OpenCloudOS-Kernel/fs/xfs/libxfs/xfs_attr_leaf.c

2778 lines
79 KiB
C

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* Copyright (c) 2013 Red Hat, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap_btree.h"
#include "xfs_bmap.h"
#include "xfs_attr_sf.h"
#include "xfs_attr_remote.h"
#include "xfs_attr.h"
#include "xfs_attr_leaf.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_buf_item.h"
#include "xfs_cksum.h"
#include "xfs_dir2.h"
#include "xfs_log.h"
/*
* xfs_attr_leaf.c
*
* Routines to implement leaf blocks of attributes as Btrees of hashed names.
*/
/*========================================================================
* Function prototypes for the kernel.
*========================================================================*/
/*
* Routines used for growing the Btree.
*/
STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
xfs_dablk_t which_block, struct xfs_buf **bpp);
STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
struct xfs_attr3_icleaf_hdr *ichdr,
struct xfs_da_args *args, int freemap_index);
STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
struct xfs_attr3_icleaf_hdr *ichdr,
struct xfs_buf *leaf_buffer);
STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2);
STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
xfs_da_state_blk_t *leaf_blk_1,
struct xfs_attr3_icleaf_hdr *ichdr1,
xfs_da_state_blk_t *leaf_blk_2,
struct xfs_attr3_icleaf_hdr *ichdr2,
int *number_entries_in_blk1,
int *number_usedbytes_in_blk1);
/*
* Utility routines.
*/
STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
struct xfs_attr_leafblock *src_leaf,
struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
struct xfs_attr_leafblock *dst_leaf,
struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
int move_count);
STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
/*
* attr3 block 'firstused' conversion helpers.
*
* firstused refers to the offset of the first used byte of the nameval region
* of an attr leaf block. The region starts at the tail of the block and expands
* backwards towards the middle. As such, firstused is initialized to the block
* size for an empty leaf block and is reduced from there.
*
* The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
* The in-core firstused field is 32-bit and thus supports the maximum fsb size.
* The on-disk field is only 16-bit, however, and overflows at 64k. Since this
* only occurs at exactly 64k, we use zero as a magic on-disk value to represent
* the attr block size. The following helpers manage the conversion between the
* in-core and on-disk formats.
*/
static void
xfs_attr3_leaf_firstused_from_disk(
struct xfs_da_geometry *geo,
struct xfs_attr3_icleaf_hdr *to,
struct xfs_attr_leafblock *from)
{
struct xfs_attr3_leaf_hdr *hdr3;
if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
hdr3 = (struct xfs_attr3_leaf_hdr *) from;
to->firstused = be16_to_cpu(hdr3->firstused);
} else {
to->firstused = be16_to_cpu(from->hdr.firstused);
}
/*
* Convert from the magic fsb size value to actual blocksize. This
* should only occur for empty blocks when the block size overflows
* 16-bits.
*/
if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
ASSERT(!to->count && !to->usedbytes);
ASSERT(geo->blksize > USHRT_MAX);
to->firstused = geo->blksize;
}
}
static void
xfs_attr3_leaf_firstused_to_disk(
struct xfs_da_geometry *geo,
struct xfs_attr_leafblock *to,
struct xfs_attr3_icleaf_hdr *from)
{
struct xfs_attr3_leaf_hdr *hdr3;
uint32_t firstused;
/* magic value should only be seen on disk */
ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
/*
* Scale down the 32-bit in-core firstused value to the 16-bit on-disk
* value. This only overflows at the max supported value of 64k. Use the
* magic on-disk value to represent block size in this case.
*/
firstused = from->firstused;
if (firstused > USHRT_MAX) {
ASSERT(from->firstused == geo->blksize);
firstused = XFS_ATTR3_LEAF_NULLOFF;
}
if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
hdr3 = (struct xfs_attr3_leaf_hdr *) to;
hdr3->firstused = cpu_to_be16(firstused);
} else {
to->hdr.firstused = cpu_to_be16(firstused);
}
}
void
xfs_attr3_leaf_hdr_from_disk(
struct xfs_da_geometry *geo,
struct xfs_attr3_icleaf_hdr *to,
struct xfs_attr_leafblock *from)
{
int i;
ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
to->forw = be32_to_cpu(hdr3->info.hdr.forw);
to->back = be32_to_cpu(hdr3->info.hdr.back);
to->magic = be16_to_cpu(hdr3->info.hdr.magic);
to->count = be16_to_cpu(hdr3->count);
to->usedbytes = be16_to_cpu(hdr3->usedbytes);
xfs_attr3_leaf_firstused_from_disk(geo, to, from);
to->holes = hdr3->holes;
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
}
return;
}
to->forw = be32_to_cpu(from->hdr.info.forw);
to->back = be32_to_cpu(from->hdr.info.back);
to->magic = be16_to_cpu(from->hdr.info.magic);
to->count = be16_to_cpu(from->hdr.count);
to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
xfs_attr3_leaf_firstused_from_disk(geo, to, from);
to->holes = from->hdr.holes;
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
}
}
void
xfs_attr3_leaf_hdr_to_disk(
struct xfs_da_geometry *geo,
struct xfs_attr_leafblock *to,
struct xfs_attr3_icleaf_hdr *from)
{
int i;
ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
from->magic == XFS_ATTR3_LEAF_MAGIC);
if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
hdr3->info.hdr.forw = cpu_to_be32(from->forw);
hdr3->info.hdr.back = cpu_to_be32(from->back);
hdr3->info.hdr.magic = cpu_to_be16(from->magic);
hdr3->count = cpu_to_be16(from->count);
hdr3->usedbytes = cpu_to_be16(from->usedbytes);
xfs_attr3_leaf_firstused_to_disk(geo, to, from);
hdr3->holes = from->holes;
hdr3->pad1 = 0;
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
}
return;
}
to->hdr.info.forw = cpu_to_be32(from->forw);
to->hdr.info.back = cpu_to_be32(from->back);
to->hdr.info.magic = cpu_to_be16(from->magic);
to->hdr.count = cpu_to_be16(from->count);
to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
xfs_attr3_leaf_firstused_to_disk(geo, to, from);
to->hdr.holes = from->holes;
to->hdr.pad1 = 0;
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
}
}
static bool
xfs_attr3_leaf_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_attr_leafblock *leaf = bp->b_addr;
struct xfs_attr3_icleaf_hdr ichdr;
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
if (xfs_sb_version_hascrc(&mp->m_sb)) {
struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
if (ichdr.magic != XFS_ATTR3_LEAF_MAGIC)
return false;
if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid))
return false;
if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
return false;
if (!xfs_log_check_lsn(mp, be64_to_cpu(hdr3->info.lsn)))
return false;
} else {
if (ichdr.magic != XFS_ATTR_LEAF_MAGIC)
return false;
}
if (ichdr.count == 0)
return false;
/* XXX: need to range check rest of attr header values */
/* XXX: hash order check? */
return true;
}
static void
xfs_attr3_leaf_write_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_buf_log_item *bip = bp->b_fspriv;
struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
if (!xfs_attr3_leaf_verify(bp)) {
xfs_buf_ioerror(bp, -EFSCORRUPTED);
xfs_verifier_error(bp);
return;
}
if (!xfs_sb_version_hascrc(&mp->m_sb))
return;
if (bip)
hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
}
/*
* leaf/node format detection on trees is sketchy, so a node read can be done on
* leaf level blocks when detection identifies the tree as a node format tree
* incorrectly. In this case, we need to swap the verifier to match the correct
* format of the block being read.
*/
static void
xfs_attr3_leaf_read_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
if (xfs_sb_version_hascrc(&mp->m_sb) &&
!xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
xfs_buf_ioerror(bp, -EFSBADCRC);
else if (!xfs_attr3_leaf_verify(bp))
xfs_buf_ioerror(bp, -EFSCORRUPTED);
if (bp->b_error)
xfs_verifier_error(bp);
}
const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
.name = "xfs_attr3_leaf",
.verify_read = xfs_attr3_leaf_read_verify,
.verify_write = xfs_attr3_leaf_write_verify,
};
int
xfs_attr3_leaf_read(
struct xfs_trans *tp,
struct xfs_inode *dp,
xfs_dablk_t bno,
xfs_daddr_t mappedbno,
struct xfs_buf **bpp)
{
int err;
err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
XFS_ATTR_FORK, &xfs_attr3_leaf_buf_ops);
if (!err && tp)
xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
return err;
}
/*========================================================================
* Namespace helper routines
*========================================================================*/
/*
* If namespace bits don't match return 0.
