636 lines
16 KiB
C
636 lines
16 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2014 Intel Corporation
|
|
*/
|
|
|
|
#include "gen8_engine_cs.h"
|
|
#include "i915_drv.h"
|
|
#include "intel_lrc.h"
|
|
#include "intel_gpu_commands.h"
|
|
#include "intel_ring.h"
|
|
|
|
int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
|
|
{
|
|
bool vf_flush_wa = false, dc_flush_wa = false;
|
|
u32 *cs, flags = 0;
|
|
int len;
|
|
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
if (mode & EMIT_FLUSH) {
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
|
|
flags |= PIPE_CONTROL_FLUSH_ENABLE;
|
|
}
|
|
|
|
if (mode & EMIT_INVALIDATE) {
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
|
|
|
|
/*
|
|
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
|
|
* pipe control.
|
|
*/
|
|
if (IS_GEN(rq->engine->i915, 9))
|
|
vf_flush_wa = true;
|
|
|
|
/* WaForGAMHang:kbl */
|
|
if (IS_KBL_GT_REVID(rq->engine->i915, 0, KBL_REVID_B0))
|
|
dc_flush_wa = true;
|
|
}
|
|
|
|
len = 6;
|
|
|
|
if (vf_flush_wa)
|
|
len += 6;
|
|
|
|
if (dc_flush_wa)
|
|
len += 12;
|
|
|
|
cs = intel_ring_begin(rq, len);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
if (vf_flush_wa)
|
|
cs = gen8_emit_pipe_control(cs, 0, 0);
|
|
|
|
if (dc_flush_wa)
|
|
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
|
|
0);
|
|
|
|
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
|
|
|
|
if (dc_flush_wa)
|
|
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
|
|
|
|
intel_ring_advance(rq, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
|
|
{
|
|
u32 cmd, *cs;
|
|
|
|
cs = intel_ring_begin(rq, 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
cmd = MI_FLUSH_DW + 1;
|
|
|
|
/*
|
|
* We always require a command barrier so that subsequent
|
|
* commands, such as breadcrumb interrupts, are strictly ordered
|
|
* wrt the contents of the write cache being flushed to memory
|
|
* (and thus being coherent from the CPU).
|
|
*/
|
|
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
|
|
|
|
if (mode & EMIT_INVALIDATE) {
|
|
cmd |= MI_INVALIDATE_TLB;
|
|
if (rq->engine->class == VIDEO_DECODE_CLASS)
|
|
cmd |= MI_INVALIDATE_BSD;
|
|
}
|
|
|
|
*cs++ = cmd;
|
|
*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
|
|
*cs++ = 0; /* upper addr */
|
|
*cs++ = 0; /* value */
|
|
intel_ring_advance(rq, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
|
|
{
|
|
if (mode & EMIT_FLUSH) {
|
|
u32 *cs;
|
|
u32 flags = 0;
|
|
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
|
|
flags |= PIPE_CONTROL_FLUSH_ENABLE;
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
|
|
|
|
cs = intel_ring_begin(rq, 6);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
|
|
intel_ring_advance(rq, cs);
|
|
}
|
|
|
|
if (mode & EMIT_INVALIDATE) {
|
|
u32 *cs;
|
|
u32 flags = 0;
|
|
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
|
|
|
|
cs = intel_ring_begin(rq, 6);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
|
|
intel_ring_advance(rq, cs);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 preparser_disable(bool state)
|
|
{
|
|
return MI_ARB_CHECK | 1 << 8 | state;
|
|
}
|
|
|
|
static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine)
|
|
{
|
|
static const i915_reg_t vd[] = {
|
|
GEN12_VD0_AUX_NV,
|
|
GEN12_VD1_AUX_NV,
|
|
GEN12_VD2_AUX_NV,
|
|
GEN12_VD3_AUX_NV,
|
|
};
|
|
|
|
static const i915_reg_t ve[] = {
|
|
GEN12_VE0_AUX_NV,
|
|
GEN12_VE1_AUX_NV,
|
|
};
|
|
|
|
if (engine->class == VIDEO_DECODE_CLASS)
|
|
return vd[engine->instance];
|
|
|
|
if (engine->class == VIDEO_ENHANCEMENT_CLASS)
|
|
return ve[engine->instance];
|
|
|
|
GEM_BUG_ON("unknown aux_inv reg\n");
|
|
return INVALID_MMIO_REG;
|
|
}
|
|
|
|
static u32 *gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs)
|
|
{
|
|
*cs++ = MI_LOAD_REGISTER_IMM(1);
|
|
*cs++ = i915_mmio_reg_offset(inv_reg);
|
|
*cs++ = AUX_INV;
|
|
*cs++ = MI_NOOP;
|
|
|
|
return cs;
|
|
}
|
|
|
|
int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
|
|
{
|
|
if (mode & EMIT_FLUSH) {
|
|
u32 flags = 0;
|
|
u32 *cs;
|
|
|
|
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_FLUSH_L3;
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
/* Wa_1409600907:tgl */
|
|
flags |= PIPE_CONTROL_DEPTH_STALL;
|
|
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
|
|
flags |= PIPE_CONTROL_FLUSH_ENABLE;
|
|
|
|
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
cs = intel_ring_begin(rq, 6);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
cs = gen12_emit_pipe_control(cs,
|
|
PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
|
|
flags, LRC_PPHWSP_SCRATCH_ADDR);
|
|
intel_ring_advance(rq, cs);
|
|
}
|
|
|
|
if (mode & EMIT_INVALIDATE) {
|
|
u32 flags = 0;
|
|
u32 *cs;
|
|
|
|
flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
|
|
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
cs = intel_ring_begin(rq, 8 + 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
/*
|
|
* Prevent the pre-parser from skipping past the TLB
|
|
* invalidate and loading a stale page for the batch
|
|
* buffer / request payload.
