OpenCloudOS-Kernel/drivers/dma/ste_dma40.c

3764 lines
96 KiB
C

/*
* Copyright (C) Ericsson AB 2007-2008
* Copyright (C) ST-Ericsson SA 2008-2010
* Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
* Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
* License terms: GNU General Public License (GPL) version 2
*/
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/log2.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/amba/bus.h>
#include <linux/regulator/consumer.h>
#include <linux/platform_data/dma-ste-dma40.h>
#include "dmaengine.h"
#include "ste_dma40_ll.h"
#define D40_NAME "dma40"
#define D40_PHY_CHAN -1
/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan) (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500
/* Milliseconds */
#define DMA40_AUTOSUSPEND_DELAY 100
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
/* Max number of logical channels per physical channel */
#define D40_MAX_LOG_CHAN_PER_PHY 32
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256
/* Bit markings for allocation map */
#define D40_ALLOC_FREE BIT(31)
#define D40_ALLOC_PHY BIT(30)
#define D40_ALLOC_LOG_FREE 0
#define D40_MEMCPY_MAX_CHANS 8
/* Reserved event lines for memcpy only. */
#define DB8500_DMA_MEMCPY_EV_0 51
#define DB8500_DMA_MEMCPY_EV_1 56
#define DB8500_DMA_MEMCPY_EV_2 57
#define DB8500_DMA_MEMCPY_EV_3 58
#define DB8500_DMA_MEMCPY_EV_4 59
#define DB8500_DMA_MEMCPY_EV_5 60
static int dma40_memcpy_channels[] = {
DB8500_DMA_MEMCPY_EV_0,
DB8500_DMA_MEMCPY_EV_1,
DB8500_DMA_MEMCPY_EV_2,
DB8500_DMA_MEMCPY_EV_3,
DB8500_DMA_MEMCPY_EV_4,
DB8500_DMA_MEMCPY_EV_5,
};
/* Default configuration for physcial memcpy */
static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
.mode = STEDMA40_MODE_PHYSICAL,
.dir = DMA_MEM_TO_MEM,
.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
.src_info.psize = STEDMA40_PSIZE_PHY_1,
.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
.dst_info.psize = STEDMA40_PSIZE_PHY_1,
.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};
/* Default configuration for logical memcpy */
static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
.mode = STEDMA40_MODE_LOGICAL,
.dir = DMA_MEM_TO_MEM,
.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
.src_info.psize = STEDMA40_PSIZE_LOG_1,
.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
.dst_info.psize = STEDMA40_PSIZE_LOG_1,
.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};
/**
* enum 40_command - The different commands and/or statuses.
*
* @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
* @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
* @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
* @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
*/
enum d40_command {
D40_DMA_STOP = 0,
D40_DMA_RUN = 1,
D40_DMA_SUSPEND_REQ = 2,
D40_DMA_SUSPENDED = 3
};
/*
* enum d40_events - The different Event Enables for the event lines.
*
* @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
* @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
* @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
* @D40_ROUND_EVENTLINE: Status check for event line.
*/
enum d40_events {
D40_DEACTIVATE_EVENTLINE = 0,
D40_ACTIVATE_EVENTLINE = 1,
D40_SUSPEND_REQ_EVENTLINE = 2,
D40_ROUND_EVENTLINE = 3
};
/*
* These are the registers that has to be saved and later restored
* when the DMA hw is powered off.
* TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
*/
static u32 d40_backup_regs[] = {
D40_DREG_LCPA,
D40_DREG_LCLA,
D40_DREG_PRMSE,
D40_DREG_PRMSO,
D40_DREG_PRMOE,
D40_DREG_PRMOO,
};
#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
/*
* since 9540 and 8540 has the same HW revision
* use v4a for 9540 or ealier
* use v4b for 8540 or later
* HW revision:
* DB8500ed has revision 0
* DB8500v1 has revision 2
* DB8500v2 has revision 3
* AP9540v1 has revision 4
* DB8540v1 has revision 4
* TODO: Check if all these registers have to be saved/restored on dma40 v4a
*/
static u32 d40_backup_regs_v4a[] = {
D40_DREG_PSEG1,
D40_DREG_PSEG2,
D40_DREG_PSEG3,
D40_DREG_PSEG4,
D40_DREG_PCEG1,
D40_DREG_PCEG2,
D40_DREG_PCEG3,
D40_DREG_PCEG4,
D40_DREG_RSEG1,
D40_DREG_RSEG2,
D40_DREG_RSEG3,
D40_DREG_RSEG4,
D40_DREG_RCEG1,
D40_DREG_RCEG2,
D40_DREG_RCEG3,
D40_DREG_RCEG4,
};
#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
static u32 d40_backup_regs_v4b[] = {
D40_DREG_CPSEG1,
D40_DREG_CPSEG2,
D40_DREG_CPSEG3,
D40_DREG_CPSEG4,
D40_DREG_CPSEG5,
D40_DREG_CPCEG1,
D40_DREG_CPCEG2,
D40_DREG_CPCEG3,
D40_DREG_CPCEG4,
D40_DREG_CPCEG5,
D40_DREG_CRSEG1,
D40_DREG_CRSEG2,
D40_DREG_CRSEG3,
D40_DREG_CRSEG4,
D40_DREG_CRSEG5,
D40_DREG_CRCEG1,
D40_DREG_CRCEG2,
D40_DREG_CRCEG3,
D40_DREG_CRCEG4,
D40_DREG_CRCEG5,
};
#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
static u32 d40_backup_regs_chan[] = {
D40_CHAN_REG_SSCFG,
D40_CHAN_REG_SSELT,
D40_CHAN_REG_SSPTR,
D40_CHAN_REG_SSLNK,
D40_CHAN_REG_SDCFG,
D40_CHAN_REG_SDELT,
D40_CHAN_REG_SDPTR,
D40_CHAN_REG_SDLNK,
};
#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
/**
* struct d40_interrupt_lookup - lookup table for interrupt handler
*
* @src: Interrupt mask register.
* @clr: Interrupt clear register.
* @is_error: true if this is an error interrupt.
* @offset: start delta in the lookup_log_chans in d40_base. If equals to
* D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
*/
struct d40_interrupt_lookup {
u32 src;
u32 clr;
bool is_error;
int offset;
};
static struct d40_interrupt_lookup il_v4a[] = {
{D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
{D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
{D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
{D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
{D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
{D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
{D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
};
static struct d40_interrupt_lookup il_v4b[] = {
{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
{D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
{D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
};
/**
* struct d40_reg_val - simple lookup struct
*
* @reg: The register.
* @val: The value that belongs to the register in reg.
*/
struct d40_reg_val {
unsigned int reg;
unsigned int val;
};
static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
/* Clock every part of the DMA block from start */
{ .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
/* Interrupts on all logical channels */
{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
};
static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
/* Clock every part of the DMA block from start */
{ .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
/* Interrupts on all logical channels */
{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
};
/**
* struct d40_lli_pool - Structure for keeping LLIs in memory
*
* @base: Pointer to memory area when the pre_alloc_lli's are not large
* enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
* pre_alloc_lli is used.
* @dma_addr: DMA address, if mapped
* @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
* @pre_alloc_lli: Pre allocated area for the most common case of transfers,
* one buffer to one buffer.
*/
struct d40_lli_pool {
void *base;
int size;
dma_addr_t dma_addr;
/* Space for dst and src, plus an extra for padding */
u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
};
/**
* struct d40_desc - A descriptor is one DMA job.
*
* @lli_phy: LLI settings for physical channel. Both src and dst=
* points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
* lli_len equals one.
* @lli_log: Same as above but for logical channels.
* @lli_pool: The pool with two entries pre-allocated.
* @lli_len: Number of llis of current descriptor.
* @lli_current: Number of transferred llis.
* @lcla_alloc: Number of LCLA entries allocated.
* @txd: DMA engine struct. Used for among other things for communication
* during a transfer.
* @node: List entry.
* @is_in_client_list: true if the client owns this descriptor.
* @cyclic: true if this is a cyclic job
*
* This descriptor is used for both logical and physical transfers.
*/
struct d40_desc {
/* LLI physical */
struct d40_phy_lli_bidir lli_phy;
/* LLI logical */
struct d40_log_lli_bidir lli_log;
struct d40_lli_pool lli_pool;
int lli_len;
int lli_current;
int lcla_alloc;
struct dma_async_tx_descriptor txd;
struct list_head node;
bool is_in_client_list;
bool cyclic;
};
/**
* struct d40_lcla_pool - LCLA pool settings and data.
*
* @base: The virtual address of LCLA. 18 bit aligned.
* @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
* This pointer is only there for clean-up on error.
* @pages: The number of pages needed for all physical channels.
* Only used later for clean-up on error
* @lock: Lock to protect the content in this struct.
* @alloc_map: big map over which LCLA entry is own by which job.
*/
struct d40_lcla_pool {
void *base;
dma_addr_t dma_addr;
void *base_unaligned;
int pages;
spinlock_t lock;
struct d40_desc **alloc_map;
};
/**
* struct d40_phy_res - struct for handling eventlines mapped to physical
* channels.
*
* @lock: A lock protection this entity.
* @reserved: True if used by secure world or otherwise.
* @num: The physical channel number of this entity.
* @allocated_src: Bit mapped to show which src event line's are mapped to
* this physical channel. Can also be free or physically allocated.
* @allocated_dst: Same as for src but is dst.
* allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
* event line number.
* @use_soft_lli: To mark if the linked lists of channel are managed by SW.
*/
struct d40_phy_res {
spinlock_t lock;
bool reserved;
int num;
u32 allocated_src;
u32 allocated_dst;
bool use_soft_lli;
};
struct d40_base;
/**
* struct d40_chan - Struct that describes a channel.
*
* @lock: A spinlock to protect this struct.
* @log_num: The logical number, if any of this channel.
* @pending_tx: The number of pending transfers. Used between interrupt handler
* and tasklet.
* @busy: Set to true when transfer is ongoing on this channel.
* @phy_chan: Pointer to physical channel which this instance runs on. If this
* point is NULL, then the channel is not allocated.
* @chan: DMA engine handle.
* @tasklet: Tasklet that gets scheduled from interrupt context to complete a
* transfer and call client callback.
* @client: Cliented owned descriptor list.
* @pending_queue: Submitted jobs, to be issued by issue_pending()
* @active: Active descriptor.
* @done: Completed jobs
* @queue: Queued jobs.
* @prepare_queue: Prepared jobs.
* @dma_cfg: The client configuration of this dma channel.
* @configured: whether the dma_cfg configuration is valid
* @base: Pointer to the device instance struct.
* @src_def_cfg: Default cfg register setting for src.
