OpenCloudOS-Kernel/drivers/gpu/drm/i915/intel_engine_cs.c

2068 lines
57 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <drm/drm_print.h>
#include "i915_drv.h"
#include "i915_vgpu.h"
#include "intel_ringbuffer.h"
#include "intel_lrc.h"
/* Haswell does have the CXT_SIZE register however it does not appear to be
* valid. Now, docs explain in dwords what is in the context object. The full
* size is 70720 bytes, however, the power context and execlist context will
* never be saved (power context is stored elsewhere, and execlists don't work
* on HSW) - so the final size, including the extra state required for the
* Resource Streamer, is 66944 bytes, which rounds to 17 pages.
*/
#define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
#define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE)
#define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
struct engine_class_info {
const char *name;
int (*init_legacy)(struct intel_engine_cs *engine);
int (*init_execlists)(struct intel_engine_cs *engine);
u8 uabi_class;
};
static const struct engine_class_info intel_engine_classes[] = {
[RENDER_CLASS] = {
.name = "rcs",
.init_execlists = logical_render_ring_init,
.init_legacy = intel_init_render_ring_buffer,
.uabi_class = I915_ENGINE_CLASS_RENDER,
},
[COPY_ENGINE_CLASS] = {
.name = "bcs",
.init_execlists = logical_xcs_ring_init,
.init_legacy = intel_init_blt_ring_buffer,
.uabi_class = I915_ENGINE_CLASS_COPY,
},
[VIDEO_DECODE_CLASS] = {
.name = "vcs",
.init_execlists = logical_xcs_ring_init,
.init_legacy = intel_init_bsd_ring_buffer,
.uabi_class = I915_ENGINE_CLASS_VIDEO,
},
[VIDEO_ENHANCEMENT_CLASS] = {
.name = "vecs",
.init_execlists = logical_xcs_ring_init,
.init_legacy = intel_init_vebox_ring_buffer,
.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
},
};
struct engine_info {
unsigned int hw_id;
unsigned int uabi_id;
u8 class;
u8 instance;
u32 mmio_base;
unsigned irq_shift;
};
static const struct engine_info intel_engines[] = {
[RCS] = {
.hw_id = RCS_HW,
.uabi_id = I915_EXEC_RENDER,
.class = RENDER_CLASS,
.instance = 0,
.mmio_base = RENDER_RING_BASE,
.irq_shift = GEN8_RCS_IRQ_SHIFT,
},
[BCS] = {
.hw_id = BCS_HW,
.uabi_id = I915_EXEC_BLT,
.class = COPY_ENGINE_CLASS,
.instance = 0,
.mmio_base = BLT_RING_BASE,
.irq_shift = GEN8_BCS_IRQ_SHIFT,
},
[VCS] = {
.hw_id = VCS_HW,
.uabi_id = I915_EXEC_BSD,
.class = VIDEO_DECODE_CLASS,
.instance = 0,
.mmio_base = GEN6_BSD_RING_BASE,
.irq_shift = GEN8_VCS1_IRQ_SHIFT,
},
[VCS2] = {
.hw_id = VCS2_HW,
.uabi_id = I915_EXEC_BSD,
.class = VIDEO_DECODE_CLASS,
.instance = 1,
.mmio_base = GEN8_BSD2_RING_BASE,
.irq_shift = GEN8_VCS2_IRQ_SHIFT,
},
[VECS] = {
.hw_id = VECS_HW,
.uabi_id = I915_EXEC_VEBOX,
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 0,
.mmio_base = VEBOX_RING_BASE,
.irq_shift = GEN8_VECS_IRQ_SHIFT,
},
};
/**
* ___intel_engine_context_size() - return the size of the context for an engine
* @dev_priv: i915 device private
* @class: engine class
*
* Each engine class may require a different amount of space for a context
* image.
*
* Return: size (in bytes) of an engine class specific context image
*
* Note: this size includes the HWSP, which is part of the context image
* in LRC mode, but does not include the "shared data page" used with
* GuC submission. The caller should account for this if using the GuC.
*/
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
u32 cxt_size;
BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
switch (class) {
case RENDER_CLASS:
switch (INTEL_GEN(dev_priv)) {
default:
MISSING_CASE(INTEL_GEN(dev_priv));
return DEFAULT_LR_CONTEXT_RENDER_SIZE;
case 11:
return GEN11_LR_CONTEXT_RENDER_SIZE;
case 10:
return GEN10_LR_CONTEXT_RENDER_SIZE;
case 9:
return GEN9_LR_CONTEXT_RENDER_SIZE;
case 8:
return GEN8_LR_CONTEXT_RENDER_SIZE;
case 7:
if (IS_HASWELL(dev_priv))
return HSW_CXT_TOTAL_SIZE;
cxt_size = I915_READ(GEN7_CXT_SIZE);
return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
PAGE_SIZE);
case 6:
cxt_size = I915_READ(CXT_SIZE);
return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
PAGE_SIZE);
case 5:
case 4:
case 3:
case 2:
/* For the special day when i810 gets merged. */
case 1:
return 0;
}
break;
default:
MISSING_CASE(class);
case VIDEO_DECODE_CLASS:
case VIDEO_ENHANCEMENT_CLASS:
case COPY_ENGINE_CLASS:
if (INTEL_GEN(dev_priv) < 8)
return 0;
return GEN8_LR_CONTEXT_OTHER_SIZE;
}
}
static int
intel_engine_setup(struct drm_i915_private *dev_priv,
enum intel_engine_id id)
{
const struct engine_info *info = &intel_engines[id];
const struct engine_class_info *class_info;
struct intel_engine_cs *engine;
GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));
class_info = &intel_engine_classes[info->class];
if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS))
return -EINVAL;
if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
return -EINVAL;
if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
return -EINVAL;
GEM_BUG_ON(dev_priv->engine[id]);
engine = kzalloc(sizeof(*engine), GFP_KERNEL);
if (!engine)
return -ENOMEM;
engine->id = id;
engine->i915 = dev_priv;
WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s%u",
class_info->name, info->instance) >=
sizeof(engine->name));
engine->hw_id = engine->guc_id = info->hw_id;
engine->mmio_base = info->mmio_base;
engine->irq_shift = info->irq_shift;
engine->class = info->class;
engine->instance = info->instance;
engine->uabi_id = info->uabi_id;
engine->uabi_class = class_info->uabi_class;
engine->context_size = __intel_engine_context_size(dev_priv,
engine->class);
if (WARN_ON(engine->context_size > BIT(20)))
engine->context_size = 0;
/* Nothing to do here, execute in order of dependencies */
engine->schedule = NULL;
spin_lock_init(&engine->stats.lock);
ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
dev_priv->engine_class[info->class][info->instance] = engine;
dev_priv->engine[id] = engine;
return 0;
}
/**
* intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
* @dev_priv: i915 device private
*
* Return: non-zero if the initialization failed.