* If all match then return 1.
*/
STATIC int
xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
{
return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
}
/*========================================================================
* External routines when attribute fork size < XFS_LITINO(mp).
*========================================================================*/
/*
* Query whether the requested number of additional bytes of extended
* attribute space will be able to fit inline.
*
* Returns zero if not, else the di_forkoff fork offset to be used in the
* literal area for attribute data once the new bytes have been added.
*
* di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
* special case for dev/uuid inodes, they have fixed size data forks.
*/
int
xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes)
{
int offset;
int minforkoff; /* lower limit on valid forkoff locations */
int maxforkoff; /* upper limit on valid forkoff locations */
int dsize;
xfs_mount_t *mp = dp->i_mount;
/* rounded down */
offset = (XFS_LITINO(mp, dp->i_d.di_version) - bytes) >> 3;
switch (dp->i_d.di_format) {
case XFS_DINODE_FMT_DEV:
minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
return (offset >= minforkoff) ? minforkoff : 0;
case XFS_DINODE_FMT_UUID:
minforkoff = roundup(sizeof(uuid_t), 8) >> 3;
return (offset >= minforkoff) ? minforkoff : 0;
}
/*
* If the requested numbers of bytes is smaller or equal to the
* current attribute fork size we can always proceed.
*
* Note that if_bytes in the data fork might actually be larger than
* the current data fork size is due to delalloc extents. In that
* case either the extent count will go down when they are converted
* to real extents, or the delalloc conversion will take care of the
* literal area rebalancing.
*/
if (bytes <= XFS_IFORK_ASIZE(dp))
return dp->i_d.di_forkoff;
/*
* For attr2 we can try to move the forkoff if there is space in the
* literal area, but for the old format we are done if there is no
* space in the fixed attribute fork.
*/
if (!(mp->m_flags & XFS_MOUNT_ATTR2))
return 0;
dsize = dp->i_df.if_bytes;
switch (dp->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
/*
* If there is no attr fork and the data fork is extents,
* determine if creating the default attr fork will result
* in the extents form migrating to btree. If so, the
* minimum offset only needs to be the space required for
* the btree root.
*/
if (!dp->i_d.di_forkoff && dp->i_df.if_bytes >
xfs_default_attroffset(dp))
dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
break;
case XFS_DINODE_FMT_BTREE:
/*
* If we have a data btree then keep forkoff if we have one,
* otherwise we are adding a new attr, so then we set
* minforkoff to where the btree root can finish so we have
* plenty of room for attrs
*/
if (dp->i_d.di_forkoff) {
if (offset < dp->i_d.di_forkoff)
return 0;
return dp->i_d.di_forkoff;
}
dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
break;
}
/*
* A data fork btree root must have space for at least
* MINDBTPTRS key/ptr pairs if the data fork is small or empty.
*/
minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
minforkoff = roundup(minforkoff, 8) >> 3;
/* attr fork btree root can have at least this many key/ptr pairs */
maxforkoff = XFS_LITINO(mp, dp->i_d.di_version) -
XFS_BMDR_SPACE_CALC(MINABTPTRS);
maxforkoff = maxforkoff >> 3; /* rounded down */
if (offset >= maxforkoff)
return maxforkoff;
if (offset >= minforkoff)
return offset;
return 0;
}
/*
* Switch on the ATTR2 superblock bit (implies also FEATURES2)
*/
STATIC void
xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
{
if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
!(xfs_sb_version_hasattr2(&mp->m_sb))) {
spin_lock(&mp->m_sb_lock);
if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
xfs_sb_version_addattr2(&mp->m_sb);
spin_unlock(&mp->m_sb_lock);
xfs_log_sb(tp);
} else
spin_unlock(&mp->m_sb_lock);
}
}
/*
* Create the initial contents of a shortform attribute list.
*/
void
xfs_attr_shortform_create(xfs_da_args_t *args)
{
xfs_attr_sf_hdr_t *hdr;
xfs_inode_t *dp;
xfs_ifork_t *ifp;
trace_xfs_attr_sf_create(args);
dp = args->dp;
ASSERT(dp != NULL);
ifp = dp->i_afp;
ASSERT(ifp != NULL);
ASSERT(ifp->if_bytes == 0);
if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */
dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
ifp->if_flags |= XFS_IFINLINE;
} else {
ASSERT(ifp->if_flags & XFS_IFINLINE);
}
xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
hdr->count = 0;
hdr->totsize = cpu_to_be16(sizeof(*hdr));
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
}
/*
* Add a name/value pair to the shortform attribute list.
* Overflow from the inode has already been checked for.
*/
void
xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int i, offset, size;
xfs_mount_t *mp;
xfs_inode_t *dp;
xfs_ifork_t *ifp;
trace_xfs_attr_sf_add(args);
dp = args->dp;
mp = dp->i_mount;
dp->i_d.di_forkoff = forkoff;
ifp = dp->i_afp;
ASSERT(ifp->if_flags & XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
#ifdef DEBUG
if (sfe->namelen != args->namelen)
continue;
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
ASSERT(0);
#endif
}
offset = (char *)sfe - (char *)sf;
size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
sfe->namelen = args->namelen;
sfe->valuelen = args->valuelen;
sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
memcpy(sfe->nameval, args->name, args->namelen);
memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
sf->hdr.count++;
be16_add_cpu(&sf->hdr.totsize, size);
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
xfs_sbversion_add_attr2(mp, args->trans);
}
/*
* After the last attribute is removed revert to original inode format,
* making all literal area available to the data fork once more.
*/
void
xfs_attr_fork_remove(
struct xfs_inode *ip,
struct xfs_trans *tp)
{
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
ip->i_d.di_forkoff = 0;
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
ASSERT(ip->i_d.di_anextents == 0);
ASSERT(ip->i_afp == NULL);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
}
/*
* Remove an attribute from the shortform attribute list structure.
*/
int
xfs_attr_shortform_remove(xfs_da_args_t *args)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int base, size=0, end, totsize, i;
xfs_mount_t *mp;
xfs_inode_t *dp;
trace_xfs_attr_sf_remove(args);
dp = args->dp;
mp = dp->i_mount;
base = sizeof(xfs_attr_sf_hdr_t);
sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
sfe = &sf->list[0];
end = sf->hdr.count;
for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
base += size, i++) {
size = XFS_ATTR_SF_ENTSIZE(sfe);
if (sfe->namelen != args->namelen)
continue;
if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
break;
}
if (i == end)
return -ENOATTR;
/*
* Fix up the attribute fork data, covering the hole
*/
end = base + size;
totsize = be16_to_cpu(sf->hdr.totsize);
if (end != totsize)
memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
sf->hdr.count--;
be16_add_cpu(&sf->hdr.totsize, -size);
/*
* Fix up the start offset of the attribute fork
*/
totsize -= size;
if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
(mp->m_flags & XFS_MOUNT_ATTR2) &&
(dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
!(args->op_flags & XFS_DA_OP_ADDNAME)) {
xfs_attr_fork_remove(dp, args->trans);
} else {
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
ASSERT(dp->i_d.di_forkoff);
ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
(args->op_flags & XFS_DA_OP_ADDNAME) ||
!(mp->m_flags & XFS_MOUNT_ATTR2) ||
dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
xfs_trans_log_inode(args->trans, dp,
XFS_ILOG_CORE | XFS_ILOG_ADATA);
}
xfs_sbversion_add_attr2(mp, args->trans);
return 0;
}
/*
* Look up a name in a shortform attribute list structure.
*/
/*ARGSUSED*/
int
xfs_attr_shortform_lookup(xfs_da_args_t *args)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int i;
xfs_ifork_t *ifp;
trace_xfs_attr_sf_lookup(args);
ifp = args->dp->i_afp;
ASSERT(ifp->if_flags & XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
if (sfe->namelen != args->namelen)
continue;
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
return -EEXIST;
}
return -ENOATTR;
}
/*
* Look up a name in a shortform attribute list structure.
