale_clientid;
if (STALE_CLIENTID(clid))
return status;
nfs4_lock_state();
status = nfserr_locks_held;
/* XXX: we're doing a linear search through all the lockowners.
* Yipes! For now we'll just hope clients aren't really using
* release_lockowner much, but eventually we have to fix these
* data structures. */
INIT_LIST_HEAD(&matches);
for (i = 0; i < LOCK_HASH_SIZE; i++) {
list_for_each_entry(sop, &lock_ownerid_hashtbl[i], so_idhash) {
if (!same_owner_str(sop, owner, clid))
continue;
list_for_each_entry(stp, &sop->so_stateids,
st_perstateowner) {
if (check_for_locks(stp->st_file, sop))
goto out;
/* Note: so_perclient unused for lockowners,
* so it's OK to fool with here. */
list_add(&sop->so_perclient, &matches);
}
}
}
/* Clients probably won't expect us to return with some (but not all)
* of the lockowner state released; so don't release any until all
* have been checked. */
status = nfs_ok;
while (!list_empty(&matches)) {
sop = list_entry(matches.next, struct nfs4_stateowner,
so_perclient);
/* unhash_stateowner deletes so_perclient only
* for openowners. */
list_del(&sop->so_perclient);
release_lockowner(sop);
}
out:
nfs4_unlock_state();
return status;
}
static inline struct nfs4_client_reclaim *
alloc_reclaim(void)
{
return kmalloc(sizeof(struct nfs4_client_reclaim), GFP_KERNEL);
}
int
nfs4_has_reclaimed_state(const char *name, bool use_exchange_id)
{
unsigned int strhashval = clientstr_hashval(name);
struct nfs4_client *clp;
clp = find_confirmed_client_by_str(name, strhashval);
return clp ? 1 : 0;
}
/*
* failure => all reset bets are off, nfserr_no_grace...
*/
int
nfs4_client_to_reclaim(const char *name)
{
unsigned int strhashval;
struct nfs4_client_reclaim *crp = NULL;
dprintk("NFSD nfs4_client_to_reclaim NAME: %.*s\n", HEXDIR_LEN, name);
crp = alloc_reclaim();
if (!crp)
return 0;
strhashval = clientstr_hashval(name);
INIT_LIST_HEAD(&crp->cr_strhash);
list_add(&crp->cr_strhash, &reclaim_str_hashtbl[strhashval]);
memcpy(crp->cr_recdir, name, HEXDIR_LEN);
reclaim_str_hashtbl_size++;
return 1;
}
static void
nfs4_release_reclaim(void)
{
struct nfs4_client_reclaim *crp = NULL;
int i;
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&reclaim_str_hashtbl[i])) {
crp = list_entry(reclaim_str_hashtbl[i].next,
struct nfs4_client_reclaim, cr_strhash);
list_del(&crp->cr_strhash);
kfree(crp);
reclaim_str_hashtbl_size--;
}
}
BUG_ON(reclaim_str_hashtbl_size);
}
/*
* called from OPEN, CLAIM_PREVIOUS with a new clientid. */
static struct nfs4_client_reclaim *
nfs4_find_reclaim_client(clientid_t *clid)
{
unsigned int strhashval;
struct nfs4_client *clp;
struct nfs4_client_reclaim *crp = NULL;
/* find clientid in conf_id_hashtbl */
clp = find_confirmed_client(clid);
if (clp == NULL)
return NULL;
dprintk("NFSD: nfs4_find_reclaim_client for %.*s with recdir %s\n",
clp->cl_name.len, clp->cl_name.data,
clp->cl_recdir);
/* find clp->cl_name in reclaim_str_hashtbl */
strhashval = clientstr_hashval(clp->cl_recdir);
list_for_each_entry(crp, &reclaim_str_hashtbl[strhashval], cr_strhash) {
if (same_name(crp->cr_recdir, clp->cl_recdir)) {
return crp;
}
}
return NULL;
}
/*
* Called from OPEN. Look for clientid in reclaim list.