*/
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
{
struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
struct intel_engine_cs *engine;
enum intel_engine_id id;
unsigned int mask = 0;
unsigned int i;
int err;
WARN_ON(ring_mask == 0);
WARN_ON(ring_mask &
GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
if (!HAS_ENGINE(dev_priv, i))
continue;
err = intel_engine_setup(dev_priv, i);
if (err)
goto cleanup;
mask |= ENGINE_MASK(i);
}
/*
* Catch failures to update intel_engines table when the new engines
* are added to the driver by a warning and disabling the forgotten
* engines.
*/
if (WARN_ON(mask != ring_mask))
device_info->ring_mask = mask;
/* We always presume we have at least RCS available for later probing */
if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
err = -ENODEV;
goto cleanup;
}
device_info->num_rings = hweight32(mask);
i915_check_and_clear_faults(dev_priv);
return 0;
cleanup:
for_each_engine(engine, dev_priv, id)
kfree(engine);
return err;
}
/**
* intel_engines_init() - init the Engine Command Streamers
* @dev_priv: i915 device private
*
* Return: non-zero if the initialization failed.
*/
int intel_engines_init(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id, err_id;
int err;
for_each_engine(engine, dev_priv, id) {
const struct engine_class_info *class_info =
&intel_engine_classes[engine->class];
int (*init)(struct intel_engine_cs *engine);
if (HAS_EXECLISTS(dev_priv))
init = class_info->init_execlists;
else
init = class_info->init_legacy;
err = -EINVAL;
err_id = id;
if (GEM_WARN_ON(!init))
goto cleanup;
err = init(engine);
if (err)
goto cleanup;
GEM_BUG_ON(!engine->submit_request);
}
return 0;
cleanup:
for_each_engine(engine, dev_priv, id) {
if (id >= err_id) {
kfree(engine);
dev_priv->engine[id] = NULL;
} else {
dev_priv->gt.cleanup_engine(engine);
}
}
return err;
}
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
{
struct drm_i915_private *dev_priv = engine->i915;
/* Our semaphore implementation is strictly monotonic (i.e. we proceed
* so long as the semaphore value in the register/page is greater
* than the sync value), so whenever we reset the seqno,
* so long as we reset the tracking semaphore value to 0, it will
* always be before the next request's seqno. If we don't reset
* the semaphore value, then when the seqno moves backwards all
* future waits will complete instantly (causing rendering corruption).
*/
if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
if (HAS_VEBOX(dev_priv))
I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
}
intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
/* After manually advancing the seqno, fake the interrupt in case
* there are any waiters for that seqno.
*/
intel_engine_wakeup(engine);
GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
}
static void intel_engine_init_timeline(struct intel_engine_cs *engine)
{
engine->timeline = &engine->i915->gt.global_timeline.engine[engine->id];
}
static bool csb_force_mmio(struct drm_i915_private *i915)
{
/*
* IOMMU adds unpredictable latency causing the CSB write (from the
* GPU into the HWSP) to only be visible some time after the interrupt
* (missed breadcrumb syndrome).
*/
if (intel_vtd_active())
return true;
/* Older GVT emulation depends upon intercepting CSB mmio */
if (intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915))
return true;
return false;
}
static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
execlists->csb_use_mmio = csb_force_mmio(engine->i915);
execlists->port_mask = 1;
BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists));
GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
execlists->queue_priority = INT_MIN;
execlists->queue = RB_ROOT;
execlists->first = NULL;
}
/**
* intel_engines_setup_common - setup engine state not requiring hw access
* @engine: Engine to setup.
*
* Initializes @engine@ structure members shared between legacy and execlists
* submission modes which do not require hardware access.
*
* Typically done early in the submission mode specific engine setup stage.
*/
void intel_engine_setup_common(struct intel_engine_cs *engine)
{
intel_engine_init_execlist(engine);
intel_engine_init_timeline(engine);
intel_engine_init_hangcheck(engine);
i915_gem_batch_pool_init(engine, &engine->batch_pool);
intel_engine_init_cmd_parser(engine);
}
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int ret;
WARN_ON(engine->scratch);
obj = i915_gem_object_create_stolen(engine->i915, size);
if (!obj)
obj = i915_gem_object_create_internal(engine->i915, size);
if (IS_ERR(obj)) {
DRM_ERROR("Failed to allocate scratch page\n");
return PTR_ERR(obj);
}
vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unref;
}
ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH);
if (ret)
goto err_unref;
engine->scratch = vma;
DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
engine->name, i915_ggtt_offset(vma));
return 0;
err_unref:
i915_gem_object_put(obj);
return ret;
}
static void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
{
i915_vma_unpin_and_release(&engine->scratch);
}
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
if (!dev_priv->status_page_dmah)
return;
drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
engine->status_page.page_addr = NULL;
}
static void cleanup_status_page(struct intel_engine_cs *engine)
{
struct i915_vma *vma;
struct drm_i915_gem_object *obj;
vma = fetch_and_zero(&engine->status_page.vma);
if (!vma)
return;
obj = vma->obj;
i915_vma_unpin(vma);
i915_vma_close(vma);
i915_gem_object_unpin_map(obj);
__i915_gem_object_release_unless_active(obj);
}
static int init_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
unsigned int flags;
void *vaddr;
int ret;
obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
if (IS_ERR(obj)) {
DRM_ERROR("Failed to allocate status page\n");
return PTR_ERR(obj);
}
ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
if (ret)
goto err;
vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
flags = PIN_GLOBAL;
if (!HAS_LLC(engine->i915))
/* On g33, we cannot place HWS above 256MiB, so
* restrict its pinning to the low mappable arena.