*/
/*ARGSUSED*/
int
xfs_attr_shortform_getvalue(xfs_da_args_t *args)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int i;
ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
if (sfe->namelen != args->namelen)
continue;
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
if (args->flags & ATTR_KERNOVAL) {
args->valuelen = sfe->valuelen;
return -EEXIST;
}
if (args->valuelen < sfe->valuelen) {
args->valuelen = sfe->valuelen;
return -ERANGE;
}
args->valuelen = sfe->valuelen;
memcpy(args->value, &sfe->nameval[args->namelen],
args->valuelen);
return -EEXIST;
}
return -ENOATTR;
}
/*
* Convert from using the shortform to the leaf.
*/
int
xfs_attr_shortform_to_leaf(xfs_da_args_t *args)
{
xfs_inode_t *dp;
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
xfs_da_args_t nargs;
char *tmpbuffer;
int error, i, size;
xfs_dablk_t blkno;
struct xfs_buf *bp;
xfs_ifork_t *ifp;
trace_xfs_attr_sf_to_leaf(args);
dp = args->dp;
ifp = dp->i_afp;
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
size = be16_to_cpu(sf->hdr.totsize);
tmpbuffer = kmem_alloc(size, KM_SLEEP);
ASSERT(tmpbuffer != NULL);
memcpy(tmpbuffer, ifp->if_u1.if_data, size);
sf = (xfs_attr_shortform_t *)tmpbuffer;
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
xfs_bmap_local_to_extents_empty(dp, XFS_ATTR_FORK);
bp = NULL;
error = xfs_da_grow_inode(args, &blkno);
if (error) {
/*
* If we hit an IO error middle of the transaction inside
* grow_inode(), we may have inconsistent data. Bail out.
*/
if (error == -EIO)
goto out;
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
goto out;
}
ASSERT(blkno == 0);
error = xfs_attr3_leaf_create(args, blkno, &bp);
if (error) {
error = xfs_da_shrink_inode(args, 0, bp);
bp = NULL;
if (error)
goto out;
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
goto out;
}
memset((char *)&nargs, 0, sizeof(nargs));
nargs.dp = dp;
nargs.geo = args->geo;
nargs.firstblock = args->firstblock;
nargs.dfops = args->dfops;
nargs.total = args->total;
nargs.whichfork = XFS_ATTR_FORK;
nargs.trans = args->trans;
nargs.op_flags = XFS_DA_OP_OKNOENT;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count; i++) {
nargs.name = sfe->nameval;
nargs.namelen = sfe->namelen;
nargs.value = &sfe->nameval[nargs.namelen];
nargs.valuelen = sfe->valuelen;
nargs.hashval = xfs_da_hashname(sfe->nameval,
sfe->namelen);
nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
ASSERT(error == -ENOATTR);
error = xfs_attr3_leaf_add(bp, &nargs);
ASSERT(error != -ENOSPC);
if (error)
goto out;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
}
error = 0;
out:
kmem_free(tmpbuffer);
return error;
}
/*
* Check a leaf attribute block to see if all the entries would fit into
* a shortform attribute list.
*/
int
xfs_attr_shortform_allfit(
struct xfs_buf *bp,
struct xfs_inode *dp)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr_leaf_entry *entry;
xfs_attr_leaf_name_local_t *name_loc;
struct xfs_attr3_icleaf_hdr leafhdr;
int bytes;
int i;
struct xfs_mount *mp = bp->b_target->bt_mount;
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
entry = xfs_attr3_leaf_entryp(leaf);
bytes = sizeof(struct xfs_attr_sf_hdr);
for (i = 0; i < leafhdr.count; entry++, i++) {
if (entry->flags & XFS_ATTR_INCOMPLETE)
continue; /* don't copy partial entries */
if (!(entry->flags & XFS_ATTR_LOCAL))
return 0;
name_loc = xfs_attr3_leaf_name_local(leaf, i);
if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
return 0;
if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
return 0;
bytes += sizeof(struct xfs_attr_sf_entry) - 1
+ name_loc->namelen
+ be16_to_cpu(name_loc->valuelen);
}
if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
(dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
(bytes == sizeof(struct xfs_attr_sf_hdr)))
return -1;
return xfs_attr_shortform_bytesfit(dp, bytes);
}
/*
* Convert a leaf attribute list to shortform attribute list
*/
int
xfs_attr3_leaf_to_shortform(
struct xfs_buf *bp,
struct xfs_da_args *args,
int forkoff)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_local *name_loc;
struct xfs_da_args nargs;
struct xfs_inode *dp = args->dp;
char *tmpbuffer;
int error;
int i;
trace_xfs_attr_leaf_to_sf(args);
tmpbuffer = kmem_alloc(args->geo->blksize, KM_SLEEP);
if (!tmpbuffer)
return -ENOMEM;
memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
leaf = (xfs_attr_leafblock_t *)tmpbuffer;
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
entry = xfs_attr3_leaf_entryp(leaf);
/* XXX (dgc): buffer is about to be marked stale - why zero it? */
memset(bp->b_addr, 0, args->geo->blksize);
/*
* Clean out the prior contents of the attribute list.
*/
error = xfs_da_shrink_inode(args, 0, bp);
if (error)
goto out;
if (forkoff == -1) {
ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);
xfs_attr_fork_remove(dp, args->trans);
goto out;
}
xfs_attr_shortform_create(args);
/*
* Copy the attributes
*/
memset((char *)&nargs, 0, sizeof(nargs));
nargs.geo = args->geo;
nargs.dp = dp;
nargs.firstblock = args->firstblock;
nargs.dfops = args->dfops;
nargs.total = args->total;
nargs.whichfork = XFS_ATTR_FORK;
nargs.trans = args->trans;
nargs.op_flags = XFS_DA_OP_OKNOENT;
for (i = 0; i < ichdr.count; entry++, i++) {
if (entry->flags & XFS_ATTR_INCOMPLETE)
continue; /* don't copy partial entries */
if (!entry->nameidx)
continue;
ASSERT(entry->flags & XFS_ATTR_LOCAL);
name_loc = xfs_attr3_leaf_name_local(leaf, i);
nargs.name = name_loc->nameval;
nargs.namelen = name_loc->namelen;
nargs.value = &name_loc->nameval[nargs.namelen];
nargs.valuelen = be16_to_cpu(name_loc->valuelen);
nargs.hashval = be32_to_cpu(entry->hashval);
nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
xfs_attr_shortform_add(&nargs, forkoff);
}
error = 0;
out:
kmem_free(tmpbuffer);
return error;
}
/*
* Convert from using a single leaf to a root node and a leaf.
*/
int
xfs_attr3_leaf_to_node(
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr icleafhdr;
struct xfs_attr_leaf_entry *entries;
struct xfs_da_node_entry *btree;
struct xfs_da3_icnode_hdr icnodehdr;
struct xfs_da_intnode *node;
struct xfs_inode *dp = args->dp;
struct xfs_mount *mp = dp->i_mount;
struct xfs_buf *bp1 = NULL;
struct xfs_buf *bp2 = NULL;
xfs_dablk_t blkno;
int error;
trace_xfs_attr_leaf_to_node(args);
error = xfs_da_grow_inode(args, &blkno);
if (error)
goto out;
error = xfs_attr3_leaf_read(args->trans, dp, 0, -1, &bp1);
if (error)
goto out;
error = xfs_da_get_buf(args->trans, dp, blkno, -1, &bp2, XFS_ATTR_FORK);
if (error)
goto out;
/* copy leaf to new buffer, update identifiers */
xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
bp2->b_ops = bp1->b_ops;
memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize);
if (xfs_sb_version_hascrc(&mp->m_sb)) {
struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
hdr3->blkno = cpu_to_be64(bp2->b_bn);
}
xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
/*
* Set up the new root node.
*/
error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
if (error)
goto out;
node = bp1->b_addr;
dp->d_ops->node_hdr_from_disk(&icnodehdr, node);
btree = dp->d_ops->node_tree_p(node);
leaf = bp2->b_addr;
xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
entries = xfs_attr3_leaf_entryp(leaf);
/* both on-disk, don't endian-flip twice */
btree[0].hashval = entries[icleafhdr.count - 1].hashval;
btree[0].before = cpu_to_be32(blkno);
icnodehdr.count = 1;
dp->d_ops->node_hdr_to_disk(node, &icnodehdr);
xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
error = 0;
out:
return error;
}
/*========================================================================
* Routines used for growing the Btree.
*========================================================================*/
/*
* Create the initial contents of a leaf attribute list
* or a leaf in a node attribute list.