|
|
*/
|
|
*cs++ = preparser_disable(true);
|
|
|
|
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
|
|
|
|
/* hsdes: 1809175790 */
|
|
cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs);
|
|
|
|
*cs++ = preparser_disable(false);
|
|
intel_ring_advance(rq, cs);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
|
|
{
|
|
intel_engine_mask_t aux_inv = 0;
|
|
u32 cmd, *cs;
|
|
|
|
cmd = 4;
|
|
if (mode & EMIT_INVALIDATE)
|
|
cmd += 2;
|
|
if (mode & EMIT_INVALIDATE)
|
|
aux_inv = rq->engine->mask & ~BIT(BCS0);
|
|
if (aux_inv)
|
|
cmd += 2 * hweight8(aux_inv) + 2;
|
|
|
|
cs = intel_ring_begin(rq, cmd);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
if (mode & EMIT_INVALIDATE)
|
|
*cs++ = preparser_disable(true);
|
|
|
|
cmd = MI_FLUSH_DW + 1;
|
|
|
|
/*
|
|
* We always require a command barrier so that subsequent
|
|
* commands, such as breadcrumb interrupts, are strictly ordered
|
|
* wrt the contents of the write cache being flushed to memory
|
|
* (and thus being coherent from the CPU).
|
|
*/
|
|
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
|
|
|
|
if (mode & EMIT_INVALIDATE) {
|
|
cmd |= MI_INVALIDATE_TLB;
|
|
if (rq->engine->class == VIDEO_DECODE_CLASS)
|
|
cmd |= MI_INVALIDATE_BSD;
|
|
}
|
|
|
|
*cs++ = cmd;
|
|
*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
|
|
*cs++ = 0; /* upper addr */
|
|
*cs++ = 0; /* value */
|
|
|
|
if (aux_inv) { /* hsdes: 1809175790 */
|
|
struct intel_engine_cs *engine;
|
|
unsigned int tmp;
|
|
|
|
*cs++ = MI_LOAD_REGISTER_IMM(hweight8(aux_inv));
|
|
for_each_engine_masked(engine, rq->engine->gt,
|
|
aux_inv, tmp) {
|
|
*cs++ = i915_mmio_reg_offset(aux_inv_reg(engine));
|
|
*cs++ = AUX_INV;
|
|
}
|
|
*cs++ = MI_NOOP;
|
|
}
|
|
|
|
if (mode & EMIT_INVALIDATE)
|
|
*cs++ = preparser_disable(false);
|
|
|
|
intel_ring_advance(rq, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 preempt_address(struct intel_engine_cs *engine)
|
|
{
|
|
return (i915_ggtt_offset(engine->status_page.vma) +
|
|
I915_GEM_HWS_PREEMPT_ADDR);
|
|
}
|
|
|
|
static u32 hwsp_offset(const struct i915_request *rq)
|
|
{
|
|
const struct intel_timeline_cacheline *cl;
|
|
|
|
/* Before the request is executed, the timeline/cachline is fixed */
|
|
|
|
cl = rcu_dereference_protected(rq->hwsp_cacheline, 1);
|
|
if (cl)
|
|
return cl->ggtt_offset;
|
|
|
|
return rcu_dereference_protected(rq->timeline, 1)->hwsp_offset;
|
|
}
|
|
|
|
int gen8_emit_init_breadcrumb(struct i915_request *rq)
|
|
{
|
|
u32 *cs;
|
|
|
|
GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
|
|
if (!i915_request_timeline(rq)->has_initial_breadcrumb)
|
|
return 0;
|
|
|
|
cs = intel_ring_begin(rq, 6);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
|
|
*cs++ = hwsp_offset(rq);
|
|
*cs++ = 0;
|
|
*cs++ = rq->fence.seqno - 1;
|
|
|
|
/*
|
|
* Check if we have been preempted before we even get started.