* Though this restriction is not documented for
* gen4, gen5, or byt, they also behave similarly
* and hang if the HWS is placed at the top of the
* GTT. To generalise, it appears that all !llc
* platforms have issues with us placing the HWS
* above the mappable region (even though we never
* actually map it).
*/
flags |= PIN_MAPPABLE;
else
flags |= PIN_HIGH;
ret = i915_vma_pin(vma, 0, 4096, flags);
if (ret)
goto err;
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto err_unpin;
}
engine->status_page.vma = vma;
engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
engine->name, i915_ggtt_offset(vma));
return 0;
err_unpin:
i915_vma_unpin(vma);
err:
i915_gem_object_put(obj);
return ret;
}
static int init_phys_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
GEM_BUG_ON(engine->id != RCS);
dev_priv->status_page_dmah =
drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
if (!dev_priv->status_page_dmah)
return -ENOMEM;
engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
memset(engine->status_page.page_addr, 0, PAGE_SIZE);
return 0;
}
/**
* intel_engines_init_common - initialize cengine state which might require hw access
* @engine: Engine to initialize.
*
* Initializes @engine@ structure members shared between legacy and execlists
* submission modes which do require hardware access.
*
* Typcally done at later stages of submission mode specific engine setup.
*
* Returns zero on success or an error code on failure.
*/
int intel_engine_init_common(struct intel_engine_cs *engine)
{
struct intel_ring *ring;
int ret;
engine->set_default_submission(engine);
/* We may need to do things with the shrinker which
* require us to immediately switch back to the default
* context. This can cause a problem as pinning the
* default context also requires GTT space which may not
* be available. To avoid this we always pin the default
* context.
*/
ring = engine->context_pin(engine, engine->i915->kernel_context);
if (IS_ERR(ring))
return PTR_ERR(ring);
/*
* Similarly the preempt context must always be available so that
* we can interrupt the engine at any time.
*/
if (engine->i915->preempt_context) {
ring = engine->context_pin(engine,
engine->i915->preempt_context);
if (IS_ERR(ring)) {
ret = PTR_ERR(ring);
goto err_unpin_kernel;
}
}
ret = intel_engine_init_breadcrumbs(engine);
if (ret)
goto err_unpin_preempt;
if (HWS_NEEDS_PHYSICAL(engine->i915))
ret = init_phys_status_page(engine);
else
ret = init_status_page(engine);
if (ret)
goto err_breadcrumbs;
return 0;
err_breadcrumbs:
intel_engine_fini_breadcrumbs(engine);
err_unpin_preempt:
if (engine->i915->preempt_context)
engine->context_unpin(engine, engine->i915->preempt_context);
err_unpin_kernel:
engine->context_unpin(engine, engine->i915->kernel_context);
return ret;
}
/**
* intel_engines_cleanup_common - cleans up the engine state created by
* the common initiailizers.
* @engine: Engine to cleanup.
*
* This cleans up everything created by the common helpers.
*/
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
intel_engine_cleanup_scratch(engine);
if (HWS_NEEDS_PHYSICAL(engine->i915))
cleanup_phys_status_page(engine);
else
cleanup_status_page(engine);
intel_engine_fini_breadcrumbs(engine);
intel_engine_cleanup_cmd_parser(engine);
i915_gem_batch_pool_fini(&engine->batch_pool);
if (engine->default_state)
i915_gem_object_put(engine->default_state);
if (engine->i915->preempt_context)
engine->context_unpin(engine, engine->i915->preempt_context);
engine->context_unpin(engine, engine->i915->kernel_context);
}
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
u64 acthd;
if (INTEL_GEN(dev_priv) >= 8)
acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
RING_ACTHD_UDW(engine->mmio_base));
else if (INTEL_GEN(dev_priv) >= 4)
acthd = I915_READ(RING_ACTHD(engine->mmio_base));
else
acthd = I915_READ(ACTHD);
return acthd;
}
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
u64 bbaddr;
if (INTEL_GEN(dev_priv) >= 8)
bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
RING_BBADDR_UDW(engine->mmio_base));
else
bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));
return bbaddr;
}
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
switch (type) {
case I915_CACHE_NONE: return " uncached";
case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
case I915_CACHE_L3_LLC: return " L3+LLC";
case I915_CACHE_WT: return " WT";
default: return "";
}
}
static inline uint32_t
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
int subslice, i915_reg_t reg)
{
uint32_t mcr;
uint32_t ret;
enum forcewake_domains fw_domains;
fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
FW_REG_READ);
fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
GEN8_MCR_SELECTOR,
FW_REG_READ | FW_REG_WRITE);
spin_lock_irq(&dev_priv->uncore.lock);
intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
/*
* The HW expects the slice and sublice selectors to be reset to 0
* after reading out the registers.