*/
STATIC int
xfs_attr3_leaf_create(
struct xfs_da_args *args,
xfs_dablk_t blkno,
struct xfs_buf **bpp)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_inode *dp = args->dp;
struct xfs_mount *mp = dp->i_mount;
struct xfs_buf *bp;
int error;
trace_xfs_attr_leaf_create(args);
error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
XFS_ATTR_FORK);
if (error)
return error;
bp->b_ops = &xfs_attr3_leaf_buf_ops;
xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
leaf = bp->b_addr;
memset(leaf, 0, args->geo->blksize);
memset(&ichdr, 0, sizeof(ichdr));
ichdr.firstused = args->geo->blksize;
if (xfs_sb_version_hascrc(&mp->m_sb)) {
struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
hdr3->blkno = cpu_to_be64(bp->b_bn);
hdr3->owner = cpu_to_be64(dp->i_ino);
uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
} else {
ichdr.magic = XFS_ATTR_LEAF_MAGIC;
ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
}
ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
*bpp = bp;
return 0;
}
/*
* Split the leaf node, rebalance, then add the new entry.
*/
int
xfs_attr3_leaf_split(
struct xfs_da_state *state,
struct xfs_da_state_blk *oldblk,
struct xfs_da_state_blk *newblk)
{
xfs_dablk_t blkno;
int error;
trace_xfs_attr_leaf_split(state->args);
/*
* Allocate space for a new leaf node.
*/
ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
error = xfs_da_grow_inode(state->args, &blkno);
if (error)
return error;
error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
if (error)
return error;
newblk->blkno = blkno;
newblk->magic = XFS_ATTR_LEAF_MAGIC;
/*
* Rebalance the entries across the two leaves.
* NOTE: rebalance() currently depends on the 2nd block being empty.
*/
xfs_attr3_leaf_rebalance(state, oldblk, newblk);
error = xfs_da3_blk_link(state, oldblk, newblk);
if (error)
return error;
/*
* Save info on "old" attribute for "atomic rename" ops, leaf_add()
* modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
* "new" attrs info. Will need the "old" info to remove it later.
*
* Insert the "new" entry in the correct block.
*/
if (state->inleaf) {
trace_xfs_attr_leaf_add_old(state->args);
error = xfs_attr3_leaf_add(oldblk->bp, state->args);
} else {
trace_xfs_attr_leaf_add_new(state->args);
error = xfs_attr3_leaf_add(newblk->bp, state->args);
}
/*
* Update last hashval in each block since we added the name.
*/
oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
return error;
}
/*
* Add a name to the leaf attribute list structure.
*/
int
xfs_attr3_leaf_add(
struct xfs_buf *bp,
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
int tablesize;
int entsize;
int sum;
int tmp;
int i;
trace_xfs_attr_leaf_add(args);
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
ASSERT(args->index >= 0 && args->index <= ichdr.count);
entsize = xfs_attr_leaf_newentsize(args, NULL);
/*
* Search through freemap for first-fit on new name length.
* (may need to figure in size of entry struct too)
*/
tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
+ xfs_attr3_leaf_hdr_size(leaf);
for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
if (tablesize > ichdr.firstused) {
sum += ichdr.freemap[i].size;
continue;
}
if (!ichdr.freemap[i].size)
continue; /* no space in this map */
tmp = entsize;
if (ichdr.freemap[i].base < ichdr.firstused)
tmp += sizeof(xfs_attr_leaf_entry_t);
if (ichdr.freemap[i].size >= tmp) {
tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
goto out_log_hdr;
}
sum += ichdr.freemap[i].size;
}
/*
* If there are no holes in the address space of the block,
* and we don't have enough freespace, then compaction will do us
* no good and we should just give up.
*/
if (!ichdr.holes && sum < entsize)
return -ENOSPC;
/*
* Compact the entries to coalesce free space.
* This may change the hdr->count via dropping INCOMPLETE entries.
*/
xfs_attr3_leaf_compact(args, &ichdr, bp);
/*
* After compaction, the block is guaranteed to have only one
* free region, in freemap[0]. If it is not big enough, give up.
*/
if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
tmp = -ENOSPC;
goto out_log_hdr;
}
tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
out_log_hdr:
xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, &leaf->hdr,
xfs_attr3_leaf_hdr_size(leaf)));
return tmp;
}
/*
* Add a name to a leaf attribute list structure.
*/
STATIC int
xfs_attr3_leaf_add_work(
struct xfs_buf *bp,
struct xfs_attr3_icleaf_hdr *ichdr,
struct xfs_da_args *args,
int mapindex)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_local *name_loc;
struct xfs_attr_leaf_name_remote *name_rmt;
struct xfs_mount *mp;
int tmp;
int i;
trace_xfs_attr_leaf_add_work(args);
leaf = bp->b_addr;
ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
ASSERT(args->index >= 0 && args->index <= ichdr->count);
/*
* Force open some space in the entry array and fill it in.
*/
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
if (args->index < ichdr->count) {
tmp = ichdr->count - args->index;
tmp *= sizeof(xfs_attr_leaf_entry_t);
memmove(entry + 1, entry, tmp);
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
}
ichdr->count++;
/*
* Allocate space for the new string (at the end of the run).
*/
mp = args->trans->t_mountp;
ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
ASSERT(ichdr->freemap[mapindex].size >=
xfs_attr_leaf_newentsize(args, NULL));
ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
ichdr->freemap[mapindex].size);
entry->hashval = cpu_to_be32(args->hashval);
entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
if (args->op_flags & XFS_DA_OP_RENAME) {
entry->flags |= XFS_ATTR_INCOMPLETE;
if ((args->blkno2 == args->blkno) &&
(args->index2 <= args->index)) {
args->index2++;
}
}
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
ASSERT((args->index == 0) ||
(be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
ASSERT((args->index == ichdr->count - 1) ||
(be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
/*
* For "remote" attribute values, simply note that we need to
* allocate space for the "remote" value. We can't actually
* allocate the extents in this transaction, and we can't decide
* which blocks they should be as we might allocate more blocks
* as part of this transaction (a split operation for example).
*/
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
name_loc->namelen = args->namelen;
name_loc->valuelen = cpu_to_be16(args->valuelen);
memcpy((char *)name_loc->nameval, args->name, args->namelen);
memcpy((char *)&name_loc->nameval[args->namelen], args->value,
be16_to_cpu(name_loc->valuelen));
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
name_rmt->namelen = args->namelen;
memcpy((char *)name_rmt->name, args->name, args->namelen);
entry->flags |= XFS_ATTR_INCOMPLETE;
/* just in case */
name_rmt->valuelen = 0;
name_rmt->valueblk = 0;
args->rmtblkno = 1;
args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
args->rmtvaluelen = args->valuelen;
}
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
xfs_attr_leaf_entsize(leaf, args->index)));
/*
* Update the control info for this leaf node
*/
if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
ichdr->firstused = be16_to_cpu(entry->nameidx);
ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
+ xfs_attr3_leaf_hdr_size(leaf));
tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
+ xfs_attr3_leaf_hdr_size(leaf);
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
if (ichdr->freemap[i].base == tmp) {
ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
ichdr->freemap[i].size -= sizeof(xfs_attr_leaf_entry_t);
}
}
ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
return 0;
}
/*
* Garbage collect a leaf attribute list block by copying it to a new buffer.
*/
STATIC void
xfs_attr3_leaf_compact(
struct xfs_da_args *args,
struct xfs_attr3_icleaf_hdr *ichdr_dst,
struct xfs_buf *bp)
{
struct xfs_attr_leafblock *leaf_src;
struct xfs_attr_leafblock *leaf_dst;
struct xfs_attr3_icleaf_hdr ichdr_src;
struct xfs_trans *trans = args->trans;
char *tmpbuffer;
trace_xfs_attr_leaf_compact(args);
tmpbuffer = kmem_alloc(args->geo->blksize, KM_SLEEP);
memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
memset(bp->b_addr, 0, args->geo->blksize);
leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
leaf_dst = bp->b_addr;
/*
* Copy the on-disk header back into the destination buffer to ensure
* all the information in the header that is not part of the incore
* header structure is preserved.