|
|
*
|
|
* After this point i915_request_started() reports true, even if
|
|
* we get preempted and so are no longer running.
|
|
*
|
|
* i915_request_started() is used during preemption processing
|
|
* to decide if the request is currently inside the user payload
|
|
* or spinning on a kernel semaphore (or earlier). For no-preemption
|
|
* requests, we do allow preemption on the semaphore before the user
|
|
* payload, but do not allow preemption once the request is started.
|
|
*
|
|
* i915_request_started() is similarly used during GPU hangs to
|
|
* determine if the user's payload was guilty, and if so, the
|
|
* request is banned. Before the request is started, it is assumed
|
|
* to be unharmed and an innocent victim of another's hang.
|
|
*/
|
|
*cs++ = MI_NOOP;
|
|
*cs++ = MI_ARB_CHECK;
|
|
|
|
intel_ring_advance(rq, cs);
|
|
|
|
/* Record the updated position of the request's payload */
|
|
rq->infix = intel_ring_offset(rq, cs);
|
|
|
|
__set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gen8_emit_bb_start_noarb(struct i915_request *rq,
|
|
u64 offset, u32 len,
|
|
const unsigned int flags)
|
|
{
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(rq, 4);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
/*
|
|
* WaDisableCtxRestoreArbitration:bdw,chv
|
|
*
|
|
* We don't need to perform MI_ARB_ENABLE as often as we do (in
|
|
* particular all the gen that do not need the w/a at all!), if we
|
|
* took care to make sure that on every switch into this context
|
|
* (both ordinary and for preemption) that arbitrartion was enabled
|
|
* we would be fine. However, for gen8 there is another w/a that
|
|
* requires us to not preempt inside GPGPU execution, so we keep
|
|
* arbitration disabled for gen8 batches. Arbitration will be
|
|
* re-enabled before we close the request
|
|
* (engine->emit_fini_breadcrumb).
|
|
*/
|
|
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
|
|
|
|
/* FIXME(BDW+): Address space and security selectors. */
|
|
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
|
|
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
|
|
*cs++ = lower_32_bits(offset);
|
|
*cs++ = upper_32_bits(offset);
|
|
|
|
intel_ring_advance(rq, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gen8_emit_bb_start(struct i915_request *rq,
|
|
u64 offset, u32 len,
|
|
const unsigned int flags)
|
|
{
|
|
u32 *cs;
|
|
|
|
if (unlikely(i915_request_has_nopreempt(rq)))
|
|
return gen8_emit_bb_start_noarb(rq, offset, len, flags);
|
|
|
|
cs = intel_ring_begin(rq, 6);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
|
|
|
|
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
|
|
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
|
|
*cs++ = lower_32_bits(offset);
|
|
*cs++ = upper_32_bits(offset);
|
|
|
|
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
|
|
*cs++ = MI_NOOP;
|
|
|
|
intel_ring_advance(rq, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void assert_request_valid(struct i915_request *rq)
|
|
{
|
|
struct intel_ring *ring __maybe_unused = rq->ring;
|
|
|
|
/* Can we unwind this request without appearing to go forwards? */
|
|
GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
|
|
}
|
|
|
|
/*
|
|
* Reserve space for 2 NOOPs at the end of each request to be
|
|
* used as a workaround for not being allowed to do lite
|
|
* restore with HEAD==TAIL (WaIdleLiteRestore).