*/
__be32
nfs4_check_open_reclaim(clientid_t *clid)
{
return nfs4_find_reclaim_client(clid) ? nfs_ok : nfserr_reclaim_bad;
}
/* initialization to perform at module load time: */
int
nfs4_state_init(void)
{
int i, status;
status = nfsd4_init_slabs();
if (status)
return status;
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
INIT_LIST_HEAD(&conf_id_hashtbl[i]);
INIT_LIST_HEAD(&conf_str_hashtbl[i]);
INIT_LIST_HEAD(&unconf_str_hashtbl[i]);
INIT_LIST_HEAD(&unconf_id_hashtbl[i]);
INIT_LIST_HEAD(&reclaim_str_hashtbl[i]);
}
for (i = 0; i < SESSION_HASH_SIZE; i++)
INIT_LIST_HEAD(&sessionid_hashtbl[i]);
for (i = 0; i < FILE_HASH_SIZE; i++) {
INIT_LIST_HEAD(&file_hashtbl[i]);
}
for (i = 0; i < OWNER_HASH_SIZE; i++) {
INIT_LIST_HEAD(&ownerstr_hashtbl[i]);
INIT_LIST_HEAD(&ownerid_hashtbl[i]);
}
for (i = 0; i < STATEID_HASH_SIZE; i++) {
INIT_LIST_HEAD(&stateid_hashtbl[i]);
INIT_LIST_HEAD(&lockstateid_hashtbl[i]);
}
for (i = 0; i < LOCK_HASH_SIZE; i++) {
INIT_LIST_HEAD(&lock_ownerid_hashtbl[i]);
INIT_LIST_HEAD(&lock_ownerstr_hashtbl[i]);
}
memset(&onestateid, ~0, sizeof(stateid_t));
INIT_LIST_HEAD(&close_lru);
INIT_LIST_HEAD(&client_lru);
INIT_LIST_HEAD(&del_recall_lru);
reclaim_str_hashtbl_size = 0;
return 0;
}
static void
nfsd4_load_reboot_recovery_data(void)
{
int status;
nfs4_lock_state();
nfsd4_init_recdir(user_recovery_dirname);
status = nfsd4_recdir_load();
nfs4_unlock_state();
if (status)
printk("NFSD: Failure reading reboot recovery data\n");
}
/*
* Since the lifetime of a delegation isn't limited to that of an open, a
* client may quite reasonably hang on to a delegation as long as it has
* the inode cached. This becomes an obvious problem the first time a
* client's inode cache approaches the size of the server's total memory.
*
* For now we avoid this problem by imposing a hard limit on the number
* of delegations, which varies according to the server's memory size.
*/
static void
set_max_delegations(void)
{
/*
* Allow at most 4 delegations per megabyte of RAM. Quick
* estimates suggest that in the worst case (where every delegation
* is for a different inode), a delegation could take about 1.5K,
* giving a worst case usage of about 6% of memory.
*/
max_delegations = nr_free_buffer_pages() >> (20 - 2 - PAGE_SHIFT);
}
/* initialization to perform when the nfsd service is started: */
static int
__nfs4_state_start(void)
{
int ret;
boot_time = get_seconds();
locks_start_grace(&nfsd4_manager);
printk(KERN_INFO "NFSD: starting %ld-second grace period\n",
nfsd4_grace);
ret = set_callback_cred();
if (ret)
return -ENOMEM;
laundry_wq = create_singlethread_workqueue("nfsd4");
if (laundry_wq == NULL)
return -ENOMEM;
ret = nfsd4_create_callback_queue();
if (ret)
goto out_free_laundry;
queue_delayed_work(laundry_wq, &laundromat_work, nfsd4_grace * HZ);
set_max_delegations();
return 0;
out_free_laundry:
destroy_workqueue(laundry_wq);
return ret;
}
int
nfs4_state_start(void)
{
nfsd4_load_reboot_recovery_data();
return __nfs4_state_start();
}
static void
__nfs4_state_shutdown(void)
{
int i;
struct nfs4_client *clp = NULL;
struct nfs4_delegation *dp = NULL;
struct list_head *pos, *next, reaplist;
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&conf_id_hashtbl[i])) {
clp = list_entry(conf_id_hashtbl[i].next, struct nfs4_client, cl_idhash);
expire_client(clp);
}
while (!list_empty(&unconf_str_hashtbl[i])) {
clp = list_entry(unconf_str_hashtbl[i].next, struct nfs4_client, cl_strhash);
expire_client(clp);
}
}
INIT_LIST_HEAD(&reaplist);
spin_lock(&recall_lock);
list_for_each_safe(pos, next, &del_recall_lru) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
list_move(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&recall_lock);
list_for_each_safe(pos, next, &reaplist) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
unhash_delegation(dp);
}
nfsd4_shutdown_recdir();
}
void
nfs4_state_shutdown(void)
{
cancel_delayed_work_sync(&laundromat_work);
destroy_workqueue(laundry_wq);
locks_end_grace(&nfsd4_manager);
nfs4_lock_state();
nfs4_release_reclaim();
__nfs4_state_shutdown();
nfs4_unlock_state();
nfsd4_destroy_callback_queue();
}
/*
* user_recovery_dirname is protected by the nfsd_mutex since it's only
* accessed when nfsd is starting.
*/
static void
nfs4_set_recdir(char *recdir)
{
strcpy(user_recovery_dirname, recdir);
}
/*
* Change the NFSv4 recovery directory to recdir.
*/
int
nfs4_reset_recoverydir(char *recdir)
{
int status;
struct path path;
status = kern_path(recdir, LOOKUP_FOLLOW, &path);
if (status)
return status;
status = -ENOTDIR;
if (S_ISDIR(path.dentry->d_inode->i_mode)) {
nfs4_set_recdir(recdir);
status = 0;
}
path_put(&path);
return status;
}
char *
nfs4_recoverydir(void)
{
return user_recovery_dirname;
}