* @dst_def_cfg: Default cfg register setting for dst.
* @log_def: Default logical channel settings.
* @lcpa: Pointer to dst and src lcpa settings.
* @runtime_addr: runtime configured address.
* @runtime_direction: runtime configured direction.
*
* This struct can either "be" a logical or a physical channel.
*/
struct d40_chan {
spinlock_t lock;
int log_num;
int pending_tx;
bool busy;
struct d40_phy_res *phy_chan;
struct dma_chan chan;
struct tasklet_struct tasklet;
struct list_head client;
struct list_head pending_queue;
struct list_head active;
struct list_head done;
struct list_head queue;
struct list_head prepare_queue;
struct stedma40_chan_cfg dma_cfg;
bool configured;
struct d40_base *base;
/* Default register configurations */
u32 src_def_cfg;
u32 dst_def_cfg;
struct d40_def_lcsp log_def;
struct d40_log_lli_full *lcpa;
/* Runtime reconfiguration */
dma_addr_t runtime_addr;
enum dma_transfer_direction runtime_direction;
};
/**
* struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
* controller
*
* @backup: the pointer to the registers address array for backup
* @backup_size: the size of the registers address array for backup
* @realtime_en: the realtime enable register
* @realtime_clear: the realtime clear register
* @high_prio_en: the high priority enable register
* @high_prio_clear: the high priority clear register
* @interrupt_en: the interrupt enable register
* @interrupt_clear: the interrupt clear register
* @il: the pointer to struct d40_interrupt_lookup
* @il_size: the size of d40_interrupt_lookup array
* @init_reg: the pointer to the struct d40_reg_val
* @init_reg_size: the size of d40_reg_val array
*/
struct d40_gen_dmac {
u32 *backup;
u32 backup_size;
u32 realtime_en;
u32 realtime_clear;
u32 high_prio_en;
u32 high_prio_clear;
u32 interrupt_en;
u32 interrupt_clear;
struct d40_interrupt_lookup *il;
u32 il_size;
struct d40_reg_val *init_reg;
u32 init_reg_size;
};
/**
* struct d40_base - The big global struct, one for each probe'd instance.
*
* @interrupt_lock: Lock used to make sure one interrupt is handle a time.
* @execmd_lock: Lock for execute command usage since several channels share
* the same physical register.
* @dev: The device structure.
* @virtbase: The virtual base address of the DMA's register.
* @rev: silicon revision detected.
* @clk: Pointer to the DMA clock structure.
* @phy_start: Physical memory start of the DMA registers.
* @phy_size: Size of the DMA register map.
* @irq: The IRQ number.
* @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
* transfers).
* @num_phy_chans: The number of physical channels. Read from HW. This
* is the number of available channels for this driver, not counting "Secure
* mode" allocated physical channels.
* @num_log_chans: The number of logical channels. Calculated from
* num_phy_chans.
* @dma_both: dma_device channels that can do both memcpy and slave transfers.
* @dma_slave: dma_device channels that can do only do slave transfers.
* @dma_memcpy: dma_device channels that can do only do memcpy transfers.
* @phy_chans: Room for all possible physical channels in system.
* @log_chans: Room for all possible logical channels in system.
* @lookup_log_chans: Used to map interrupt number to logical channel. Points
* to log_chans entries.
* @lookup_phy_chans: Used to map interrupt number to physical channel. Points
* to phy_chans entries.
* @plat_data: Pointer to provided platform_data which is the driver
* configuration.
* @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
* @phy_res: Vector containing all physical channels.
* @lcla_pool: lcla pool settings and data.
* @lcpa_base: The virtual mapped address of LCPA.
* @phy_lcpa: The physical address of the LCPA.
* @lcpa_size: The size of the LCPA area.
* @desc_slab: cache for descriptors.
* @reg_val_backup: Here the values of some hardware registers are stored
* before the DMA is powered off. They are restored when the power is back on.
* @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
* later
* @reg_val_backup_chan: Backup data for standard channel parameter registers.
* @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
* @gen_dmac: the struct for generic registers values to represent u8500/8540
* DMA controller
*/
struct d40_base {
spinlock_t interrupt_lock;
spinlock_t execmd_lock;
struct device *dev;
void __iomem *virtbase;
u8 rev:4;
struct clk *clk;
phys_addr_t phy_start;
resource_size_t phy_size;
int irq;
int num_memcpy_chans;
int num_phy_chans;
int num_log_chans;
struct device_dma_parameters dma_parms;
struct dma_device dma_both;
struct dma_device dma_slave;
struct dma_device dma_memcpy;
struct d40_chan *phy_chans;
struct d40_chan *log_chans;
struct d40_chan **lookup_log_chans;
struct d40_chan **lookup_phy_chans;
struct stedma40_platform_data *plat_data;
struct regulator *lcpa_regulator;
/* Physical half channels */
struct d40_phy_res *phy_res;
struct d40_lcla_pool lcla_pool;
void *lcpa_base;
dma_addr_t phy_lcpa;
resource_size_t lcpa_size;
struct kmem_cache *desc_slab;
u32 reg_val_backup[BACKUP_REGS_SZ];
u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
u32 *reg_val_backup_chan;
u16 gcc_pwr_off_mask;
struct d40_gen_dmac gen_dmac;
};
static struct device *chan2dev(struct d40_chan *d40c)
{
return &d40c->chan.dev->device;
}
static bool chan_is_physical(struct d40_chan *chan)
{
return chan->log_num == D40_PHY_CHAN;
}
static bool chan_is_logical(struct d40_chan *chan)
{
return !chan_is_physical(chan);
}
static void __iomem *chan_base(struct d40_chan *chan)
{
return chan->base->virtbase + D40_DREG_PCBASE +
chan->phy_chan->num * D40_DREG_PCDELTA;
}
#define d40_err(dev, format, arg...) \
dev_err(dev, "[%s] " format, __func__, ## arg)
#define chan_err(d40c, format, arg...) \
d40_err(chan2dev(d40c), format, ## arg)
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
int lli_len)
{
bool is_log = chan_is_logical(d40c);
u32 align;
void *base;
if (is_log)
align = sizeof(struct d40_log_lli);
else
align = sizeof(struct d40_phy_lli);
if (lli_len == 1) {
base = d40d->lli_pool.pre_alloc_lli;
d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
d40d->lli_pool.base = NULL;
} else {
d40d->lli_pool.size = lli_len * 2 * align;
base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
d40d->lli_pool.base = base;
if (d40d->lli_pool.base == NULL)
return -ENOMEM;
}
if (is_log) {
d40d->lli_log.src = PTR_ALIGN(base, align);
d40d->lli_log.dst = d40d->lli_log.src + lli_len;
d40d->lli_pool.dma_addr = 0;
} else {
d40d->lli_phy.src = PTR_ALIGN(base, align);
d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
d40d->lli_phy.src,
d40d->lli_pool.size,
DMA_TO_DEVICE);
if (dma_mapping_error(d40c->base->dev,
d40d->lli_pool.dma_addr)) {
kfree(d40d->lli_pool.base);
d40d->lli_pool.base = NULL;
d40d->lli_pool.dma_addr = 0;
return -ENOMEM;
}
}
return 0;
}
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
if (d40d->lli_pool.dma_addr)
dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
d40d->lli_pool.size, DMA_TO_DEVICE);
kfree(d40d->lli_pool.base);
d40d->lli_pool.base = NULL;
d40d->lli_pool.size = 0;
d40d->lli_log.src = NULL;
d40d->lli_log.dst = NULL;
d40d->lli_phy.src = NULL;
d40d->lli_phy.dst = NULL;
}
static int d40_lcla_alloc_one(struct d40_chan *d40c,
struct d40_desc *d40d)
{
unsigned long flags;
int i;
int ret = -EINVAL;
spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
/*
* Allocate both src and dst at the same time, therefore the half
* start on 1 since 0 can't be used since zero is used as end marker.
*/
for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
if (!d40c->base->lcla_pool.alloc_map[idx]) {
d40c->base->lcla_pool.alloc_map[idx] = d40d;
d40d->lcla_alloc++;
ret = i;
break;
}
}
spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
return ret;
}
static int d40_lcla_free_all(struct d40_chan *d40c,
struct d40_desc *d40d)
{
unsigned long flags;
int i;
int ret = -EINVAL;
if (chan_is_physical(d40c))
return 0;
spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
d40c->base->lcla_pool.alloc_map[idx] = NULL;
d40d->lcla_alloc--;
if (d40d->lcla_alloc == 0) {
ret = 0;
break;
}
}
}
spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
return ret;
}
static void d40_desc_remove(struct d40_desc *d40d)
{
list_del(&d40d->node);
}
static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
struct d40_desc *desc = NULL;
if (!list_empty(&d40c->client)) {
struct d40_desc *d;
struct d40_desc *_d;
list_for_each_entry_safe(d, _d, &d40c->client, node) {
if (async_tx_test_ack(&d->txd)) {
d40_desc_remove(d);
desc = d;
memset(desc, 0, sizeof(*desc));
break;
}
}
}
if (!desc)
desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
if (desc)
INIT_LIST_HEAD(&desc->node);
return desc;
}
static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
d40_pool_lli_free(d40c, d40d);
d40_lcla_free_all(d40c, d40d);
kmem_cache_free(d40c->base->desc_slab, d40d);
}
static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
list_add_tail(&desc->node, &d40c->active);
}
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
struct d40_phy_lli *lli_src = desc->lli_phy.src;
void __iomem *base = chan_base(chan);
writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}
static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
{
list_add_tail(&desc->node, &d40c->done);
}
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
{
struct d40_lcla_pool *pool = &chan->base->lcla_pool;
struct d40_log_lli_bidir *lli = &desc->lli_log;
int lli_current = desc->lli_current;
int lli_len = desc->lli_len;
bool cyclic = desc->cyclic;
int curr_lcla = -EINVAL;
int first_lcla = 0;
bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
bool linkback;
/*
* We may have partially running cyclic transfers, in case we did't get
* enough LCLA entries.
*/
linkback = cyclic && lli_current == 0;
/*
* For linkback, we need one LCLA even with only one link, because we
* can't link back to the one in LCPA space
*/
if (linkback || (lli_len - lli_current > 1)) {
/*
* If the channel is expected to use only soft_lli don't
* allocate a lcla. This is to avoid a HW issue that exists
* in some controller during a peripheral to memory transfer
* that uses linked lists.