*/
memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
/* Initialise the incore headers */
ichdr_src = *ichdr_dst; /* struct copy */
ichdr_dst->firstused = args->geo->blksize;
ichdr_dst->usedbytes = 0;
ichdr_dst->count = 0;
ichdr_dst->holes = 0;
ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
ichdr_dst->freemap[0].size = ichdr_dst->firstused -
ichdr_dst->freemap[0].base;
/* write the header back to initialise the underlying buffer */
xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
/*
* Copy all entry's in the same (sorted) order,
* but allocate name/value pairs packed and in sequence.
*/
xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
leaf_dst, ichdr_dst, 0, ichdr_src.count);
/*
* this logs the entire buffer, but the caller must write the header
* back to the buffer when it is finished modifying it.
*/
xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
kmem_free(tmpbuffer);
}
/*
* Compare two leaf blocks "order".
* Return 0 unless leaf2 should go before leaf1.
*/
static int
xfs_attr3_leaf_order(
struct xfs_buf *leaf1_bp,
struct xfs_attr3_icleaf_hdr *leaf1hdr,
struct xfs_buf *leaf2_bp,
struct xfs_attr3_icleaf_hdr *leaf2hdr)
{
struct xfs_attr_leaf_entry *entries1;
struct xfs_attr_leaf_entry *entries2;
entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
((be32_to_cpu(entries2[0].hashval) <
be32_to_cpu(entries1[0].hashval)) ||
(be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
return 1;
}
return 0;
}
int
xfs_attr_leaf_order(
struct xfs_buf *leaf1_bp,
struct xfs_buf *leaf2_bp)
{
struct xfs_attr3_icleaf_hdr ichdr1;
struct xfs_attr3_icleaf_hdr ichdr2;
struct xfs_mount *mp = leaf1_bp->b_target->bt_mount;
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
}
/*
* Redistribute the attribute list entries between two leaf nodes,
* taking into account the size of the new entry.
*
* NOTE: if new block is empty, then it will get the upper half of the
* old block. At present, all (one) callers pass in an empty second block.
*
* This code adjusts the args->index/blkno and args->index2/blkno2 fields
* to match what it is doing in splitting the attribute leaf block. Those
* values are used in "atomic rename" operations on attributes. Note that
* the "new" and "old" values can end up in different blocks.
*/
STATIC void
xfs_attr3_leaf_rebalance(
struct xfs_da_state *state,
struct xfs_da_state_blk *blk1,
struct xfs_da_state_blk *blk2)
{
struct xfs_da_args *args;
struct xfs_attr_leafblock *leaf1;
struct xfs_attr_leafblock *leaf2;
struct xfs_attr3_icleaf_hdr ichdr1;
struct xfs_attr3_icleaf_hdr ichdr2;
struct xfs_attr_leaf_entry *entries1;
struct xfs_attr_leaf_entry *entries2;
int count;
int totallen;
int max;
int space;
int swap;
/*
* Set up environment.
*/
ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
leaf1 = blk1->bp->b_addr;
leaf2 = blk2->bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
ASSERT(ichdr2.count == 0);
args = state->args;
trace_xfs_attr_leaf_rebalance(args);
/*
* Check ordering of blocks, reverse if it makes things simpler.
*
* NOTE: Given that all (current) callers pass in an empty
* second block, this code should never set "swap".
*/
swap = 0;
if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
struct xfs_da_state_blk *tmp_blk;
struct xfs_attr3_icleaf_hdr tmp_ichdr;
tmp_blk = blk1;
blk1 = blk2;
blk2 = tmp_blk;
/* struct copies to swap them rather than reconverting */
tmp_ichdr = ichdr1;
ichdr1 = ichdr2;
ichdr2 = tmp_ichdr;
leaf1 = blk1->bp->b_addr;
leaf2 = blk2->bp->b_addr;
swap = 1;
}
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum. Then get
* the direction to copy and the number of elements to move.
*
* "inleaf" is true if the new entry should be inserted into blk1.
* If "swap" is also true, then reverse the sense of "inleaf".
*/
state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
blk2, &ichdr2,
&count, &totallen);
if (swap)
state->inleaf = !state->inleaf;
/*
* Move any entries required from leaf to leaf:
*/
if (count < ichdr1.count) {
/*
* Figure the total bytes to be added to the destination leaf.
*/
/* number entries being moved */
count = ichdr1.count - count;
space = ichdr1.usedbytes - totallen;
space += count * sizeof(xfs_attr_leaf_entry_t);
/*
* leaf2 is the destination, compact it if it looks tight.
*/
max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
if (space > max)
xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
/*
* Move high entries from leaf1 to low end of leaf2.
*/
xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
ichdr1.count - count, leaf2, &ichdr2, 0, count);
} else if (count > ichdr1.count) {
/*
* I assert that since all callers pass in an empty
* second buffer, this code should never execute.
*/
ASSERT(0);
/*
* Figure the total bytes to be added to the destination leaf.
*/
/* number entries being moved */
count -= ichdr1.count;
space = totallen - ichdr1.usedbytes;
space += count * sizeof(xfs_attr_leaf_entry_t);
/*
* leaf1 is the destination, compact it if it looks tight.
*/
max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
if (space > max)
xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
/*
* Move low entries from leaf2 to high end of leaf1.
*/
xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
ichdr1.count, count);
}
xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
/*
* Copy out last hashval in each block for B-tree code.
*/
entries1 = xfs_attr3_leaf_entryp(leaf1);
entries2 = xfs_attr3_leaf_entryp(leaf2);
blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
/*
* Adjust the expected index for insertion.
* NOTE: this code depends on the (current) situation that the
* second block was originally empty.
*
* If the insertion point moved to the 2nd block, we must adjust
* the index. We must also track the entry just following the
* new entry for use in an "atomic rename" operation, that entry
* is always the "old" entry and the "new" entry is what we are
* inserting. The index/blkno fields refer to the "old" entry,
* while the index2/blkno2 fields refer to the "new" entry.
*/
if (blk1->index > ichdr1.count) {
ASSERT(state->inleaf == 0);
blk2->index = blk1->index - ichdr1.count;
args->index = args->index2 = blk2->index;
args->blkno = args->blkno2 = blk2->blkno;
} else if (blk1->index == ichdr1.count) {
if (state->inleaf) {
args->index = blk1->index;
args->blkno = blk1->blkno;
args->index2 = 0;
args->blkno2 = blk2->blkno;
} else {
/*
* On a double leaf split, the original attr location
* is already stored in blkno2/index2, so don't
* overwrite it overwise we corrupt the tree.
*/
blk2->index = blk1->index - ichdr1.count;
args->index = blk2->index;
args->blkno = blk2->blkno;
if (!state->extravalid) {
/*
* set the new attr location to match the old
* one and let the higher level split code
* decide where in the leaf to place it.
*/
args->index2 = blk2->index;
args->blkno2 = blk2->blkno;
}
}
} else {
ASSERT(state->inleaf == 1);
args->index = args->index2 = blk1->index;
args->blkno = args->blkno2 = blk1->blkno;
}
}
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum.
* GROT: Is this really necessary? With other than a 512 byte blocksize,
* GROT: there will always be enough room in either block for a new entry.
* GROT: Do a double-split for this case?
*/
STATIC int
xfs_attr3_leaf_figure_balance(
struct xfs_da_state *state,
struct xfs_da_state_blk *blk1,
struct xfs_attr3_icleaf_hdr *ichdr1,
struct xfs_da_state_blk *blk2,
struct xfs_attr3_icleaf_hdr *ichdr2,
int *countarg,
int *usedbytesarg)
{
struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
struct xfs_attr_leaf_entry *entry;
int count;
int max;
int index;
int totallen = 0;
int half;
int lastdelta;
int foundit = 0;
int tmp;
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum.
*/
max = ichdr1->count + ichdr2->count;
half = (max + 1) * sizeof(*entry);
half += ichdr1->usedbytes + ichdr2->usedbytes +
xfs_attr_leaf_newentsize(state->args, NULL);
half /= 2;
lastdelta = state->args->geo->blksize;
entry = xfs_attr3_leaf_entryp(leaf1);
for (count = index = 0; count < max; entry++, index++, count++) {
#define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
/*
* The new entry is in the first block, account for it.
*/
if (count == blk1->index) {
tmp = totallen + sizeof(*entry) +
xfs_attr_leaf_newentsize(state->args, NULL);
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
break;
lastdelta = XFS_ATTR_ABS(half - tmp);
totallen = tmp;
foundit = 1;
}
/*
* Wrap around into the second block if necessary.