*/
WARN_ON_ONCE(mcr & (GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK));
mcr &= ~(GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK);
mcr |= GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);
ret = I915_READ_FW(reg);
mcr &= ~(GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK);
I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);
intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
spin_unlock_irq(&dev_priv->uncore.lock);
return ret;
}
/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
struct intel_instdone *instdone)
{
struct drm_i915_private *dev_priv = engine->i915;
u32 mmio_base = engine->mmio_base;
int slice;
int subslice;
memset(instdone, 0, sizeof(*instdone));
switch (INTEL_GEN(dev_priv)) {
default:
instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
if (engine->id != RCS)
break;
instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
instdone->sampler[slice][subslice] =
read_subslice_reg(dev_priv, slice, subslice,
GEN7_SAMPLER_INSTDONE);
instdone->row[slice][subslice] =
read_subslice_reg(dev_priv, slice, subslice,
GEN7_ROW_INSTDONE);
}
break;
case 7:
instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
if (engine->id != RCS)
break;
instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);
break;
case 6:
case 5:
case 4:
instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
if (engine->id == RCS)
/* HACK: Using the wrong struct member */
instdone->slice_common = I915_READ(GEN4_INSTDONE1);
break;
case 3:
case 2:
instdone->instdone = I915_READ(GEN2_INSTDONE);
break;
}
}
static int wa_add(struct drm_i915_private *dev_priv,
i915_reg_t addr,
const u32 mask, const u32 val)
{
const u32 idx = dev_priv->workarounds.count;
if (WARN_ON(idx >= I915_MAX_WA_REGS))
return -ENOSPC;
dev_priv->workarounds.reg[idx].addr = addr;
dev_priv->workarounds.reg[idx].value = val;
dev_priv->workarounds.reg[idx].mask = mask;
dev_priv->workarounds.count++;
return 0;
}
#define WA_REG(addr, mask, val) do { \
const int r = wa_add(dev_priv, (addr), (mask), (val)); \
if (r) \
return r; \
} while (0)
#define WA_SET_BIT_MASKED(addr, mask) \
WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
#define WA_CLR_BIT_MASKED(addr, mask) \
WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
#define WA_SET_FIELD_MASKED(addr, mask, value) \
WA_REG(addr, mask, _MASKED_FIELD(mask, value))
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
i915_reg_t reg)
{
struct drm_i915_private *dev_priv = engine->i915;
struct i915_workarounds *wa = &dev_priv->workarounds;
const uint32_t index = wa->hw_whitelist_count[engine->id];
if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
return -EINVAL;
I915_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
i915_mmio_reg_offset(reg));
wa->hw_whitelist_count[engine->id]++;
return 0;
}
static int gen8_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
/* WaDisableAsyncFlipPerfMode:bdw,chv */
WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
/* WaDisablePartialInstShootdown:bdw,chv */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
/* Use Force Non-Coherent whenever executing a 3D context. This is a
* workaround for for a possible hang in the unlikely event a TLB
* invalidation occurs during a PSD flush.
*/
/* WaForceEnableNonCoherent:bdw,chv */
/* WaHdcDisableFetchWhenMasked:bdw,chv */
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_DONOT_FETCH_MEM_WHEN_MASKED |
HDC_FORCE_NON_COHERENT);
/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
* "The Hierarchical Z RAW Stall Optimization allows non-overlapping
* polygons in the same 8x4 pixel/sample area to be processed without
* stalling waiting for the earlier ones to write to Hierarchical Z
* buffer."
*
* This optimization is off by default for BDW and CHV; turn it on.
*/
WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
/* Wa4x4STCOptimizationDisable:bdw,chv */
WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
WA_SET_FIELD_MASKED(GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK,
GEN6_WIZ_HASHING_16x4);
return 0;
}
static int bdw_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen8_init_workarounds(engine);
if (ret)
return ret;
/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
/* WaDisableDopClockGating:bdw
*
* Also see the related UCGTCL1 write in broadwell_init_clock_gating()
* to disable EUTC clock gating.
*/
WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
DOP_CLOCK_GATING_DISABLE);
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
GEN8_SAMPLER_POWER_BYPASS_DIS);
WA_SET_BIT_MASKED(HDC_CHICKEN0,
/* WaForceContextSaveRestoreNonCoherent:bdw */
HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
/* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
(IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
return 0;
}
static int chv_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen8_init_workarounds(engine);
if (ret)
return ret;
/* WaDisableThreadStallDopClockGating:chv */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
/* Improve HiZ throughput on CHV. */
WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
return 0;
}
static int gen9_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
/* WaDisableKillLogic:bxt,skl,kbl */
if (!IS_COFFEELAKE(dev_priv))
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
ECOCHK_DIS_TLB);
if (HAS_LLC(dev_priv)) {
/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
*
* Must match Display Engine. See
* WaCompressedResourceDisplayNewHashMode.
*/
WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
GEN9_PBE_COMPRESSED_HASH_SELECTION);
WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
I915_WRITE(MMCD_MISC_CTRL,
I915_READ(MMCD_MISC_CTRL) |
MMCD_PCLA |
MMCD_HOTSPOT_EN);
}
/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
FLOW_CONTROL_ENABLE |
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
if (!IS_COFFEELAKE(dev_priv))
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
GEN9_ENABLE_YV12_BUGFIX |
GEN9_ENABLE_GPGPU_PREEMPTION);
/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
GEN9_CCS_TLB_PREFETCH_ENABLE);
/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
* both tied to WaForceContextSaveRestoreNonCoherent
* in some hsds for skl. We keep the tie for all gen9. The
* documentation is a bit hazy and so we want to get common behaviour,
* even though there is no clear evidence we would need both on kbl/bxt.
* This area has been source of system hangs so we play it safe
* and mimic the skl regardless of what bspec says.
*
* Use Force Non-Coherent whenever executing a 3D context. This
* is a workaround for a possible hang in the unlikely event
* a TLB invalidation occurs during a PSD flush.