*/
if (!(chan->phy_chan->use_soft_lli &&
chan->dma_cfg.dir == DMA_DEV_TO_MEM))
curr_lcla = d40_lcla_alloc_one(chan, desc);
first_lcla = curr_lcla;
}
/*
* For linkback, we normally load the LCPA in the loop since we need to
* link it to the second LCLA and not the first. However, if we
* couldn't even get a first LCLA, then we have to run in LCPA and
* reload manually.
*/
if (!linkback || curr_lcla == -EINVAL) {
unsigned int flags = 0;
if (curr_lcla == -EINVAL)
flags |= LLI_TERM_INT;
d40_log_lli_lcpa_write(chan->lcpa,
&lli->dst[lli_current],
&lli->src[lli_current],
curr_lcla,
flags);
lli_current++;
}
if (curr_lcla < 0)
goto out;
for (; lli_current < lli_len; lli_current++) {
unsigned int lcla_offset = chan->phy_chan->num * 1024 +
8 * curr_lcla * 2;
struct d40_log_lli *lcla = pool->base + lcla_offset;
unsigned int flags = 0;
int next_lcla;
if (lli_current + 1 < lli_len)
next_lcla = d40_lcla_alloc_one(chan, desc);
else
next_lcla = linkback ? first_lcla : -EINVAL;
if (cyclic || next_lcla == -EINVAL)
flags |= LLI_TERM_INT;
if (linkback && curr_lcla == first_lcla) {
/* First link goes in both LCPA and LCLA */
d40_log_lli_lcpa_write(chan->lcpa,
&lli->dst[lli_current],
&lli->src[lli_current],
next_lcla, flags);
}
/*
* One unused LCLA in the cyclic case if the very first
* next_lcla fails...
*/
d40_log_lli_lcla_write(lcla,
&lli->dst[lli_current],
&lli->src[lli_current],
next_lcla, flags);
/*
* Cache maintenance is not needed if lcla is
* mapped in esram
*/
if (!use_esram_lcla) {
dma_sync_single_range_for_device(chan->base->dev,
pool->dma_addr, lcla_offset,
2 * sizeof(struct d40_log_lli),
DMA_TO_DEVICE);
}
curr_lcla = next_lcla;
if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
lli_current++;
break;
}
}
out:
desc->lli_current = lli_current;
}
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
if (chan_is_physical(d40c)) {
d40_phy_lli_load(d40c, d40d);
d40d->lli_current = d40d->lli_len;
} else
d40_log_lli_to_lcxa(d40c, d40d);
}
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
struct d40_desc *d;
if (list_empty(&d40c->active))
return NULL;
d = list_first_entry(&d40c->active,
struct d40_desc,
node);
return d;
}
/* remove desc from current queue and add it to the pending_queue */
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
d40_desc_remove(desc);
desc->is_in_client_list = false;
list_add_tail(&desc->node, &d40c->pending_queue);
}
static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
{
struct d40_desc *d;
if (list_empty(&d40c->pending_queue))
return NULL;
d = list_first_entry(&d40c->pending_queue,
struct d40_desc,
node);
return d;
}
static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
struct d40_desc *d;
if (list_empty(&d40c->queue))
return NULL;
d = list_first_entry(&d40c->queue,
struct d40_desc,
node);
return d;
}
static struct d40_desc *d40_first_done(struct d40_chan *d40c)
{
if (list_empty(&d40c->done))
return NULL;
return list_first_entry(&d40c->done, struct d40_desc, node);
}
static int d40_psize_2_burst_size(bool is_log, int psize)
{
if (is_log) {
if (psize == STEDMA40_PSIZE_LOG_1)
return 1;
} else {
if (psize == STEDMA40_PSIZE_PHY_1)
return 1;
}
return 2 << psize;
}
/*
* The dma only supports transmitting packages up to
* STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
*
* Calculate the total number of dma elements required to send the entire sg list.
*/
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
int dmalen;
u32 max_w = max(data_width1, data_width2);
u32 min_w = min(data_width1, data_width2);
u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
if (seg_max > STEDMA40_MAX_SEG_SIZE)
seg_max -= max_w;
if (!IS_ALIGNED(size, max_w))
return -EINVAL;
if (size <= seg_max)
dmalen = 1;
else {
dmalen = size / seg_max;
if (dmalen * seg_max < size)
dmalen++;
}
return dmalen;
}
static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
u32 data_width1, u32 data_width2)
{
struct scatterlist *sg;
int i;
int len = 0;
int ret;
for_each_sg(sgl, sg, sg_len, i) {
ret = d40_size_2_dmalen(sg_dma_len(sg),
data_width1, data_width2);
if (ret < 0)
return ret;
len += ret;
}
return len;
}
static int __d40_execute_command_phy(struct d40_chan *d40c,
enum d40_command command)
{
u32 status;
int i;
void __iomem *active_reg;
int ret = 0;
unsigned long flags;
u32 wmask;
if (command == D40_DMA_STOP) {
ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
if (ret)
return ret;
}
spin_lock_irqsave(&d40c->base->execmd_lock, flags);
if (d40c->phy_chan->num % 2 == 0)
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
else
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
if (command == D40_DMA_SUSPEND_REQ) {
status = (readl(active_reg) &
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
D40_CHAN_POS(d40c->phy_chan->num);
if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
goto done;
}
wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
active_reg);
if (command == D40_DMA_SUSPEND_REQ) {
for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
status = (readl(active_reg) &
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
D40_CHAN_POS(d40c->phy_chan->num);
cpu_relax();
/*
* Reduce the number of bus accesses while
* waiting for the DMA to suspend.
*/
udelay(3);
if (status == D40_DMA_STOP ||
status == D40_DMA_SUSPENDED)
break;
}
if (i == D40_SUSPEND_MAX_IT) {
chan_err(d40c,
"unable to suspend the chl %d (log: %d) status %x\n",
d40c->phy_chan->num, d40c->log_num,
status);
dump_stack();
ret = -EBUSY;
}
}
done:
spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
return ret;
}
static void d40_term_all(struct d40_chan *d40c)
{
struct d40_desc *d40d;
struct d40_desc *_d;
/* Release completed descriptors */
while ((d40d = d40_first_done(d40c))) {
d40_desc_remove(d40d);
d40_desc_free(d40c, d40d);
}
/* Release active descriptors */
while ((d40d = d40_first_active_get(d40c))) {
d40_desc_remove(d40d);
d40_desc_free(d40c, d40d);
}
/* Release queued descriptors waiting for transfer */
while ((d40d = d40_first_queued(d40c))) {
d40_desc_remove(d40d);
d40_desc_free(d40c, d40d);
}
/* Release pending descriptors */
while ((d40d = d40_first_pending(d40c))) {
d40_desc_remove(d40d);
d40_desc_free(d40c, d40d);
}
/* Release client owned descriptors */
if (!list_empty(&d40c->client))
list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
d40_desc_remove(d40d);
d40_desc_free(d40c, d40d);
}
/* Release descriptors in prepare queue */
if (!list_empty(&d40c->prepare_queue))
list_for_each_entry_safe(d40d, _d,
&d40c->prepare_queue, node) {
d40_desc_remove(d40d);
d40_desc_free(d40c, d40d);
}
d40c->pending_tx = 0;
}
static void __d40_config_set_event(struct d40_chan *d40c,
enum d40_events event_type, u32 event,
int reg)
{
void __iomem *addr = chan_base(d40c) + reg;
int tries;
u32 status;
switch (event_type) {
case D40_DEACTIVATE_EVENTLINE:
writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
| ~D40_EVENTLINE_MASK(event), addr);
break;
case D40_SUSPEND_REQ_EVENTLINE:
status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
D40_EVENTLINE_POS(event);
if (status == D40_DEACTIVATE_EVENTLINE ||
status == D40_SUSPEND_REQ_EVENTLINE)
break;
writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
| ~D40_EVENTLINE_MASK(event), addr);
for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
D40_EVENTLINE_POS(event);
cpu_relax();
/*
* Reduce the number of bus accesses while
* waiting for the DMA to suspend.
*/
udelay(3);
if (status == D40_DEACTIVATE_EVENTLINE)
break;
}
if (tries == D40_SUSPEND_MAX_IT) {
chan_err(d40c,
"unable to stop the event_line chl %d (log: %d)"
"status %x\n", d40c->phy_chan->num,
d40c->log_num, status);
}
break;
case D40_ACTIVATE_EVENTLINE:
/*
* The hardware sometimes doesn't register the enable when src and dst
* event lines are active on the same logical channel. Retry to ensure
* it does. Usually only one retry is sufficient.