*/
if (count == ichdr1->count) {
leaf1 = leaf2;
entry = xfs_attr3_leaf_entryp(leaf1);
index = 0;
}
/*
* Figure out if next leaf entry would be too much.
*/
tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
index);
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
break;
lastdelta = XFS_ATTR_ABS(half - tmp);
totallen = tmp;
#undef XFS_ATTR_ABS
}
/*
* Calculate the number of usedbytes that will end up in lower block.
* If new entry not in lower block, fix up the count.
*/
totallen -= count * sizeof(*entry);
if (foundit) {
totallen -= sizeof(*entry) +
xfs_attr_leaf_newentsize(state->args, NULL);
}
*countarg = count;
*usedbytesarg = totallen;
return foundit;
}
/*========================================================================
* Routines used for shrinking the Btree.
*========================================================================*/
/*
* Check a leaf block and its neighbors to see if the block should be
* collapsed into one or the other neighbor. Always keep the block
* with the smaller block number.
* If the current block is over 50% full, don't try to join it, return 0.
* If the block is empty, fill in the state structure and return 2.
* If it can be collapsed, fill in the state structure and return 1.
* If nothing can be done, return 0.
*
* GROT: allow for INCOMPLETE entries in calculation.
*/
int
xfs_attr3_leaf_toosmall(
struct xfs_da_state *state,
int *action)
{
struct xfs_attr_leafblock *leaf;
struct xfs_da_state_blk *blk;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_buf *bp;
xfs_dablk_t blkno;
int bytes;
int forward;
int error;
int retval;
int i;
trace_xfs_attr_leaf_toosmall(state->args);
/*
* Check for the degenerate case of the block being over 50% full.
* If so, it's not worth even looking to see if we might be able
* to coalesce with a sibling.
*/
blk = &state->path.blk[ state->path.active-1 ];
leaf = blk->bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
bytes = xfs_attr3_leaf_hdr_size(leaf) +
ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
ichdr.usedbytes;
if (bytes > (state->args->geo->blksize >> 1)) {
*action = 0; /* blk over 50%, don't try to join */
return 0;
}
/*
* Check for the degenerate case of the block being empty.
* If the block is empty, we'll simply delete it, no need to
* coalesce it with a sibling block. We choose (arbitrarily)
* to merge with the forward block unless it is NULL.
*/
if (ichdr.count == 0) {
/*
* Make altpath point to the block we want to keep and
* path point to the block we want to drop (this one).
*/
forward = (ichdr.forw != 0);
memcpy(&state->altpath, &state->path, sizeof(state->path));
error = xfs_da3_path_shift(state, &state->altpath, forward,
0, &retval);
if (error)
return error;
if (retval) {
*action = 0;
} else {
*action = 2;
}
return 0;
}
/*
* Examine each sibling block to see if we can coalesce with
* at least 25% free space to spare. We need to figure out
* whether to merge with the forward or the backward block.
* We prefer coalescing with the lower numbered sibling so as
* to shrink an attribute list over time.
*/
/* start with smaller blk num */
forward = ichdr.forw < ichdr.back;
for (i = 0; i < 2; forward = !forward, i++) {
struct xfs_attr3_icleaf_hdr ichdr2;
if (forward)
blkno = ichdr.forw;
else
blkno = ichdr.back;
if (blkno == 0)
continue;
error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
blkno, -1, &bp);
if (error)
return error;
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
bytes = state->args->geo->blksize -
(state->args->geo->blksize >> 2) -
ichdr.usedbytes - ichdr2.usedbytes -
((ichdr.count + ichdr2.count) *
sizeof(xfs_attr_leaf_entry_t)) -
xfs_attr3_leaf_hdr_size(leaf);
xfs_trans_brelse(state->args->trans, bp);
if (bytes >= 0)
break; /* fits with at least 25% to spare */
}
if (i >= 2) {
*action = 0;
return 0;
}
/*
* Make altpath point to the block we want to keep (the lower
* numbered block) and path point to the block we want to drop.
*/
memcpy(&state->altpath, &state->path, sizeof(state->path));
if (blkno < blk->blkno) {
error = xfs_da3_path_shift(state, &state->altpath, forward,
0, &retval);
} else {
error = xfs_da3_path_shift(state, &state->path, forward,
0, &retval);
}
if (error)
return error;
if (retval) {
*action = 0;
} else {
*action = 1;
}
return 0;
}
/*
* Remove a name from the leaf attribute list structure.
*
* Return 1 if leaf is less than 37% full, 0 if >= 37% full.
* If two leaves are 37% full, when combined they will leave 25% free.
*/
int
xfs_attr3_leaf_remove(
struct xfs_buf *bp,
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entry;
int before;
int after;
int smallest;
int entsize;
int tablesize;
int tmp;
int i;
trace_xfs_attr_leaf_remove(args);
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
ASSERT(args->index >= 0 && args->index < ichdr.count);
ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
xfs_attr3_leaf_hdr_size(leaf));
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
/*
* Scan through free region table:
* check for adjacency of free'd entry with an existing one,
* find smallest free region in case we need to replace it,
* adjust any map that borders the entry table,
*/
tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
+ xfs_attr3_leaf_hdr_size(leaf);
tmp = ichdr.freemap[0].size;
before = after = -1;
smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
entsize = xfs_attr_leaf_entsize(leaf, args->index);
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
ASSERT(ichdr.freemap[i].base < args->geo->blksize);
ASSERT(ichdr.freemap[i].size < args->geo->blksize);
if (ichdr.freemap[i].base == tablesize) {
ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
}
if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
be16_to_cpu(entry->nameidx)) {
before = i;
} else if (ichdr.freemap[i].base ==
(be16_to_cpu(entry->nameidx) + entsize)) {
after = i;
} else if (ichdr.freemap[i].size < tmp) {
tmp = ichdr.freemap[i].size;
smallest = i;
}
}
/*
* Coalesce adjacent freemap regions,
* or replace the smallest region.
*/
if ((before >= 0) || (after >= 0)) {
if ((before >= 0) && (after >= 0)) {
ichdr.freemap[before].size += entsize;
ichdr.freemap[before].size += ichdr.freemap[after].size;
ichdr.freemap[after].base = 0;
ichdr.freemap[after].size = 0;
} else if (before >= 0) {
ichdr.freemap[before].size += entsize;
} else {
ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
ichdr.freemap[after].size += entsize;
}
} else {
/*
* Replace smallest region (if it is smaller than free'd entry)
*/
if (ichdr.freemap[smallest].size < entsize) {
ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
ichdr.freemap[smallest].size = entsize;
}
}
/*
* Did we remove the first entry?
*/
if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
smallest = 1;
else
smallest = 0;
/*
* Compress the remaining entries and zero out the removed stuff.
*/
memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
ichdr.usedbytes -= entsize;
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
entsize));
tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
memmove(entry, entry + 1, tmp);
ichdr.count--;
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
/*
* If we removed the first entry, re-find the first used byte
* in the name area. Note that if the entry was the "firstused",
* then we don't have a "hole" in our block resulting from
* removing the name.
*/
if (smallest) {
tmp = args->geo->blksize;
entry = xfs_attr3_leaf_entryp(leaf);
for (i = ichdr.count - 1; i >= 0; entry++, i--) {
ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
if (be16_to_cpu(entry->nameidx) < tmp)
tmp = be16_to_cpu(entry->nameidx);
}
ichdr.firstused = tmp;
ASSERT(ichdr.firstused != 0);
} else {
ichdr.holes = 1; /* mark as needing compaction */
}
xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, &leaf->hdr,
xfs_attr3_leaf_hdr_size(leaf)));
/*
* Check if leaf is less than 50% full, caller may want to
* "join" the leaf with a sibling if so.
*/
tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
ichdr.count * sizeof(xfs_attr_leaf_entry_t);
return tmp < args->geo->magicpct; /* leaf is < 37% full */
}
/*
* Move all the attribute list entries from drop_leaf into save_leaf.
*/
void
xfs_attr3_leaf_unbalance(
struct xfs_da_state *state,
struct xfs_da_state_blk *drop_blk,
struct xfs_da_state_blk *save_blk)
{
struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
struct xfs_attr3_icleaf_hdr drophdr;
struct xfs_attr3_icleaf_hdr savehdr;
struct xfs_attr_leaf_entry *entry;
trace_xfs_attr_leaf_unbalance(state->args);
drop_leaf = drop_blk->bp->b_addr;
save_leaf = save_blk->bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
entry = xfs_attr3_leaf_entryp(drop_leaf);
/*
* Save last hashval from dying block for later Btree fixup.