*/
/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_FORCE_NON_COHERENT);
/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
BDW_DISABLE_HDC_INVALIDATION);
/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
if (IS_SKYLAKE(dev_priv) ||
IS_KABYLAKE(dev_priv) ||
IS_COFFEELAKE(dev_priv))
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
GEN8_SAMPLER_POWER_BYPASS_DIS);
/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
if (IS_GEN9_LP(dev_priv)) {
u32 val = I915_READ(GEN8_L3SQCREG1);
val &= ~L3_PRIO_CREDITS_MASK;
val |= L3_GENERAL_PRIO_CREDITS(62) | L3_HIGH_PRIO_CREDITS(2);
I915_WRITE(GEN8_L3SQCREG1, val);
}
/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
GEN8_LQSC_FLUSH_COHERENT_LINES));
/*
* Supporting preemption with fine-granularity requires changes in the
* batch buffer programming. Since we can't break old userspace, we
* need to set our default preemption level to safe value. Userspace is
* still able to use more fine-grained preemption levels, since in
* WaEnablePreemptionGranularityControlByUMD we're whitelisting the
* per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
* not real HW workarounds, but merely a way to start using preemption
* while maintaining old contract with userspace.
*/
/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
WA_CLR_BIT_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
WA_SET_FIELD_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK,
GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
if (ret)
return ret;
/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
_MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
ret = wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
if (ret)
return ret;
/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
if (ret)
return ret;
return 0;
}
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
u8 vals[3] = { 0, 0, 0 };
unsigned int i;
for (i = 0; i < 3; i++) {
u8 ss;
/*
* Only consider slices where one, and only one, subslice has 7
* EUs
*/
if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
continue;
/*
* subslice_7eu[i] != 0 (because of the check above) and
* ss_max == 4 (maximum number of subslices possible per slice)
*
* -> 0 <= ss <= 3;
*/
ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
vals[i] = 3 - ss;
}
if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
return 0;
/* Tune IZ hashing. See intel_device_info_runtime_init() */
WA_SET_FIELD_MASKED(GEN7_GT_MODE,
GEN9_IZ_HASHING_MASK(2) |
GEN9_IZ_HASHING_MASK(1) |
GEN9_IZ_HASHING_MASK(0),
GEN9_IZ_HASHING(2, vals[2]) |
GEN9_IZ_HASHING(1, vals[1]) |
GEN9_IZ_HASHING(0, vals[0]));
return 0;
}
static int skl_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen9_init_workarounds(engine);
if (ret)
return ret;
/* WaEnableGapsTsvCreditFix:skl */
I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
GEN9_GAPS_TSV_CREDIT_DISABLE));
/* WaDisableGafsUnitClkGating:skl */
I915_WRITE(GEN7_UCGCTL4, (I915_READ(GEN7_UCGCTL4) |
GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE));
/* WaInPlaceDecompressionHang:skl */
if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
(I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
/* WaDisableLSQCROPERFforOCL:skl */
ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
if (ret)
return ret;
return skl_tune_iz_hashing(engine);
}
static int bxt_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen9_init_workarounds(engine);
if (ret)
return ret;
/* WaDisableThreadStallDopClockGating:bxt */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
STALL_DOP_GATING_DISABLE);
/* WaDisablePooledEuLoadBalancingFix:bxt */
I915_WRITE(FF_SLICE_CS_CHICKEN2,
_MASKED_BIT_ENABLE(GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE));
/* WaToEnableHwFixForPushConstHWBug:bxt */
WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
/* WaInPlaceDecompressionHang:bxt */
I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
(I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
return 0;
}
static int cnl_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
/* WaDisableI2mCycleOnWRPort:cnl (pre-prod) */
if (IS_CNL_REVID(dev_priv, CNL_REVID_B0, CNL_REVID_B0))
I915_WRITE(GAMT_CHKN_BIT_REG,
(I915_READ(GAMT_CHKN_BIT_REG) |
GAMT_CHKN_DISABLE_I2M_CYCLE_ON_WR_PORT));
/* WaForceContextSaveRestoreNonCoherent:cnl */
WA_SET_BIT_MASKED(CNL_HDC_CHICKEN0,
HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT);
/* WaThrottleEUPerfToAvoidTDBackPressure:cnl(pre-prod) */
if (IS_CNL_REVID(dev_priv, CNL_REVID_B0, CNL_REVID_B0))
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, THROTTLE_12_5);
/* WaDisableReplayBufferBankArbitrationOptimization:cnl */
WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
/* WaDisableEnhancedSBEVertexCaching:cnl (pre-prod) */
if (IS_CNL_REVID(dev_priv, 0, CNL_REVID_B0))
WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE);
/* WaInPlaceDecompressionHang:cnl */
I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
(I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
/* WaPushConstantDereferenceHoldDisable:cnl */
WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2, PUSH_CONSTANT_DEREF_DISABLE);
/* FtrEnableFastAnisoL1BankingFix: cnl */
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3, CNL_FAST_ANISO_L1_BANKING_FIX);
/* WaDisable3DMidCmdPreemption:cnl */
WA_CLR_BIT_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
/* WaDisableGPGPUMidCmdPreemption:cnl */
WA_SET_FIELD_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK,
GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
/* WaEnablePreemptionGranularityControlByUMD:cnl */
I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
_MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
if (ret)
return ret;
/* WaDisableEarlyEOT:cnl */
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, DISABLE_EARLY_EOT);
return 0;
}
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen9_init_workarounds(engine);
if (ret)
return ret;
/* WaEnableGapsTsvCreditFix:kbl */
I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
GEN9_GAPS_TSV_CREDIT_DISABLE));
/* WaDisableDynamicCreditSharing:kbl */
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
I915_WRITE(GAMT_CHKN_BIT_REG,
(I915_READ(GAMT_CHKN_BIT_REG) |
GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING));
/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
WA_SET_BIT_MASKED(HDC_CHICKEN0,
HDC_FENCE_DEST_SLM_DISABLE);
/* WaToEnableHwFixForPushConstHWBug:kbl */
if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
/* WaDisableGafsUnitClkGating:kbl */