*/
tries = 100;
while (--tries) {
writel((D40_ACTIVATE_EVENTLINE <<
D40_EVENTLINE_POS(event)) |
~D40_EVENTLINE_MASK(event), addr);
if (readl(addr) & D40_EVENTLINE_MASK(event))
break;
}
if (tries != 99)
dev_dbg(chan2dev(d40c),
"[%s] workaround enable S%cLNK (%d tries)\n",
__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
100 - tries);
WARN_ON(!tries);
break;
case D40_ROUND_EVENTLINE:
BUG();
break;
}
}
static void d40_config_set_event(struct d40_chan *d40c,
enum d40_events event_type)
{
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
/* Enable event line connected to device (or memcpy) */
if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
(d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
__d40_config_set_event(d40c, event_type, event,
D40_CHAN_REG_SSLNK);
if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
__d40_config_set_event(d40c, event_type, event,
D40_CHAN_REG_SDLNK);
}
static u32 d40_chan_has_events(struct d40_chan *d40c)
{
void __iomem *chanbase = chan_base(d40c);
u32 val;
val = readl(chanbase + D40_CHAN_REG_SSLNK);
val |= readl(chanbase + D40_CHAN_REG_SDLNK);
return val;
}
static int
__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
{
unsigned long flags;
int ret = 0;
u32 active_status;
void __iomem *active_reg;
if (d40c->phy_chan->num % 2 == 0)
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
else
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
spin_lock_irqsave(&d40c->phy_chan->lock, flags);
switch (command) {
case D40_DMA_STOP:
case D40_DMA_SUSPEND_REQ:
active_status = (readl(active_reg) &
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
D40_CHAN_POS(d40c->phy_chan->num);
if (active_status == D40_DMA_RUN)
d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
else
d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
ret = __d40_execute_command_phy(d40c, command);
break;
case D40_DMA_RUN:
d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
ret = __d40_execute_command_phy(d40c, command);
break;
case D40_DMA_SUSPENDED:
BUG();
break;
}
spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
return ret;
}
static int d40_channel_execute_command(struct d40_chan *d40c,
enum d40_command command)
{
if (chan_is_logical(d40c))
return __d40_execute_command_log(d40c, command);
else
return __d40_execute_command_phy(d40c, command);
}
static u32 d40_get_prmo(struct d40_chan *d40c)
{
static const unsigned int phy_map[] = {
[STEDMA40_PCHAN_BASIC_MODE]
= D40_DREG_PRMO_PCHAN_BASIC,
[STEDMA40_PCHAN_MODULO_MODE]
= D40_DREG_PRMO_PCHAN_MODULO,
[STEDMA40_PCHAN_DOUBLE_DST_MODE]
= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
};
static const unsigned int log_map[] = {
[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
};
if (chan_is_physical(d40c))
return phy_map[d40c->dma_cfg.mode_opt];
else
return log_map[d40c->dma_cfg.mode_opt];
}
static void d40_config_write(struct d40_chan *d40c)
{
u32 addr_base;
u32 var;
/* Odd addresses are even addresses + 4 */
addr_base = (d40c->phy_chan->num % 2) * 4;
/* Setup channel mode to logical or physical */
var = ((u32)(chan_is_logical(d40c)) + 1) <<
D40_CHAN_POS(d40c->phy_chan->num);
writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
/* Setup operational mode option register */
var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
if (chan_is_logical(d40c)) {
int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
& D40_SREG_ELEM_LOG_LIDX_MASK;
void __iomem *chanbase = chan_base(d40c);
/* Set default config for CFG reg */
writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
/* Set LIDX for lcla */
writel(lidx, chanbase + D40_CHAN_REG_SSELT);
writel(lidx, chanbase + D40_CHAN_REG_SDELT);
/* Clear LNK which will be used by d40_chan_has_events() */
writel(0, chanbase + D40_CHAN_REG_SSLNK);
writel(0, chanbase + D40_CHAN_REG_SDLNK);
}
}
static u32 d40_residue(struct d40_chan *d40c)
{
u32 num_elt;
if (chan_is_logical(d40c))
num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
>> D40_MEM_LCSP2_ECNT_POS;
else {
u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
>> D40_SREG_ELEM_PHY_ECNT_POS;
}
return num_elt * d40c->dma_cfg.dst_info.data_width;
}
static bool d40_tx_is_linked(struct d40_chan *d40c)
{
bool is_link;
if (chan_is_logical(d40c))
is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
else
is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
& D40_SREG_LNK_PHYS_LNK_MASK;
return is_link;
}
static int d40_pause(struct d40_chan *d40c)
{
int res = 0;
unsigned long flags;
if (!d40c->busy)
return 0;
spin_lock_irqsave(&d40c->lock, flags);
pm_runtime_get_sync(d40c->base->dev);
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
pm_runtime_mark_last_busy(d40c->base->dev);
pm_runtime_put_autosuspend(d40c->base->dev);
spin_unlock_irqrestore(&d40c->lock, flags);
return res;
}
static int d40_resume(struct d40_chan *d40c)
{
int res = 0;
unsigned long flags;
if (!d40c->busy)
return 0;
spin_lock_irqsave(&d40c->lock, flags);
pm_runtime_get_sync(d40c->base->dev);
/* If bytes left to transfer or linked tx resume job */
if (d40_residue(d40c) || d40_tx_is_linked(d40c))
res = d40_channel_execute_command(d40c, D40_DMA_RUN);
pm_runtime_mark_last_busy(d40c->base->dev);
pm_runtime_put_autosuspend(d40c->base->dev);
spin_unlock_irqrestore(&d40c->lock, flags);
return res;
}
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct d40_chan *d40c = container_of(tx->chan,
struct d40_chan,
chan);
struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
unsigned long flags;
dma_cookie_t cookie;
spin_lock_irqsave(&d40c->lock, flags);
cookie = dma_cookie_assign(tx);
d40_desc_queue(d40c, d40d);
spin_unlock_irqrestore(&d40c->lock, flags);
return cookie;
}
static int d40_start(struct d40_chan *d40c)
{
return d40_channel_execute_command(d40c, D40_DMA_RUN);
}
static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
struct d40_desc *d40d;
int err;
/* Start queued jobs, if any */
d40d = d40_first_queued(d40c);
if (d40d != NULL) {
if (!d40c->busy) {
d40c->busy = true;
pm_runtime_get_sync(d40c->base->dev);
}
/* Remove from queue */
d40_desc_remove(d40d);
/* Add to active queue */
d40_desc_submit(d40c, d40d);
/* Initiate DMA job */
d40_desc_load(d40c, d40d);
/* Start dma job */
err = d40_start(d40c);
if (err)
return NULL;
}
return d40d;
}
/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
struct d40_desc *d40d;
/* Get first active entry from list */
d40d = d40_first_active_get(d40c);
if (d40d == NULL)
return;
if (d40d->cyclic) {
/*
* If this was a paritially loaded list, we need to reloaded
* it, and only when the list is completed. We need to check
* for done because the interrupt will hit for every link, and
* not just the last one.
*/
if (d40d->lli_current < d40d->lli_len
&& !d40_tx_is_linked(d40c)
&& !d40_residue(d40c)) {
d40_lcla_free_all(d40c, d40d);
d40_desc_load(d40c, d40d);
(void) d40_start(d40c);
if (d40d->lli_current == d40d->lli_len)
d40d->lli_current = 0;
}
} else {
d40_lcla_free_all(d40c, d40d);
if (d40d->lli_current < d40d->lli_len) {
d40_desc_load(d40c, d40d);
/* Start dma job */
(void) d40_start(d40c);
return;
}
if (d40_queue_start(d40c) == NULL) {
d40c->busy = false;
pm_runtime_mark_last_busy(d40c->base->dev);
pm_runtime_put_autosuspend(d40c->base->dev);
}
d40_desc_remove(d40d);
d40_desc_done(d40c, d40d);
}
d40c->pending_tx++;
tasklet_schedule(&d40c->tasklet);
}
static void dma_tasklet(unsigned long data)
{
struct d40_chan *d40c = (struct d40_chan *) data;
struct d40_desc *d40d;
unsigned long flags;
bool callback_active;
dma_async_tx_callback callback;
void *callback_param;
spin_lock_irqsave(&d40c->lock, flags);
/* Get first entry from the done list */
d40d = d40_first_done(d40c);
if (d40d == NULL) {
/* Check if we have reached here for cyclic job */
d40d = d40_first_active_get(d40c);
if (d40d == NULL || !d40d->cyclic)
goto err;
}
if (!d40d->cyclic)
dma_cookie_complete(&d40d->txd);
/*
* If terminating a channel pending_tx is set to zero.
* This prevents any finished active jobs to return to the client.
*/
if (d40c->pending_tx == 0) {
spin_unlock_irqrestore(&d40c->lock, flags);
return;
}
/* Callback to client */
callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
callback = d40d->txd.callback;
callback_param = d40d->txd.callback_param;
if (!d40d->cyclic) {
if (async_tx_test_ack(&d40d->txd)) {
d40_desc_remove(d40d);
d40_desc_free(d40c, d40d);
} else if (!d40d->is_in_client_list) {
d40_desc_remove(d40d);
d40_lcla_free_all(d40c, d40d);
list_add_tail(&d40d->node, &d40c->client);
d40d->is_in_client_list = true;
}
}
d40c->pending_tx--;
if (d40c->pending_tx)
tasklet_schedule(&d40c->tasklet);
spin_unlock_irqrestore(&d40c->lock, flags);
if (callback_active && callback)
callback(callback_param);
return;
err:
/* Rescue manouver if receiving double interrupts */
if (d40c->pending_tx > 0)
d40c->pending_tx--;
spin_unlock_irqrestore(&d40c->lock, flags);
}
static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
int i;
u32 idx;
u32 row;
long chan = -1;
struct d40_chan *d40c;
unsigned long flags;
struct d40_base *base = data;
u32 regs[base->gen_dmac.il_size];
struct d40_interrupt_lookup *il = base->gen_dmac.il;
u32 il_size = base->gen_dmac.il_size;
spin_lock_irqsave(&base->interrupt_lock, flags);
/* Read interrupt status of both logical and physical channels */
for (i = 0; i < il_size; i++)
regs[i] = readl(base->virtbase + il[i].src);
for (;;) {
chan = find_next_bit((unsigned long *)regs,
BITS_PER_LONG * il_size, chan + 1);
/* No more set bits found? */
if (chan == BITS_PER_LONG * il_size)
break;
row = chan / BITS_PER_LONG;
idx = chan & (BITS_PER_LONG - 1);
if (il[row].offset == D40_PHY_CHAN)
d40c = base->lookup_phy_chans[idx];
else
d40c = base->lookup_log_chans[il[row].offset + idx];
if (!d40c) {
/*
* No error because this can happen if something else
* in the system is using the channel.
*/
continue;
}
/* ACK interrupt */
writel(BIT(idx), base->virtbase + il[row].clr);
spin_lock(&d40c->lock);
if (!il[row].is_error)
dma_tc_handle(d40c);
else
d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
chan, il[row].offset, idx);
spin_unlock(&d40c->lock);
}
spin_unlock_irqrestore(&base->interrupt_lock, flags);
return IRQ_HANDLED;
}
static int d40_validate_conf(struct d40_chan *d40c,
struct stedma40_chan_cfg *conf)
{
int res = 0;
bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
if (!conf->dir) {
chan_err(d40c, "Invalid direction.\n");
res = -EINVAL;
}
if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
(!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
(conf->dev_type < 0)) {
chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
res = -EINVAL;
}
if (conf->dir == DMA_DEV_TO_DEV) {
/*
* DMAC HW supports it. Will be added to this driver,
* in case any dma client requires it.