*/
drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
/*
* Check if we need a temp buffer, or can we do it in place.
* Note that we don't check "leaf" for holes because we will
* always be dropping it, toosmall() decided that for us already.
*/
if (savehdr.holes == 0) {
/*
* dest leaf has no holes, so we add there. May need
* to make some room in the entry array.
*/
if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
drop_blk->bp, &drophdr)) {
xfs_attr3_leaf_moveents(state->args,
drop_leaf, &drophdr, 0,
save_leaf, &savehdr, 0,
drophdr.count);
} else {
xfs_attr3_leaf_moveents(state->args,
drop_leaf, &drophdr, 0,
save_leaf, &savehdr,
savehdr.count, drophdr.count);
}
} else {
/*
* Destination has holes, so we make a temporary copy
* of the leaf and add them both to that.
*/
struct xfs_attr_leafblock *tmp_leaf;
struct xfs_attr3_icleaf_hdr tmphdr;
tmp_leaf = kmem_zalloc(state->args->geo->blksize, KM_SLEEP);
/*
* Copy the header into the temp leaf so that all the stuff
* not in the incore header is present and gets copied back in
* once we've moved all the entries.
*/
memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
memset(&tmphdr, 0, sizeof(tmphdr));
tmphdr.magic = savehdr.magic;
tmphdr.forw = savehdr.forw;
tmphdr.back = savehdr.back;
tmphdr.firstused = state->args->geo->blksize;
/* write the header to the temp buffer to initialise it */
xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
drop_blk->bp, &drophdr)) {
xfs_attr3_leaf_moveents(state->args,
drop_leaf, &drophdr, 0,
tmp_leaf, &tmphdr, 0,
drophdr.count);
xfs_attr3_leaf_moveents(state->args,
save_leaf, &savehdr, 0,
tmp_leaf, &tmphdr, tmphdr.count,
savehdr.count);
} else {
xfs_attr3_leaf_moveents(state->args,
save_leaf, &savehdr, 0,
tmp_leaf, &tmphdr, 0,
savehdr.count);
xfs_attr3_leaf_moveents(state->args,
drop_leaf, &drophdr, 0,
tmp_leaf, &tmphdr, tmphdr.count,
drophdr.count);
}
memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
savehdr = tmphdr; /* struct copy */
kmem_free(tmp_leaf);
}
xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
state->args->geo->blksize - 1);
/*
* Copy out last hashval in each block for B-tree code.
*/
entry = xfs_attr3_leaf_entryp(save_leaf);
save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
}
/*========================================================================
* Routines used for finding things in the Btree.
*========================================================================*/
/*
* Look up a name in a leaf attribute list structure.
* This is the internal routine, it uses the caller's buffer.
*
* Note that duplicate keys are allowed, but only check within the
* current leaf node. The Btree code must check in adjacent leaf nodes.
*
* Return in args->index the index into the entry[] array of either
* the found entry, or where the entry should have been (insert before
* that entry).
*
* Don't change the args->value unless we find the attribute.
*/
int
xfs_attr3_leaf_lookup_int(
struct xfs_buf *bp,
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_entry *entries;
struct xfs_attr_leaf_name_local *name_loc;
struct xfs_attr_leaf_name_remote *name_rmt;
xfs_dahash_t hashval;
int probe;
int span;
trace_xfs_attr_leaf_lookup(args);
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
entries = xfs_attr3_leaf_entryp(leaf);
ASSERT(ichdr.count < args->geo->blksize / 8);
/*
* Binary search. (note: small blocks will skip this loop)
*/
hashval = args->hashval;
probe = span = ichdr.count / 2;
for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
span /= 2;
if (be32_to_cpu(entry->hashval) < hashval)
probe += span;
else if (be32_to_cpu(entry->hashval) > hashval)
probe -= span;
else
break;
}
ASSERT(probe >= 0 && (!ichdr.count || probe < ichdr.count));
ASSERT(span <= 4 || be32_to_cpu(entry->hashval) == hashval);
/*
* Since we may have duplicate hashval's, find the first matching
* hashval in the leaf.
*/
while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
entry--;
probe--;
}
while (probe < ichdr.count &&
be32_to_cpu(entry->hashval) < hashval) {
entry++;
probe++;
}
if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
args->index = probe;
return -ENOATTR;
}
/*
* Duplicate keys may be present, so search all of them for a match.
*/
for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
entry++, probe++) {
/*
* GROT: Add code to remove incomplete entries.
*/
/*
* If we are looking for INCOMPLETE entries, show only those.
* If we are looking for complete entries, show only those.
*/
if ((args->flags & XFS_ATTR_INCOMPLETE) !=
(entry->flags & XFS_ATTR_INCOMPLETE)) {
continue;
}
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf, probe);
if (name_loc->namelen != args->namelen)
continue;
if (memcmp(args->name, name_loc->nameval,
args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, entry->flags))
continue;
args->index = probe;
return -EEXIST;
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
if (name_rmt->namelen != args->namelen)
continue;
if (memcmp(args->name, name_rmt->name,
args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, entry->flags))
continue;
args->index = probe;
args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
args->rmtblkcnt = xfs_attr3_rmt_blocks(
args->dp->i_mount,
args->rmtvaluelen);
return -EEXIST;
}
}
args->index = probe;
return -ENOATTR;
}
/*
* Get the value associated with an attribute name from a leaf attribute
* list structure.
*/
int
xfs_attr3_leaf_getvalue(
struct xfs_buf *bp,
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_local *name_loc;
struct xfs_attr_leaf_name_remote *name_rmt;
int valuelen;
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
ASSERT(ichdr.count < args->geo->blksize / 8);
ASSERT(args->index < ichdr.count);
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
ASSERT(name_loc->namelen == args->namelen);
ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
valuelen = be16_to_cpu(name_loc->valuelen);
if (args->flags & ATTR_KERNOVAL) {
args->valuelen = valuelen;
return 0;
}
if (args->valuelen < valuelen) {
args->valuelen = valuelen;
return -ERANGE;
}
args->valuelen = valuelen;
memcpy(args->value, &name_loc->nameval[args->namelen], valuelen);
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
ASSERT(name_rmt->namelen == args->namelen);
ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
args->rmtvaluelen);
if (args->flags & ATTR_KERNOVAL) {
args->valuelen = args->rmtvaluelen;
return 0;
}
if (args->valuelen < args->rmtvaluelen) {
args->valuelen = args->rmtvaluelen;
return -ERANGE;
}
args->valuelen = args->rmtvaluelen;
}
return 0;
}
/*========================================================================
* Utility routines.
*========================================================================*/
/*
* Move the indicated entries from one leaf to another.
* NOTE: this routine modifies both source and destination leaves.
*/
/*ARGSUSED*/
STATIC void
xfs_attr3_leaf_moveents(
struct xfs_da_args *args,
struct xfs_attr_leafblock *leaf_s,
struct xfs_attr3_icleaf_hdr *ichdr_s,
int start_s,
struct xfs_attr_leafblock *leaf_d,
struct xfs_attr3_icleaf_hdr *ichdr_d,
int start_d,
int count)
{
struct xfs_attr_leaf_entry *entry_s;
struct xfs_attr_leaf_entry *entry_d;
int desti;
int tmp;
int i;
/*
* Check for nothing to do.
*/
if (count == 0)
return;
/*
* Set up environment.
*/
ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
ASSERT(ichdr_s->magic == ichdr_d->magic);
ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
+ xfs_attr3_leaf_hdr_size(leaf_s));
ASSERT(ichdr_d->count < args->geo->blksize / 8);
ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
+ xfs_attr3_leaf_hdr_size(leaf_d));
ASSERT(start_s < ichdr_s->count);
ASSERT(start_d <= ichdr_d->count);
ASSERT(count <= ichdr_s->count);
/*
* Move the entries in the destination leaf up to make a hole?
*/
if (start_d < ichdr_d->count) {
tmp = ichdr_d->count - start_d;
tmp *= sizeof(xfs_attr_leaf_entry_t);
entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
memmove(entry_d, entry_s, tmp);
}
/*
* Copy all entry's in the same (sorted) order,
* but allocate attribute info packed and in sequence.