|
|
*/
|
|
static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
|
|
{
|
|
/* Ensure there's always at least one preemption point per-request. */
|
|
*cs++ = MI_ARB_CHECK;
|
|
*cs++ = MI_NOOP;
|
|
rq->wa_tail = intel_ring_offset(rq, cs);
|
|
|
|
/* Check that entire request is less than half the ring */
|
|
assert_request_valid(rq);
|
|
|
|
return cs;
|
|
}
|
|
|
|
static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
|
|
{
|
|
*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
|
|
*cs++ = MI_SEMAPHORE_WAIT |
|
|
MI_SEMAPHORE_GLOBAL_GTT |
|
|
MI_SEMAPHORE_POLL |
|
|
MI_SEMAPHORE_SAD_EQ_SDD;
|
|
*cs++ = 0;
|
|
*cs++ = preempt_address(rq->engine);
|
|
*cs++ = 0;
|
|
*cs++ = MI_NOOP;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static __always_inline u32*
|
|
gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
|
|
{
|
|
*cs++ = MI_USER_INTERRUPT;
|
|
|
|
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
|
|
if (intel_engine_has_semaphores(rq->engine))
|
|
cs = emit_preempt_busywait(rq, cs);
|
|
|
|
rq->tail = intel_ring_offset(rq, cs);
|
|
assert_ring_tail_valid(rq->ring, rq->tail);
|
|
|
|
return gen8_emit_wa_tail(rq, cs);
|
|
}
|
|
|
|
static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
|
|
{
|
|
return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
|
|
}
|
|
|
|
u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
|
|
{
|
|
return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
|
|
}
|
|
|
|
u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
|
|
{
|
|
cs = gen8_emit_pipe_control(cs,
|
|
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
|
|
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
|
|
PIPE_CONTROL_DC_FLUSH_ENABLE,
|
|
0);
|
|
|
|
/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
|
|
cs = gen8_emit_ggtt_write_rcs(cs,
|
|
rq->fence.seqno,
|
|
hwsp_offset(rq),
|
|
PIPE_CONTROL_FLUSH_ENABLE |
|
|
PIPE_CONTROL_CS_STALL);
|
|
|
|
return gen8_emit_fini_breadcrumb_tail(rq, cs);
|
|
}
|
|
|
|
u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
|
|
{
|
|
cs = gen8_emit_ggtt_write_rcs(cs,
|
|
rq->fence.seqno,
|
|
hwsp_offset(rq),
|
|
PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_TILE_CACHE_FLUSH |
|
|
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
|
|
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
|
|
PIPE_CONTROL_DC_FLUSH_ENABLE |
|
|
PIPE_CONTROL_FLUSH_ENABLE);
|
|
|
|
return gen8_emit_fini_breadcrumb_tail(rq, cs);
|
|
}
|
|
|
|
/*
|
|
* Note that the CS instruction pre-parser will not stall on the breadcrumb
|
|
* flush and will continue pre-fetching the instructions after it before the
|
|
* memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
|
|
* BB_START/END instructions, so, even though we might pre-fetch the pre-amble
|
|
* of the next request before the memory has been flushed, we're guaranteed that
|
|
* we won't access the batch itself too early.
|
|
* However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
|
|
* so, if the current request is modifying an instruction in the next request on
|
|
* the same intel_context, we might pre-fetch and then execute the pre-update
|
|
* instruction. To avoid this, the users of self-modifying code should either
|
|
* disable the parser around the code emitting the memory writes, via a new flag
|
|
* added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
|
|
* the in-kernel use-cases we've opted to use a separate context, see
|
|
* reloc_gpu() as an example.
|
|
* All the above applies only to the instructions themselves. Non-inline data
|
|
* used by the instructions is not pre-fetched.
|
|
*/
|
|
|
|
static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
|
|
{
|
|
*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
|
|
*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
|
|
MI_SEMAPHORE_GLOBAL_GTT |
|
|
MI_SEMAPHORE_POLL |
|
|
MI_SEMAPHORE_SAD_EQ_SDD;
|
|
*cs++ = 0;
|
|
*cs++ = preempt_address(rq->engine);
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static __always_inline u32*
|
|
gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
|
|
{
|
|
*cs++ = MI_USER_INTERRUPT;
|
|
|
|
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
|
|
if (intel_engine_has_semaphores(rq->engine))
|
|
cs = gen12_emit_preempt_busywait(rq, cs);
|
|
|
|
rq->tail = intel_ring_offset(rq, cs);
|
|
assert_ring_tail_valid(rq->ring, rq->tail);
|
|
|
|
return gen8_emit_wa_tail(rq, cs);
|
|
}
|
|
|
|
u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
|
|
{
|
|
/* XXX Stalling flush before seqno write; post-sync not */
|
|
cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
|
|
return gen12_emit_fini_breadcrumb_tail(rq, cs);
|
|
}
|
|
|
|
u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
|
|
{
|
|
cs = gen12_emit_ggtt_write_rcs(cs,
|
|
rq->fence.seqno,
|
|
hwsp_offset(rq),
|
|
PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
|
|
PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_TILE_CACHE_FLUSH |
|
|
PIPE_CONTROL_FLUSH_L3 |
|
|
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
|
|
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
|
|
/* Wa_1409600907:tgl */
|
|
PIPE_CONTROL_DEPTH_STALL |
|
|
PIPE_CONTROL_DC_FLUSH_ENABLE |
|
|
PIPE_CONTROL_FLUSH_ENABLE);
|
|
|
|
return gen12_emit_fini_breadcrumb_tail(rq, cs);
|
|
}
|