*/
chan_err(d40c, "periph to periph not supported\n");
res = -EINVAL;
}
if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
conf->src_info.data_width !=
d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
conf->dst_info.data_width) {
/*
* The DMAC hardware only supports
* src (burst x width) == dst (burst x width)
*/
chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
res = -EINVAL;
}
return res;
}
static bool d40_alloc_mask_set(struct d40_phy_res *phy,
bool is_src, int log_event_line, bool is_log,
bool *first_user)
{
unsigned long flags;
spin_lock_irqsave(&phy->lock, flags);
*first_user = ((phy->allocated_src | phy->allocated_dst)
== D40_ALLOC_FREE);
if (!is_log) {
/* Physical interrupts are masked per physical full channel */
if (phy->allocated_src == D40_ALLOC_FREE &&
phy->allocated_dst == D40_ALLOC_FREE) {
phy->allocated_dst = D40_ALLOC_PHY;
phy->allocated_src = D40_ALLOC_PHY;
goto found;
} else
goto not_found;
}
/* Logical channel */
if (is_src) {
if (phy->allocated_src == D40_ALLOC_PHY)
goto not_found;
if (phy->allocated_src == D40_ALLOC_FREE)
phy->allocated_src = D40_ALLOC_LOG_FREE;
if (!(phy->allocated_src & BIT(log_event_line))) {
phy->allocated_src |= BIT(log_event_line);
goto found;
} else
goto not_found;
} else {
if (phy->allocated_dst == D40_ALLOC_PHY)
goto not_found;
if (phy->allocated_dst == D40_ALLOC_FREE)
phy->allocated_dst = D40_ALLOC_LOG_FREE;
if (!(phy->allocated_dst & BIT(log_event_line))) {
phy->allocated_dst |= BIT(log_event_line);
goto found;
} else
goto not_found;
}
not_found:
spin_unlock_irqrestore(&phy->lock, flags);
return false;
found:
spin_unlock_irqrestore(&phy->lock, flags);
return true;
}
static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
int log_event_line)
{
unsigned long flags;
bool is_free = false;
spin_lock_irqsave(&phy->lock, flags);
if (!log_event_line) {
phy->allocated_dst = D40_ALLOC_FREE;
phy->allocated_src = D40_ALLOC_FREE;
is_free = true;
goto out;
}
/* Logical channel */
if (is_src) {
phy->allocated_src &= ~BIT(log_event_line);
if (phy->allocated_src == D40_ALLOC_LOG_FREE)
phy->allocated_src = D40_ALLOC_FREE;
} else {
phy->allocated_dst &= ~BIT(log_event_line);
if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
phy->allocated_dst = D40_ALLOC_FREE;
}
is_free = ((phy->allocated_src | phy->allocated_dst) ==
D40_ALLOC_FREE);
out:
spin_unlock_irqrestore(&phy->lock, flags);
return is_free;
}
static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
{
int dev_type = d40c->dma_cfg.dev_type;
int event_group;
int event_line;
struct d40_phy_res *phys;
int i;
int j;
int log_num;
int num_phy_chans;
bool is_src;
bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
phys = d40c->base->phy_res;
num_phy_chans = d40c->base->num_phy_chans;
if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
log_num = 2 * dev_type;
is_src = true;
} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
/* dst event lines are used for logical memcpy */
log_num = 2 * dev_type + 1;
is_src = false;
} else
return -EINVAL;
event_group = D40_TYPE_TO_GROUP(dev_type);
event_line = D40_TYPE_TO_EVENT(dev_type);
if (!is_log) {
if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
/* Find physical half channel */
if (d40c->dma_cfg.use_fixed_channel) {
i = d40c->dma_cfg.phy_channel;
if (d40_alloc_mask_set(&phys[i], is_src,
0, is_log,
first_phy_user))
goto found_phy;
} else {
for (i = 0; i < num_phy_chans; i++) {
if (d40_alloc_mask_set(&phys[i], is_src,
0, is_log,
first_phy_user))
goto found_phy;
}
}
} else
for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
int phy_num = j + event_group * 2;
for (i = phy_num; i < phy_num + 2; i++) {
if (d40_alloc_mask_set(&phys[i],
is_src,
0,
is_log,
first_phy_user))
goto found_phy;
}
}
return -EINVAL;
found_phy:
d40c->phy_chan = &phys[i];
d40c->log_num = D40_PHY_CHAN;
goto out;
}
if (dev_type == -1)
return -EINVAL;
/* Find logical channel */
for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
int phy_num = j + event_group * 2;
if (d40c->dma_cfg.use_fixed_channel) {
i = d40c->dma_cfg.phy_channel;
if ((i != phy_num) && (i != phy_num + 1)) {
dev_err(chan2dev(d40c),
"invalid fixed phy channel %d\n", i);
return -EINVAL;
}
if (d40_alloc_mask_set(&phys[i], is_src, event_line,
is_log, first_phy_user))
goto found_log;
dev_err(chan2dev(d40c),
"could not allocate fixed phy channel %d\n", i);
return -EINVAL;
}
/*
* Spread logical channels across all available physical rather
* than pack every logical channel at the first available phy
* channels.
*/
if (is_src) {
for (i = phy_num; i < phy_num + 2; i++) {
if (d40_alloc_mask_set(&phys[i], is_src,
event_line, is_log,
first_phy_user))
goto found_log;
}
} else {
for (i = phy_num + 1; i >= phy_num; i--) {
if (d40_alloc_mask_set(&phys[i], is_src,
event_line, is_log,
first_phy_user))
goto found_log;
}
}
}
return -EINVAL;
found_log:
d40c->phy_chan = &phys[i];
d40c->log_num = log_num;
out:
if (is_log)
d40c->base->lookup_log_chans[d40c->log_num] = d40c;
else
d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
return 0;
}
static int d40_config_memcpy(struct d40_chan *d40c)
{
dma_cap_mask_t cap = d40c->chan.device->cap_mask;
if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
d40c->dma_cfg = dma40_memcpy_conf_log;
d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
d40_log_cfg(&d40c->dma_cfg,
&d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
} else if (dma_has_cap(DMA_MEMCPY, cap) &&
dma_has_cap(DMA_SLAVE, cap)) {
d40c->dma_cfg = dma40_memcpy_conf_phy;
/* Generate interrrupt at end of transfer or relink. */
d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
/* Generate interrupt on error. */
d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
} else {
chan_err(d40c, "No memcpy\n");
return -EINVAL;
}
return 0;
}
static int d40_free_dma(struct d40_chan *d40c)
{
int res = 0;
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
struct d40_phy_res *phy = d40c->phy_chan;
bool is_src;
/* Terminate all queued and active transfers */
d40_term_all(d40c);
if (phy == NULL) {
chan_err(d40c, "phy == null\n");
return -EINVAL;
}
if (phy->allocated_src == D40_ALLOC_FREE &&
phy->allocated_dst == D40_ALLOC_FREE) {
chan_err(d40c, "channel already free\n");
return -EINVAL;
}
if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
is_src = false;
else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
is_src = true;
else {
chan_err(d40c, "Unknown direction\n");
return -EINVAL;
}
pm_runtime_get_sync(d40c->base->dev);
res = d40_channel_execute_command(d40c, D40_DMA_STOP);
if (res) {
chan_err(d40c, "stop failed\n");
goto out;
}
d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
if (chan_is_logical(d40c))
d40c->base->lookup_log_chans[d40c->log_num] = NULL;
else
d40c->base->lookup_phy_chans[phy->num] = NULL;
if (d40c->busy) {
pm_runtime_mark_last_busy(d40c->base->dev);
pm_runtime_put_autosuspend(d40c->base->dev);
}
d40c->busy = false;
d40c->phy_chan = NULL;
d40c->configured = false;
out:
pm_runtime_mark_last_busy(d40c->base->dev);
pm_runtime_put_autosuspend(d40c->base->dev);
return res;
}
static bool d40_is_paused(struct d40_chan *d40c)
{
void __iomem *chanbase = chan_base(d40c);
bool is_paused = false;
unsigned long flags;
void __iomem *active_reg;
u32 status;
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
spin_lock_irqsave(&d40c->lock, flags);
if (chan_is_physical(d40c)) {
if (d40c->phy_chan->num % 2 == 0)
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
else
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
status = (readl(active_reg) &
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
D40_CHAN_POS(d40c->phy_chan->num);
if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
is_paused = true;
goto _exit;
}
if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
status = readl(chanbase + D40_CHAN_REG_SDLNK);
} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
status = readl(chanbase + D40_CHAN_REG_SSLNK);
} else {
chan_err(d40c, "Unknown direction\n");
goto _exit;
}
status = (status & D40_EVENTLINE_MASK(event)) >>
D40_EVENTLINE_POS(event);
if (status != D40_DMA_RUN)
is_paused = true;
_exit:
spin_unlock_irqrestore(&d40c->lock, flags);
return is_paused;
}
static u32 stedma40_residue(struct dma_chan *chan)
{
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
u32 bytes_left;
unsigned long flags;
spin_lock_irqsave(&d40c->lock, flags);
bytes_left = d40_residue(d40c);
spin_unlock_irqrestore(&d40c->lock, flags);
return bytes_left;
}
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
struct scatterlist *sg_src, struct scatterlist *sg_dst,
unsigned int sg_len, dma_addr_t src_dev_addr,
dma_addr_t dst_dev_addr)
{
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
struct stedma40_half_channel_info *src_info = &cfg->src_info;
struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
int ret;
ret = d40_log_sg_to_lli(sg_src, sg_len,
src_dev_addr,
desc->lli_log.src,
chan->log_def.lcsp1,
src_info->data_width,
dst_info->data_width);
ret = d40_log_sg_to_lli(sg_dst, sg_len,
dst_dev_addr,
desc->lli_log.dst,
chan->log_def.lcsp3,
dst_info->data_width,
src_info->data_width);
return ret < 0 ? ret : 0;
}
static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
struct scatterlist *sg_src, struct scatterlist *sg_dst,
unsigned int sg_len, dma_addr_t src_dev_addr,
dma_addr_t dst_dev_addr)
{
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
struct stedma40_half_channel_info *src_info = &cfg->src_info;
struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
unsigned long flags = 0;
int ret;
if (desc->cyclic)
flags |= LLI_CYCLIC | LLI_TERM_INT;
ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
desc->lli_phy.src,
virt_to_phys(desc->lli_phy.src),
chan->src_def_cfg,
src_info, dst_info, flags);
ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
desc->lli_phy.dst,
virt_to_phys(desc->lli_phy.dst),
chan->dst_def_cfg,
dst_info, src_info, flags);
dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
desc->lli_pool.size, DMA_TO_DEVICE);
return ret < 0 ? ret : 0;
}
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
unsigned int sg_len, unsigned long dma_flags)
{
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
struct d40_desc *desc;
int ret;
desc = d40_desc_get(chan);
if (!desc)
return NULL;
desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
cfg->dst_info.data_width);
if (desc->lli_len < 0) {
chan_err(chan, "Unaligned size\n");
goto err;
}
ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
if (ret < 0) {
chan_err(chan, "Could not allocate lli\n");
goto err;
}
desc->lli_current = 0;
desc->txd.flags = dma_flags;
desc->txd.tx_submit = d40_tx_submit;
dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
return desc;
err:
d40_desc_free(chan, desc);
return NULL;
}
static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
struct scatterlist *sg_dst, unsigned int sg_len,
enum dma_transfer_direction direction, unsigned long dma_flags)
{
struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
dma_addr_t src_dev_addr = 0;
dma_addr_t dst_dev_addr = 0;
struct d40_desc *desc;
unsigned long flags;
int ret;
if (!chan->phy_chan) {
chan_err(chan, "Cannot prepare unallocated channel\n");
return NULL;
}
spin_lock_irqsave(&chan->lock, flags);
desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
if (desc == NULL)
goto err;
if (sg_next(&sg_src[sg_len - 1]) == sg_src)
desc->cyclic = true;
if (direction == DMA_DEV_TO_MEM)
src_dev_addr = chan->runtime_addr;
else if (direction == DMA_MEM_TO_DEV)
dst_dev_addr = chan->runtime_addr;
if (chan_is_logical(chan))
ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
sg_len, src_dev_addr, dst_dev_addr);
else
ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
sg_len, src_dev_addr, dst_dev_addr);
if (ret) {
chan_err(chan, "Failed to prepare %s sg job: %d\n",
chan_is_logical(chan) ? "log" : "phy", ret);
goto err;
}
/*
* add descriptor to the prepare queue in order to be able
* to free them later in terminate_all
*/
list_add_tail(&desc->node, &chan->prepare_queue);
spin_unlock_irqrestore(&chan->lock, flags);
return &desc->txd;
err:
if (desc)
d40_desc_free(chan, desc);
spin_unlock_irqrestore(&chan->lock, flags);
return NULL;
}
bool stedma40_filter(struct dma_chan *chan, void *data)
{
struct stedma40_chan_cfg *info = data;
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
int err;
if (data) {
err = d40_validate_conf(d40c, info);
if (!err)
d40c->dma_cfg = *info;
} else
err = d40_config_memcpy(d40c);
if (!err)
d40c->configured = true;
return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
bool realtime = d40c->dma_cfg.realtime;
bool highprio = d40c->dma_cfg.high_priority;
u32 rtreg;
u32 event = D40_TYPE_TO_EVENT(dev_type);
u32 group = D40_TYPE_TO_GROUP(dev_type);
u32 bit = BIT(event);
u32 prioreg;
struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
/*
* Due to a hardware bug, in some cases a logical channel triggered by
* a high priority destination event line can generate extra packet
* transactions.