*/
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
desti = start_d;
for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
#ifdef GROT
/*
* Code to drop INCOMPLETE entries. Difficult to use as we
* may also need to change the insertion index. Code turned
* off for 6.2, should be revisited later.
*/
if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
ichdr_s->usedbytes -= tmp;
ichdr_s->count -= 1;
entry_d--; /* to compensate for ++ in loop hdr */
desti--;
if ((start_s + i) < offset)
result++; /* insertion index adjustment */
} else {
#endif /* GROT */
ichdr_d->firstused -= tmp;
/* both on-disk, don't endian flip twice */
entry_d->hashval = entry_s->hashval;
entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
entry_d->flags = entry_s->flags;
ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
<= args->geo->blksize);
memmove(xfs_attr3_leaf_name(leaf_d, desti),
xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
<= args->geo->blksize);
memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
ichdr_s->usedbytes -= tmp;
ichdr_d->usedbytes += tmp;
ichdr_s->count -= 1;
ichdr_d->count += 1;
tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
+ xfs_attr3_leaf_hdr_size(leaf_d);
ASSERT(ichdr_d->firstused >= tmp);
#ifdef GROT
}
#endif /* GROT */
}
/*
* Zero out the entries we just copied.
*/
if (start_s == ichdr_s->count) {
tmp = count * sizeof(xfs_attr_leaf_entry_t);
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
ASSERT(((char *)entry_s + tmp) <=
((char *)leaf_s + args->geo->blksize));
memset(entry_s, 0, tmp);
} else {
/*
* Move the remaining entries down to fill the hole,
* then zero the entries at the top.
*/
tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
memmove(entry_d, entry_s, tmp);
tmp = count * sizeof(xfs_attr_leaf_entry_t);
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
ASSERT(((char *)entry_s + tmp) <=
((char *)leaf_s + args->geo->blksize));
memset(entry_s, 0, tmp);
}
/*
* Fill in the freemap information
*/
ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
ichdr_d->freemap[1].base = 0;
ichdr_d->freemap[2].base = 0;
ichdr_d->freemap[1].size = 0;
ichdr_d->freemap[2].size = 0;
ichdr_s->holes = 1; /* leaf may not be compact */
}
/*
* Pick up the last hashvalue from a leaf block.
*/
xfs_dahash_t
xfs_attr_leaf_lasthash(
struct xfs_buf *bp,
int *count)
{
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entries;
struct xfs_mount *mp = bp->b_target->bt_mount;
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
entries = xfs_attr3_leaf_entryp(bp->b_addr);
if (count)
*count = ichdr.count;
if (!ichdr.count)
return 0;
return be32_to_cpu(entries[ichdr.count - 1].hashval);
}
/*
* Calculate the number of bytes used to store the indicated attribute
* (whether local or remote only calculate bytes in this block).
*/
STATIC int
xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
{
struct xfs_attr_leaf_entry *entries;
xfs_attr_leaf_name_local_t *name_loc;
xfs_attr_leaf_name_remote_t *name_rmt;
int size;
entries = xfs_attr3_leaf_entryp(leaf);
if (entries[index].flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf, index);
size = xfs_attr_leaf_entsize_local(name_loc->namelen,
be16_to_cpu(name_loc->valuelen));
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
}
return size;
}
/*
* Calculate the number of bytes that would be required to store the new
* attribute (whether local or remote only calculate bytes in this block).
* This routine decides as a side effect whether the attribute will be
* a "local" or a "remote" attribute.
*/
int
xfs_attr_leaf_newentsize(
struct xfs_da_args *args,
int *local)
{
int size;
size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
if (local)
*local = 1;
return size;
}
if (local)
*local = 0;
return xfs_attr_leaf_entsize_remote(args->namelen);
}
/*========================================================================
* Manage the INCOMPLETE flag in a leaf entry
*========================================================================*/
/*
* Clear the INCOMPLETE flag on an entry in a leaf block.
*/
int
xfs_attr3_leaf_clearflag(
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_remote *name_rmt;
struct xfs_buf *bp;
int error;
#ifdef DEBUG
struct xfs_attr3_icleaf_hdr ichdr;
xfs_attr_leaf_name_local_t *name_loc;
int namelen;
char *name;
#endif /* DEBUG */
trace_xfs_attr_leaf_clearflag(args);
/*
* Set up the operation.
*/
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
if (error)
return error;
leaf = bp->b_addr;
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
#ifdef DEBUG
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
ASSERT(args->index < ichdr.count);
ASSERT(args->index >= 0);
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
namelen = name_loc->namelen;
name = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
namelen = name_rmt->namelen;
name = (char *)name_rmt->name;
}
ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
ASSERT(namelen == args->namelen);
ASSERT(memcmp(name, args->name, namelen) == 0);
#endif /* DEBUG */
entry->flags &= ~XFS_ATTR_INCOMPLETE;
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
if (args->rmtblkno) {
ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
}
/*
* Commit the flag value change and start the next trans in series.
*/
return xfs_trans_roll(&args->trans, args->dp);
}
/*
* Set the INCOMPLETE flag on an entry in a leaf block.
*/
int
xfs_attr3_leaf_setflag(
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_remote *name_rmt;
struct xfs_buf *bp;
int error;
#ifdef DEBUG
struct xfs_attr3_icleaf_hdr ichdr;
#endif
trace_xfs_attr_leaf_setflag(args);
/*
* Set up the operation.
*/
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
if (error)
return error;
leaf = bp->b_addr;
#ifdef DEBUG
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
ASSERT(args->index < ichdr.count);
ASSERT(args->index >= 0);
#endif
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
entry->flags |= XFS_ATTR_INCOMPLETE;
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
name_rmt->valueblk = 0;
name_rmt->valuelen = 0;
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
}
/*
* Commit the flag value change and start the next trans in series.
*/
return xfs_trans_roll(&args->trans, args->dp);
}
/*
* In a single transaction, clear the INCOMPLETE flag on the leaf entry
* given by args->blkno/index and set the INCOMPLETE flag on the leaf
* entry given by args->blkno2/index2.
*
* Note that they could be in different blocks, or in the same block.
*/
int
xfs_attr3_leaf_flipflags(
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf1;
struct xfs_attr_leafblock *leaf2;
struct xfs_attr_leaf_entry *entry1;
struct xfs_attr_leaf_entry *entry2;
struct xfs_attr_leaf_name_remote *name_rmt;
struct xfs_buf *bp1;
struct xfs_buf *bp2;
int error;
#ifdef DEBUG
struct xfs_attr3_icleaf_hdr ichdr1;
struct xfs_attr3_icleaf_hdr ichdr2;
xfs_attr_leaf_name_local_t *name_loc;
int namelen1, namelen2;
char *name1, *name2;
#endif /* DEBUG */
trace_xfs_attr_leaf_flipflags(args);
/*
* Read the block containing the "old" attr
*/
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp1);
if (error)
return error;
/*
* Read the block containing the "new" attr, if it is different
*/
if (args->blkno2 != args->blkno) {
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
-1, &bp2);
if (error)
return error;
} else {
bp2 = bp1;
}
leaf1 = bp1->b_addr;
entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
leaf2 = bp2->b_addr;
entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
#ifdef DEBUG
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
ASSERT(args->index < ichdr1.count);
ASSERT(args->index >= 0);
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
ASSERT(args->index2 < ichdr2.count);
ASSERT(args->index2 >= 0);
if (entry1->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
namelen1 = name_loc->namelen;
name1 = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
namelen1 = name_rmt->namelen;
name1 = (char *)name_rmt->name;
}
if (entry2->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
namelen2 = name_loc->namelen;
name2 = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
namelen2 = name_rmt->namelen;
name2 = (char *)name_rmt->name;
}
ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
ASSERT(namelen1 == namelen2);
ASSERT(memcmp(name1, name2, namelen1) == 0);
#endif /* DEBUG */
ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
entry1->flags &= ~XFS_ATTR_INCOMPLETE;
xfs_trans_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
if (args->rmtblkno) {
ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
xfs_trans_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
}
entry2->flags |= XFS_ATTR_INCOMPLETE;
xfs_trans_log_buf(args->trans, bp2,
XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
name_rmt->valueblk = 0;
name_rmt->valuelen = 0;
xfs_trans_log_buf(args->trans, bp2,
XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
}
/*
* Commit the flag value change and start the next trans in series.
*/
error = xfs_trans_roll(&args->trans, args->dp);
return error;
}