I915_WRITE(GEN7_UCGCTL4, (I915_READ(GEN7_UCGCTL4) |
GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE));
/* WaDisableSbeCacheDispatchPortSharing:kbl */
WA_SET_BIT_MASKED(
GEN7_HALF_SLICE_CHICKEN1,
GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
/* WaInPlaceDecompressionHang:kbl */
I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
(I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
/* WaDisableLSQCROPERFforOCL:kbl */
ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
if (ret)
return ret;
return 0;
}
static int glk_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen9_init_workarounds(engine);
if (ret)
return ret;
/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
ret = wa_ring_whitelist_reg(engine, GEN9_SLICE_COMMON_ECO_CHICKEN1);
if (ret)
return ret;
/* WaToEnableHwFixForPushConstHWBug:glk */
WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
return 0;
}
static int cfl_init_workarounds(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
ret = gen9_init_workarounds(engine);
if (ret)
return ret;
/* WaEnableGapsTsvCreditFix:cfl */
I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
GEN9_GAPS_TSV_CREDIT_DISABLE));
/* WaToEnableHwFixForPushConstHWBug:cfl */
WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
/* WaDisableGafsUnitClkGating:cfl */
I915_WRITE(GEN7_UCGCTL4, (I915_READ(GEN7_UCGCTL4) |
GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE));
/* WaDisableSbeCacheDispatchPortSharing:cfl */
WA_SET_BIT_MASKED(
GEN7_HALF_SLICE_CHICKEN1,
GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
/* WaInPlaceDecompressionHang:cfl */
I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
(I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
return 0;
}
int init_workarounds_ring(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int err;
if (GEM_WARN_ON(engine->id != RCS))
return -EINVAL;
dev_priv->workarounds.count = 0;
dev_priv->workarounds.hw_whitelist_count[engine->id] = 0;
if (IS_BROADWELL(dev_priv))
err = bdw_init_workarounds(engine);
else if (IS_CHERRYVIEW(dev_priv))
err = chv_init_workarounds(engine);
else if (IS_SKYLAKE(dev_priv))
err = skl_init_workarounds(engine);
else if (IS_BROXTON(dev_priv))
err = bxt_init_workarounds(engine);
else if (IS_KABYLAKE(dev_priv))
err = kbl_init_workarounds(engine);
else if (IS_GEMINILAKE(dev_priv))
err = glk_init_workarounds(engine);
else if (IS_COFFEELAKE(dev_priv))
err = cfl_init_workarounds(engine);
else if (IS_CANNONLAKE(dev_priv))
err = cnl_init_workarounds(engine);
else
err = 0;
if (err)
return err;
DRM_DEBUG_DRIVER("%s: Number of context specific w/a: %d\n",
engine->name, dev_priv->workarounds.count);
return 0;
}
int intel_ring_workarounds_emit(struct i915_request *rq)
{
struct i915_workarounds *w = &rq->i915->workarounds;
u32 *cs;
int ret, i;
if (w->count == 0)
return 0;
ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
if (ret)
return ret;
cs = intel_ring_begin(rq, w->count * 2 + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_LOAD_REGISTER_IMM(w->count);
for (i = 0; i < w->count; i++) {
*cs++ = i915_mmio_reg_offset(w->reg[i].addr);
*cs++ = w->reg[i].value;
}
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
if (ret)
return ret;
return 0;
}
static bool ring_is_idle(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
bool idle = true;
/* If the whole device is asleep, the engine must be idle */
if (!intel_runtime_pm_get_if_in_use(dev_priv))
return true;
/* First check that no commands are left in the ring */
if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
(I915_READ_TAIL(engine) & TAIL_ADDR))
idle = false;
/* No bit for gen2, so assume the CS parser is idle */
if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
idle = false;
intel_runtime_pm_put(dev_priv);
return idle;
}
/**
* intel_engine_is_idle() - Report if the engine has finished process all work
* @engine: the intel_engine_cs
*
* Return true if there are no requests pending, nothing left to be submitted
* to hardware, and that the engine is idle.
*/
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
/* More white lies, if wedged, hw state is inconsistent */
if (i915_terminally_wedged(&dev_priv->gpu_error))
return true;
/* Any inflight/incomplete requests? */
if (!i915_seqno_passed(intel_engine_get_seqno(engine),
intel_engine_last_submit(engine)))
return false;
if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
return true;
/* Waiting to drain ELSP? */
if (READ_ONCE(engine->execlists.active))
return false;
/* ELSP is empty, but there are ready requests? */
if (READ_ONCE(engine->execlists.first))
return false;
/* Ring stopped? */
if (!ring_is_idle(engine))
return false;
return true;
}
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* If the driver is wedged, HW state may be very inconsistent and
* report that it is still busy, even though we have stopped using it.
*/
if (i915_terminally_wedged(&dev_priv->gpu_error))
return true;
for_each_engine(engine, dev_priv, id) {
if (!intel_engine_is_idle(engine))
return false;
}
return true;
}
/**
* intel_engine_has_kernel_context:
* @engine: the engine
*
* Returns true if the last context to be executed on this engine, or has been
* executed if the engine is already idle, is the kernel context
* (#i915.kernel_context).
*/
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
const struct i915_gem_context * const kernel_context =
engine->i915->kernel_context;
struct i915_request *rq;
lockdep_assert_held(&engine->i915->drm.struct_mutex);
/*
* Check the last context seen by the engine. If active, it will be
* the last request that remains in the timeline. When idle, it is
* the last executed context as tracked by retirement.
*/
rq = __i915_gem_active_peek(&engine->timeline->last_request);
if (rq)
return rq->ctx == kernel_context;
else
return engine->last_retired_context == kernel_context;
}
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, i915, id)
engine->set_default_submission(engine);
}
/**
* intel_engines_park: called when the GT is transitioning from busy->idle
* @i915: the i915 device
*
* The GT is now idle and about to go to sleep (maybe never to wake again?).
* Time for us to tidy and put away our toys (release resources back to the
* system).
*/
void intel_engines_park(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, i915, id) {
/* Flush the residual irq tasklets first. */
intel_engine_disarm_breadcrumbs(engine);
tasklet_kill(&engine->execlists.tasklet);
/*
* We are committed now to parking the engines, make sure there
* will be no more interrupts arriving later and the engines
* are truly idle.