*
* The workaround is to not set the high priority level for the
* destination event lines that trigger logical channels.
*/
if (!src && chan_is_logical(d40c))
highprio = false;
prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
/* Destination event lines are stored in the upper halfword */
if (!src)
bit <<= 16;
writel(bit, d40c->base->virtbase + prioreg + group * 4);
writel(bit, d40c->base->virtbase + rtreg + group * 4);
}
static void d40_set_prio_realtime(struct d40_chan *d40c)
{
if (d40c->base->rev < 3)
return;
if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
(d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
(d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
}
#define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
#define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
#define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct stedma40_chan_cfg cfg;
dma_cap_mask_t cap;
u32 flags;
memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
dma_cap_zero(cap);
dma_cap_set(DMA_SLAVE, cap);
cfg.dev_type = dma_spec->args[0];
flags = dma_spec->args[2];
switch (D40_DT_FLAGS_MODE(flags)) {
case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
}
switch (D40_DT_FLAGS_DIR(flags)) {
case 0:
cfg.dir = DMA_MEM_TO_DEV;
cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
break;
case 1:
cfg.dir = DMA_DEV_TO_MEM;
cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
break;
}
if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
cfg.phy_channel = dma_spec->args[1];
cfg.use_fixed_channel = true;
}
if (D40_DT_FLAGS_HIGH_PRIO(flags))
cfg.high_priority = true;
return dma_request_channel(cap, stedma40_filter, &cfg);
}
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
int err;
unsigned long flags;
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
bool is_free_phy;
spin_lock_irqsave(&d40c->lock, flags);
dma_cookie_init(chan);
/* If no dma configuration is set use default configuration (memcpy) */
if (!d40c->configured) {
err = d40_config_memcpy(d40c);
if (err) {
chan_err(d40c, "Failed to configure memcpy channel\n");
goto fail;
}
}
err = d40_allocate_channel(d40c, &is_free_phy);
if (err) {
chan_err(d40c, "Failed to allocate channel\n");
d40c->configured = false;
goto fail;
}
pm_runtime_get_sync(d40c->base->dev);
d40_set_prio_realtime(d40c);
if (chan_is_logical(d40c)) {
if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
d40c->lcpa = d40c->base->lcpa_base +
d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
else
d40c->lcpa = d40c->base->lcpa_base +
d40c->dma_cfg.dev_type *
D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
/* Unmask the Global Interrupt Mask. */
d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
}
dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
chan_is_logical(d40c) ? "logical" : "physical",
d40c->phy_chan->num,
d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
/*
* Only write channel configuration to the DMA if the physical
* resource is free. In case of multiple logical channels
* on the same physical resource, only the first write is necessary.
*/
if (is_free_phy)
d40_config_write(d40c);
fail:
pm_runtime_mark_last_busy(d40c->base->dev);
pm_runtime_put_autosuspend(d40c->base->dev);
spin_unlock_irqrestore(&d40c->lock, flags);
return err;
}
static void d40_free_chan_resources(struct dma_chan *chan)
{
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
int err;
unsigned long flags;
if (d40c->phy_chan == NULL) {
chan_err(d40c, "Cannot free unallocated channel\n");
return;
}
spin_lock_irqsave(&d40c->lock, flags);
err = d40_free_dma(d40c);
if (err)
chan_err(d40c, "Failed to free channel\n");
spin_unlock_irqrestore(&d40c->lock, flags);
}
static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
dma_addr_t dst,
dma_addr_t src,
size_t size,
unsigned long dma_flags)
{
struct scatterlist dst_sg;
struct scatterlist src_sg;
sg_init_table(&dst_sg, 1);
sg_init_table(&src_sg, 1);
sg_dma_address(&dst_sg) = dst;
sg_dma_address(&src_sg) = src;
sg_dma_len(&dst_sg) = size;
sg_dma_len(&src_sg) = size;
return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
}
static struct dma_async_tx_descriptor *
d40_prep_memcpy_sg(struct dma_chan *chan,
struct scatterlist *dst_sg, unsigned int dst_nents,
struct scatterlist *src_sg, unsigned int src_nents,
unsigned long dma_flags)
{
if (dst_nents != src_nents)
return NULL;
return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
}
static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long dma_flags, void *context)
{
if (!is_slave_direction(direction))
return NULL;
return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
}
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
size_t buf_len, size_t period_len,
enum dma_transfer_direction direction, unsigned long flags)
{
unsigned int periods = buf_len / period_len;
struct dma_async_tx_descriptor *txd;
struct scatterlist *sg;
int i;
sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
if (!sg)
return NULL;
for (i = 0; i < periods; i++) {
sg_dma_address(&sg[i]) = dma_addr;
sg_dma_len(&sg[i]) = period_len;
dma_addr += period_len;
}
sg[periods].offset = 0;
sg_dma_len(&sg[periods]) = 0;
sg[periods].page_link =
((unsigned long)sg | 0x01) & ~0x02;
txd = d40_prep_sg(chan, sg, sg, periods, direction,
DMA_PREP_INTERRUPT);
kfree(sg);
return txd;
}
static enum dma_status d40_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
enum dma_status ret;
if (d40c->phy_chan == NULL) {
chan_err(d40c, "Cannot read status of unallocated channel\n");
return -EINVAL;
}
ret = dma_cookie_status(chan, cookie, txstate);
if (ret != DMA_COMPLETE)
dma_set_residue(txstate, stedma40_residue(chan));
if (d40_is_paused(d40c))
ret = DMA_PAUSED;
return ret;
}
static void d40_issue_pending(struct dma_chan *chan)
{
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
unsigned long flags;
if (d40c->phy_chan == NULL) {
chan_err(d40c, "Channel is not allocated!\n");
return;
}
spin_lock_irqsave(&d40c->lock, flags);
list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
/* Busy means that queued jobs are already being processed */
if (!d40c->busy)
(void) d40_queue_start(d40c);
spin_unlock_irqrestore(&d40c->lock, flags);
}
static void d40_terminate_all(struct dma_chan *chan)
{
unsigned long flags;
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
int ret;
spin_lock_irqsave(&d40c->lock, flags);
pm_runtime_get_sync(d40c->base->dev);
ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
if (ret)
chan_err(d40c, "Failed to stop channel\n");
d40_term_all(d40c);
pm_runtime_mark_last_busy(d40c->base->dev);
pm_runtime_put_autosuspend(d40c->base->dev);
if (d40c->busy) {
pm_runtime_mark_last_busy(d40c->base->dev);
pm_runtime_put_autosuspend(d40c->base->dev);
}
d40c->busy = false;
spin_unlock_irqrestore(&d40c->lock, flags);
}
static int
dma40_config_to_halfchannel(struct d40_chan *d40c,
struct stedma40_half_channel_info *info,
u32 maxburst)
{
int psize;
if (chan_is_logical(d40c)) {
if (maxburst >= 16)
psize = STEDMA40_PSIZE_LOG_16;
else if (maxburst >= 8)
psize = STEDMA40_PSIZE_LOG_8;
else if (maxburst >= 4)
psize = STEDMA40_PSIZE_LOG_4;
else
psize = STEDMA40_PSIZE_LOG_1;
} else {
if (maxburst >= 16)
psize = STEDMA40_PSIZE_PHY_16;
else if (maxburst >= 8)
psize = STEDMA40_PSIZE_PHY_8;
else if (maxburst >= 4)
psize = STEDMA40_PSIZE_PHY_4;
else
psize = STEDMA40_PSIZE_PHY_1;
}
info->psize = psize;
info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
return 0;
}
/* Runtime reconfiguration extension */
static int d40_set_runtime_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
enum dma_slave_buswidth src_addr_width, dst_addr_width;
dma_addr_t config_addr;
u32 src_maxburst, dst_maxburst;
int ret;
src_addr_width = config->src_addr_width;
src_maxburst = config->src_maxburst;
dst_addr_width = config->dst_addr_width;
dst_maxburst = config->dst_maxburst;
if (config->direction == DMA_DEV_TO_MEM) {
config_addr = config->src_addr;
if (cfg->dir != DMA_DEV_TO_MEM)
dev_dbg(d40c->base->dev,
"channel was not configured for peripheral "
"to memory transfer (%d) overriding\n",
cfg->dir);
cfg->dir = DMA_DEV_TO_MEM;
/* Configure the memory side */
if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
dst_addr_width = src_addr_width;
if (dst_maxburst == 0)
dst_maxburst = src_maxburst;
} else if (config->direction == DMA_MEM_TO_DEV) {
config_addr = config->dst_addr;
if (cfg->dir != DMA_MEM_TO_DEV)
dev_dbg(d40c->base->dev,
"channel was not configured for memory "
"to peripheral transfer (%d) overriding\n",
cfg->dir);
cfg->dir = DMA_MEM_TO_DEV;
/* Configure the memory side */
if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
src_addr_width = dst_addr_width;
if (src_maxburst == 0)
src_maxburst = dst_maxburst;
} else {
dev_err(d40c->base->dev,
"unrecognized channel direction %d\n",
config->direction);
return -EINVAL;
}
if (config_addr <= 0) {
dev_err(d40c->base->dev, "no address supplied\n");
return -EINVAL;
}
if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
dev_err(d40c->base->dev,
"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
src_maxburst,
src_addr_width,
dst_maxburst,
dst_addr_width);
return -EINVAL;
}
if (src_maxburst > 16) {
src_maxburst = 16;
dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
} else if (dst_maxburst > 16) {
dst_maxburst = 16;
src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
}
/* Only valid widths are; 1, 2, 4 and 8. */
if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
!is_power_of_2(src_addr_width) ||
!is_power_of_2(dst_addr_width))
return -EINVAL;
cfg->src_info.data_width = src_addr_width;
cfg->dst_info.data_width = dst_addr_width;
ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
src_maxburst);
if (ret)
return ret;
ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
dst_maxburst);
if (ret)
return ret;
/* Fill in register values */
if (chan_is_logical(d40c))
d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
else
d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
/* These settings will take precedence later */
d40c->runtime_addr = config_addr;
d40c->runtime_direction = config->direction;
dev_dbg(d40c->base->dev,
"configured channel %s for %s, data width %d/%d, "
"maxburst %d/%d elements, LE, no flow control\n",
dma_chan_name(chan),
(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
src_addr_width, dst_addr_width,
src_maxburst, dst_maxburst);
return 0;
}
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
if (d40c->phy_chan == NULL) {
chan_err(d40c, "Channel is not allocated!\n");
return -EINVAL;
}
switch (cmd) {
case DMA_TERMINATE_ALL:
d40_terminate_all(chan);
return 0;
case DMA_PAUSE:
return d40_pause(d40c);
case DMA_RESUME:
return d40_resume(d40c);
case DMA_SLAVE_CONFIG:
return d40_set_runtime_config(chan,
(struct dma_slave_config *) arg);
default:
break;
}
/* Other commands are unimplemented */
return -ENXIO;
}
/* Initialization functions */
static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
struct d40_chan *chans, int offset,
int num_chans)
{
int i = 0;
struct d40_chan *d40c;
INIT_LIST_HEAD(&dma->channels);
for (i = offset; i < offset + num_chans; i++) {
d40c = &chans[i];
d40c->base = base;
d40c->chan.device = dma;
spin_lock_init(&d40c->lock);
d40c->log_num = D40_PHY_CHAN;
INIT_LIST_HEAD(&d40c->done);
INIT_LIST_HEAD(&d40c->active);
INIT_LIST_HEAD(&d40c->queue);
INIT_LIST_HEAD(&d40c->pending_queue);
INIT_LIST_HEAD(&d40c->client);
INIT_LIST_HEAD(&d40c->prepare_queue);
tasklet_init(&d40c->tasklet, dma_tasklet,
(unsigned long) d40c);
list_add_tail(&d40c->chan.device_node,
&dma->channels);
}
}
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
dev->device_prep_slave_sg = d40_prep_slave_sg;
if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
dev->device_prep_dma_memcpy = d40_prep_memcpy;
/*
* This controller can only access address at even
* 32bit boundaries, i.e. 2^2
*/
dev->copy_align = 2;
}
if (dma_has_cap(DMA_SG, dev->cap_mask))
dev->device_prep_dma_sg = d40_prep_memcpy_sg;
if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
dev->device_alloc_chan_resources = d40_alloc_chan_resources;
dev->device_free_chan_resources = d40_free_chan_resources;
dev->device_issue_pending = d40_issue_pending;
dev->device_tx_status = d40_tx_status;
dev->device_control = d40_control;
dev->dev = base->dev;
}
static int __init d40_dmaengine_init(struct d40_base *base,
int num_reserved_chans)
{
int err ;
d40_chan_init(base, &base->dma_slave, base->log_chans,
0, base->num_log_chans);
dma_cap_zero(base->dma_slave.cap_mask);
dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
d40_ops_init(base, &base->dma_slave);
err = dma_async_device_register(&base->dma_slave);
if (err) {
d40_err(base->dev, "Failed to register slave channels\n");
goto failure1;
}
d40_chan_init(base, &base->dma_memcpy, base->log_chans,
base->num_log_chans, base->num_memcpy_chans);
dma_cap_zero(base->dma_memcpy.cap_mask);
dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
d40_ops_init(base, &base->dma_memcpy);
err = dma_async_device_register(&base->dma_memcpy);
if (err) {
d40_err(base->dev,
"Failed to regsiter memcpy only channels\n");
goto failure2;
}
d40_chan_init(base, &base->dma_both, base->phy_chans,
0, num_reserved_chans);
dma_cap_zero(base->dma_both.cap_mask);
dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
dma_cap_set(DMA_SG, base->dma_both.cap_mask);
dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
d40_ops_init(base, &base->dma_both);
err = dma_async_device_register(&base->dma_both);
if (err) {
d40_err(base->dev,
"Failed to register logical and physical capable channels\n");
goto failure3;
}
return 0;
failure3:
dma_async_device_unregister(&base->dma_memcpy);
failure2:
dma_async_device_unregister(&base->dma_slave);
failure1:
return err;
}
/* Suspend resume functionality */
#ifdef CONFIG_PM_SLEEP
static int dma40_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct d40_base *base = platform_get_drvdata(pdev);
int ret;
ret = pm_runtime_force_suspend(dev);
if (ret)
return ret;
if (base->lcpa_regulator)
ret = regulator_disable(base->lcpa_regulator);
return ret;
}
static int dma40_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct d40_base *base = platform_get_drvdata(pdev);
int ret = 0;
if (base->lcpa_regulator) {
ret = regulator_enable(base->lcpa_regulator);
if (ret)
return ret;
}
return pm_runtime_force_resume(dev);
}
#endif
#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
u32 *regaddr, int num, bool save)
{
int i;
for (i = 0; i < num; i++) {
void __iomem *addr = baseaddr + regaddr[i];
if (save)
backup[i] = readl_relaxed(addr);
else
writel_relaxed(backup[i], addr);
}
}
static void d40_save_restore_registers(struct d40_base *base, bool save)
{
int i;
/* Save/Restore channel specific registers */
for (i = 0; i < base->num_phy_chans; i++) {
void __iomem *addr;
int idx;
if (base->phy_res[i].reserved)
continue;
addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
idx = i * ARRAY_SIZE(d40_backup_regs_chan);
dma40_backup(addr, &base->reg_val_backup_chan[idx],
d40_backup_regs_chan,
ARRAY_SIZE(d40_backup_regs_chan),
save);
}
/* Save/Restore global registers */
dma40_backup(base->virtbase, base->reg_val_backup,
d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
save);
/* Save/Restore registers only existing on dma40 v3 and later */
if (base->gen_dmac.backup)
dma40_backup(base->virtbase, base->reg_val_backup_v4,
base->gen_dmac.backup,
base->gen_dmac.backup_size,
save);
}
static int dma40_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct d40_base *base = platform_get_drvdata(pdev);
d40_save_restore_registers(base, true);
/* Don't disable/enable clocks for v1 due to HW bugs */
if (base->rev != 1)
writel_relaxed(base->gcc_pwr_off_mask,
base->virtbase + D40_DREG_GCC);
return 0;
}
static int dma40_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct d40_base *base = platform_get_drvdata(pdev);
d40_save_restore_registers(base, false);
writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
base->virtbase + D40_DREG_GCC);
return 0;
}
#endif
static const struct dev_pm_ops dma40_pm_ops = {
SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
dma40_runtime_resume,
NULL)
};
/* Initialization functions. */
static int __init d40_phy_res_init(struct d40_base *base)
{
int i;
int num_phy_chans_avail = 0;
u32 val[2];
int odd_even_bit = -2;
int gcc = D40_DREG_GCC_ENA;
val[0] = readl(base->virtbase + D40_DREG_PRSME);
val[1] = readl(base->virtbase + D40_DREG_PRSMO);
for (i = 0; i < base->num_phy_chans; i++) {
base->phy_res[i].num = i;
odd_even_bit += 2 * ((i % 2) == 0);
if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
/* Mark security only channels as occupied */
base->phy_res[i].allocated_src = D40_ALLOC_PHY;
base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
base->phy_res[i].reserved = true;
gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
D40_DREG_GCC_SRC);
gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
D40_DREG_GCC_DST);
} else {
base->phy_res[i].allocated_src = D40_ALLOC_FREE;
base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
base->phy_res[i].reserved = false;
num_phy_chans_avail++;
}
spin_lock_init(&base->phy_res[i].lock);
}
/* Mark disabled channels as occupied */
for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
int chan = base->plat_data->disabled_channels[i];
base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
base->phy_res[chan].reserved = true;
gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
D40_DREG_GCC_SRC);
gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
D40_DREG_GCC_DST);
num_phy_chans_avail--;
}
/* Mark soft_lli channels */
for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
int chan = base->plat_data->soft_lli_chans[i];
base->phy_res[chan].use_soft_lli = true;
}
dev_info(base->dev, "%d of %d physical DMA channels available\n",
num_phy_chans_avail, base->num_phy_chans);
/* Verify settings extended vs standard */
val[0] = readl(base->virtbase + D40_DREG_PRTYP);
for (i = 0; i < base->num_phy_chans; i++) {
if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
(val[0] & 0x3) != 1)
dev_info(base->dev,
"[%s] INFO: channel %d is misconfigured (%d)\n",
__func__, i, val[0] & 0x3);
val[0] = val[0] >> 2;
}
/*
* To keep things simple, Enable all clocks initially.
* The clocks will get managed later post channel allocation.
* The clocks for the event lines on which reserved channels exists
* are not managed here.