*/
if (wait_for(intel_engine_is_idle(engine), 10)) {
struct drm_printer p = drm_debug_printer(__func__);
dev_err(i915->drm.dev,
"%s is not idle before parking\n",
engine->name);
intel_engine_dump(engine, &p, NULL);
}
if (engine->park)
engine->park(engine);
i915_gem_batch_pool_fini(&engine->batch_pool);
engine->execlists.no_priolist = false;
}
}
/**
* intel_engines_unpark: called when the GT is transitioning from idle->busy
* @i915: the i915 device
*
* The GT was idle and now about to fire up with some new user requests.
*/
void intel_engines_unpark(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, i915, id) {
if (engine->unpark)
engine->unpark(engine);
}
}
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
switch (INTEL_GEN(engine->i915)) {
case 2:
return false; /* uses physical not virtual addresses */
case 3:
/* maybe only uses physical not virtual addresses */
return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
case 6:
return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
default:
return true;
}
}
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
unsigned int which;
which = 0;
for_each_engine(engine, i915, id)
if (engine->default_state)
which |= BIT(engine->uabi_class);
return which;
}
static void print_request(struct drm_printer *m,
struct i915_request *rq,
const char *prefix)
{
drm_printf(m, "%s%x%s [%x:%x] prio=%d @ %dms: %s\n", prefix,
rq->global_seqno,
i915_request_completed(rq) ? "!" : "",
rq->ctx->hw_id, rq->fence.seqno,
rq->priotree.priority,
jiffies_to_msecs(jiffies - rq->emitted_jiffies),
rq->timeline->common->name);
}
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
const size_t rowsize = 8 * sizeof(u32);
const void *prev = NULL;
bool skip = false;
size_t pos;
for (pos = 0; pos < len; pos += rowsize) {
char line[128];
if (prev && !memcmp(prev, buf + pos, rowsize)) {
if (!skip) {
drm_printf(m, "*\n");
skip = true;
}
continue;
}
WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
rowsize, sizeof(u32),
line, sizeof(line),
false) >= sizeof(line));
drm_printf(m, "%08zx %s\n", pos, line);
prev = buf + pos;
skip = false;
}
}
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
struct drm_printer *m)
{
struct drm_i915_private *dev_priv = engine->i915;
const struct intel_engine_execlists * const execlists =
&engine->execlists;
u64 addr;
drm_printf(m, "\tRING_START: 0x%08x\n",
I915_READ(RING_START(engine->mmio_base)));
drm_printf(m, "\tRING_HEAD: 0x%08x\n",
I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
drm_printf(m, "\tRING_TAIL: 0x%08x\n",
I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
I915_READ(RING_CTL(engine->mmio_base)),
I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
if (INTEL_GEN(engine->i915) > 2) {
drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
I915_READ(RING_MI_MODE(engine->mmio_base)),
I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
}
if (INTEL_GEN(dev_priv) >= 6) {
drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
}
if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
drm_printf(m, "\tSYNC_0: 0x%08x\n",
I915_READ(RING_SYNC_0(engine->mmio_base)));
drm_printf(m, "\tSYNC_1: 0x%08x\n",
I915_READ(RING_SYNC_1(engine->mmio_base)));
if (HAS_VEBOX(dev_priv))
drm_printf(m, "\tSYNC_2: 0x%08x\n",
I915_READ(RING_SYNC_2(engine->mmio_base)));
}
addr = intel_engine_get_active_head(engine);
drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
addr = intel_engine_get_last_batch_head(engine);
drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
if (INTEL_GEN(dev_priv) >= 8)
addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
RING_DMA_FADD_UDW(engine->mmio_base));
else if (INTEL_GEN(dev_priv) >= 4)
addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
else
addr = I915_READ(DMA_FADD_I8XX);
drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
if (INTEL_GEN(dev_priv) >= 4) {
drm_printf(m, "\tIPEIR: 0x%08x\n",
I915_READ(RING_IPEIR(engine->mmio_base)));
drm_printf(m, "\tIPEHR: 0x%08x\n",
I915_READ(RING_IPEHR(engine->mmio_base)));
} else {
drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
}
if (HAS_EXECLISTS(dev_priv)) {
const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
u32 ptr, read, write;
unsigned int idx;
drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
I915_READ(RING_EXECLIST_STATUS_LO(engine)),
I915_READ(RING_EXECLIST_STATUS_HI(engine)));
ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
read = GEN8_CSB_READ_PTR(ptr);
write = GEN8_CSB_WRITE_PTR(ptr);
drm_printf(m, "\tExeclist CSB read %d [%d cached], write %d [%d from hws], interrupt posted? %s\n",
read, execlists->csb_head,
write,
intel_read_status_page(engine, intel_hws_csb_write_index(engine->i915)),
yesno(test_bit(ENGINE_IRQ_EXECLIST,
&engine->irq_posted)));
if (read >= GEN8_CSB_ENTRIES)
read = 0;
if (write >= GEN8_CSB_ENTRIES)
write = 0;
if (read > write)
write += GEN8_CSB_ENTRIES;
while (read < write) {
idx = ++read % GEN8_CSB_ENTRIES;
drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [0x%08x in hwsp], context: %d [%d in hwsp]\n",
idx,
I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
hws[idx * 2],
I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)),
hws[idx * 2 + 1]);
}
rcu_read_lock();
for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
struct i915_request *rq;
unsigned int count;
rq = port_unpack(&execlists->port[idx], &count);
if (rq) {
char hdr[80];
snprintf(hdr, sizeof(hdr),
"\t\tELSP[%d] count=%d, rq: ",
idx, count);
print_request(m, rq, hdr);
} else {
drm_printf(m, "\t\tELSP[%d] idle\n", idx);
}
}
drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
rcu_read_unlock();
} else if (INTEL_GEN(dev_priv) > 6) {
drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE(engine)));
drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE_READ(engine)));
drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
I915_READ(RING_PP_DIR_DCLV(engine)));
}
}
void intel_engine_dump(struct intel_engine_cs *engine,
struct drm_printer *m,
const char *header, ...)
{
struct intel_breadcrumbs * const b = &engine->breadcrumbs;
const struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_gpu_error * const error = &engine->i915->gpu_error;
struct i915_request *rq;
struct rb_node *rb;
if (header) {
va_list ap;
va_start(ap, header);
drm_vprintf(m, header, &ap);
va_end(ap);
}
if (i915_terminally_wedged(&engine->i915->gpu_error))
drm_printf(m, "*** WEDGED ***\n");
drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
intel_engine_get_seqno(engine),
intel_engine_last_submit(engine),
engine->hangcheck.seqno,
jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
engine->timeline->inflight_seqnos);
drm_printf(m, "\tReset count: %d (global %d)\n",
i915_reset_engine_count(error, engine),
i915_reset_count(error));
rcu_read_lock();
drm_printf(m, "\tRequests:\n");
rq = list_first_entry(&engine->timeline->requests,
struct i915_request, link);
if (&rq->link != &engine->timeline->requests)
print_request(m, rq, "\t\tfirst ");
rq = list_last_entry(&engine->timeline->requests,
struct i915_request, link);
if (&rq->link != &engine->timeline->requests)
print_request(m, rq, "\t\tlast ");
rq = i915_gem_find_active_request(engine);
if (rq) {
print_request(m, rq, "\t\tactive ");
drm_printf(m,
"\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
rq->head, rq->postfix, rq->tail,
rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
drm_printf(m, "\t\tring->start: 0x%08x\n",
i915_ggtt_offset(rq->ring->vma));
drm_printf(m, "\t\tring->head: 0x%08x\n",
rq->ring->head);
drm_printf(m, "\t\tring->tail: 0x%08x\n",
rq->ring->tail);
}
rcu_read_unlock();
if (intel_runtime_pm_get_if_in_use(engine->i915)) {
intel_engine_print_registers(engine, m);
intel_runtime_pm_put(engine->i915);
} else {
drm_printf(m, "\tDevice is asleep; skipping register dump\n");
}
spin_lock_irq(&engine->timeline->lock);
list_for_each_entry(rq, &engine->timeline->requests, link)
print_request(m, rq, "\t\tE ");
drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority);
for (rb = execlists->first; rb; rb = rb_next(rb)) {
struct i915_priolist *p =
rb_entry(rb, typeof(*p), node);
list_for_each_entry(rq, &p->requests, priotree.link)
print_request(m, rq, "\t\tQ ");
}
spin_unlock_irq(&engine->timeline->lock);
spin_lock_irq(&b->rb_lock);
for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
struct intel_wait *w = rb_entry(rb, typeof(*w), node);
drm_printf(m, "\t%s [%d] waiting for %x\n",
w->tsk->comm, w->tsk->pid, w->seqno);
}
spin_unlock_irq(&b->rb_lock);
drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s) (execlists? %s)\n",
engine->irq_posted,
yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
&engine->irq_posted)),
yesno(test_bit(ENGINE_IRQ_EXECLIST,
&engine->irq_posted)));
drm_printf(m, "HWSP:\n");
hexdump(m, engine->status_page.page_addr, PAGE_SIZE);
drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
}
static u8 user_class_map[] = {
[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};
struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
if (class >= ARRAY_SIZE(user_class_map))
return NULL;
class = user_class_map[class];
GEM_BUG_ON(class > MAX_ENGINE_CLASS);
if (instance > MAX_ENGINE_INSTANCE)
return NULL;
return i915->engine_class[class][instance];
}
/**
* intel_enable_engine_stats() - Enable engine busy tracking on engine
* @engine: engine to enable stats collection
*
* Start collecting the engine busyness data for @engine.
*
* Returns 0 on success or a negative error code.
*/
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
struct intel_engine_execlists *execlists = &engine->execlists;
unsigned long flags;
int err = 0;
if (!intel_engine_supports_stats(engine))
return -ENODEV;
tasklet_disable(&execlists->tasklet);
spin_lock_irqsave(&engine->stats.lock, flags);
if (unlikely(engine->stats.enabled == ~0)) {
err = -EBUSY;
goto unlock;
}
if (engine->stats.enabled++ == 0) {
const struct execlist_port *port = execlists->port;
unsigned int num_ports = execlists_num_ports(execlists);
engine->stats.enabled_at = ktime_get();
/* XXX submission method oblivious? */
while (num_ports-- && port_isset(port)) {
engine->stats.active++;
port++;
}
if (engine->stats.active)
engine->stats.start = engine->stats.enabled_at;
}
unlock:
spin_unlock_irqrestore(&engine->stats.lock, flags);
tasklet_enable(&execlists->tasklet);
return err;
}
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
ktime_t total = engine->stats.total;
/*
* If the engine is executing something at the moment
* add it to the total.
*/
if (engine->stats.active)
total = ktime_add(total,
ktime_sub(ktime_get(), engine->stats.start));
return total;
}
/**
* intel_engine_get_busy_time() - Return current accumulated engine busyness
* @engine: engine to report on
*
* Returns accumulated time @engine was busy since engine stats were enabled.
*/
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
ktime_t total;
unsigned long flags;
spin_lock_irqsave(&engine->stats.lock, flags);
total = __intel_engine_get_busy_time(engine);
spin_unlock_irqrestore(&engine->stats.lock, flags);
return total;
}
/**
* intel_disable_engine_stats() - Disable engine busy tracking on engine
* @engine: engine to disable stats collection
*
* Stops collecting the engine busyness data for @engine.
*/
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
unsigned long flags;
if (!intel_engine_supports_stats(engine))
return;
spin_lock_irqsave(&engine->stats.lock, flags);
WARN_ON_ONCE(engine->stats.enabled == 0);
if (--engine->stats.enabled == 0) {
engine->stats.total = __intel_engine_get_busy_time(engine);
engine->stats.active = 0;
}
spin_unlock_irqrestore(&engine->stats.lock, flags);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
#endif