*/
writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
base->gcc_pwr_off_mask = gcc;
return num_phy_chans_avail;
}
static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
struct clk *clk = NULL;
void __iomem *virtbase = NULL;
struct resource *res = NULL;
struct d40_base *base = NULL;
int num_log_chans = 0;
int num_phy_chans;
int num_memcpy_chans;
int clk_ret = -EINVAL;
int i;
u32 pid;
u32 cid;
u8 rev;
clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(clk)) {
d40_err(&pdev->dev, "No matching clock found\n");
goto failure;
}
clk_ret = clk_prepare_enable(clk);
if (clk_ret) {
d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
goto failure;
}
/* Get IO for DMAC base address */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
if (!res)
goto failure;
if (request_mem_region(res->start, resource_size(res),
D40_NAME " I/O base") == NULL)
goto failure;
virtbase = ioremap(res->start, resource_size(res));
if (!virtbase)
goto failure;
/* This is just a regular AMBA PrimeCell ID actually */
for (pid = 0, i = 0; i < 4; i++)
pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
& 255) << (i * 8);
for (cid = 0, i = 0; i < 4; i++)
cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
& 255) << (i * 8);
if (cid != AMBA_CID) {
d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
goto failure;
}
if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
AMBA_MANF_BITS(pid),
AMBA_VENDOR_ST);
goto failure;
}
/*
* HW revision:
* DB8500ed has revision 0
* ? has revision 1
* DB8500v1 has revision 2
* DB8500v2 has revision 3
* AP9540v1 has revision 4
* DB8540v1 has revision 4
*/
rev = AMBA_REV_BITS(pid);
if (rev < 2) {
d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
goto failure;
}
/* The number of physical channels on this HW */
if (plat_data->num_of_phy_chans)
num_phy_chans = plat_data->num_of_phy_chans;
else
num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
/* The number of channels used for memcpy */
if (plat_data->num_of_memcpy_chans)
num_memcpy_chans = plat_data->num_of_memcpy_chans;
else
num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
dev_info(&pdev->dev,
"hardware rev: %d @ %pa with %d physical and %d logical channels\n",
rev, &res->start, num_phy_chans, num_log_chans);
base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
(num_phy_chans + num_log_chans + num_memcpy_chans) *
sizeof(struct d40_chan), GFP_KERNEL);
if (base == NULL) {
d40_err(&pdev->dev, "Out of memory\n");
goto failure;
}
base->rev = rev;
base->clk = clk;
base->num_memcpy_chans = num_memcpy_chans;
base->num_phy_chans = num_phy_chans;
base->num_log_chans = num_log_chans;
base->phy_start = res->start;
base->phy_size = resource_size(res);
base->virtbase = virtbase;
base->plat_data = plat_data;
base->dev = &pdev->dev;
base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
base->log_chans = &base->phy_chans[num_phy_chans];
if (base->plat_data->num_of_phy_chans == 14) {
base->gen_dmac.backup = d40_backup_regs_v4b;
base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
base->gen_dmac.il = il_v4b;
base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
base->gen_dmac.init_reg = dma_init_reg_v4b;
base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
} else {
if (base->rev >= 3) {
base->gen_dmac.backup = d40_backup_regs_v4a;
base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
}
base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
base->gen_dmac.realtime_en = D40_DREG_RSEG1;
base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
base->gen_dmac.il = il_v4a;
base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
base->gen_dmac.init_reg = dma_init_reg_v4a;
base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
}
base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
GFP_KERNEL);
if (!base->phy_res)
goto failure;
base->lookup_phy_chans = kzalloc(num_phy_chans *
sizeof(struct d40_chan *),
GFP_KERNEL);
if (!base->lookup_phy_chans)
goto failure;
base->lookup_log_chans = kzalloc(num_log_chans *
sizeof(struct d40_chan *),
GFP_KERNEL);
if (!base->lookup_log_chans)
goto failure;
base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
sizeof(d40_backup_regs_chan),
GFP_KERNEL);
if (!base->reg_val_backup_chan)
goto failure;
base->lcla_pool.alloc_map =
kzalloc(num_phy_chans * sizeof(struct d40_desc *)
* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
if (!base->lcla_pool.alloc_map)
goto failure;
base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (base->desc_slab == NULL)
goto failure;
return base;
failure:
if (!clk_ret)
clk_disable_unprepare(clk);
if (!IS_ERR(clk))
clk_put(clk);
if (virtbase)
iounmap(virtbase);
if (res)
release_mem_region(res->start,
resource_size(res));
if (virtbase)
iounmap(virtbase);
if (base) {
kfree(base->lcla_pool.alloc_map);
kfree(base->reg_val_backup_chan);
kfree(base->lookup_log_chans);
kfree(base->lookup_phy_chans);
kfree(base->phy_res);
kfree(base);
}
return NULL;
}
static void __init d40_hw_init(struct d40_base *base)
{
int i;
u32 prmseo[2] = {0, 0};
u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
u32 pcmis = 0;
u32 pcicr = 0;
struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
u32 reg_size = base->gen_dmac.init_reg_size;
for (i = 0; i < reg_size; i++)
writel(dma_init_reg[i].val,
base->virtbase + dma_init_reg[i].reg);
/* Configure all our dma channels to default settings */
for (i = 0; i < base->num_phy_chans; i++) {
activeo[i % 2] = activeo[i % 2] << 2;
if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
== D40_ALLOC_PHY) {
activeo[i % 2] |= 3;
continue;
}
/* Enable interrupt # */
pcmis = (pcmis << 1) | 1;
/* Clear interrupt # */
pcicr = (pcicr << 1) | 1;
/* Set channel to physical mode */
prmseo[i % 2] = prmseo[i % 2] << 2;
prmseo[i % 2] |= 1;
}
writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
/* Write which interrupt to enable */
writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
/* Write which interrupt to clear */
writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
/* These are __initdata and cannot be accessed after init */
base->gen_dmac.init_reg = NULL;
base->gen_dmac.init_reg_size = 0;
}
static int __init d40_lcla_allocate(struct d40_base *base)
{
struct d40_lcla_pool *pool = &base->lcla_pool;
unsigned long *page_list;
int i, j;
int ret = 0;
/*
* This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
* To full fill this hardware requirement without wasting 256 kb
* we allocate pages until we get an aligned one.
*/
page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
GFP_KERNEL);
if (!page_list) {
ret = -ENOMEM;
goto failure;
}
/* Calculating how many pages that are required */
base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
page_list[i] = __get_free_pages(GFP_KERNEL,
base->lcla_pool.pages);
if (!page_list[i]) {
d40_err(base->dev, "Failed to allocate %d pages.\n",
base->lcla_pool.pages);
ret = -ENOMEM;
for (j = 0; j < i; j++)
free_pages(page_list[j], base->lcla_pool.pages);
goto failure;
}
if ((virt_to_phys((void *)page_list[i]) &
(LCLA_ALIGNMENT - 1)) == 0)
break;
}
for (j = 0; j < i; j++)
free_pages(page_list[j], base->lcla_pool.pages);
if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
base->lcla_pool.base = (void *)page_list[i];
} else {
/*
* After many attempts and no succees with finding the correct
* alignment, try with allocating a big buffer.
*/
dev_warn(base->dev,
"[%s] Failed to get %d pages @ 18 bit align.\n",
__func__, base->lcla_pool.pages);
base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
base->num_phy_chans +
LCLA_ALIGNMENT,
GFP_KERNEL);
if (!base->lcla_pool.base_unaligned) {
ret = -ENOMEM;
goto failure;
}
base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
LCLA_ALIGNMENT);
}
pool->dma_addr = dma_map_single(base->dev, pool->base,
SZ_1K * base->num_phy_chans,
DMA_TO_DEVICE);
if (dma_mapping_error(base->dev, pool->dma_addr)) {
pool->dma_addr = 0;
ret = -ENOMEM;
goto failure;
}
writel(virt_to_phys(base->lcla_pool.base),
base->virtbase + D40_DREG_LCLA);
failure:
kfree(page_list);
return ret;
}
static int __init d40_of_probe(struct platform_device *pdev,
struct device_node *np)
{
struct stedma40_platform_data *pdata;
int num_phy = 0, num_memcpy = 0, num_disabled = 0;
const __be32 *list;
pdata = devm_kzalloc(&pdev->dev,
sizeof(struct stedma40_platform_data),
GFP_KERNEL);
if (!pdata)
return -ENOMEM;
/* If absent this value will be obtained from h/w. */
of_property_read_u32(np, "dma-channels", &num_phy);
if (num_phy > 0)
pdata->num_of_phy_chans = num_phy;
list = of_get_property(np, "memcpy-channels", &num_memcpy);
num_memcpy /= sizeof(*list);
if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
d40_err(&pdev->dev,
"Invalid number of memcpy channels specified (%d)\n",
num_memcpy);
return -EINVAL;
}
pdata->num_of_memcpy_chans = num_memcpy;
of_property_read_u32_array(np, "memcpy-channels",
dma40_memcpy_channels,
num_memcpy);
list = of_get_property(np, "disabled-channels", &num_disabled);
num_disabled /= sizeof(*list);
if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
d40_err(&pdev->dev,
"Invalid number of disabled channels specified (%d)\n",
num_disabled);
return -EINVAL;
}
of_property_read_u32_array(np, "disabled-channels",
pdata->disabled_channels,
num_disabled);
pdata->disabled_channels[num_disabled] = -1;
pdev->dev.platform_data = pdata;
return 0;
}
static int __init d40_probe(struct platform_device *pdev)
{
struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
struct device_node *np = pdev->dev.of_node;
int ret = -ENOENT;
struct d40_base *base = NULL;
struct resource *res = NULL;
int num_reserved_chans;
u32 val;
if (!plat_data) {
if (np) {
if(d40_of_probe(pdev, np)) {
ret = -ENOMEM;
goto failure;
}
} else {
d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
goto failure;
}
}
base = d40_hw_detect_init(pdev);
if (!base)
goto failure;
num_reserved_chans = d40_phy_res_init(base);
platform_set_drvdata(pdev, base);
spin_lock_init(&base->interrupt_lock);
spin_lock_init(&base->execmd_lock);
/* Get IO for logical channel parameter address */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
if (!res) {
ret = -ENOENT;
d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
goto failure;
}
base->lcpa_size = resource_size(res);
base->phy_lcpa = res->start;
if (request_mem_region(res->start, resource_size(res),
D40_NAME " I/O lcpa") == NULL) {
ret = -EBUSY;
d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
goto failure;
}
/* We make use of ESRAM memory for this. */
val = readl(base->virtbase + D40_DREG_LCPA);
if (res->start != val && val != 0) {
dev_warn(&pdev->dev,
"[%s] Mismatch LCPA dma 0x%x, def %pa\n",
__func__, val, &res->start);
} else
writel(res->start, base->virtbase + D40_DREG_LCPA);
base->lcpa_base = ioremap(res->start, resource_size(res));
if (!base->lcpa_base) {
ret = -ENOMEM;
d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
goto failure;
}
/* If lcla has to be located in ESRAM we don't need to allocate */
if (base->plat_data->use_esram_lcla) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"lcla_esram");
if (!res) {
ret = -ENOENT;
d40_err(&pdev->dev,
"No \"lcla_esram\" memory resource\n");
goto failure;
}
base->lcla_pool.base = ioremap(res->start,
resource_size(res));
if (!base->lcla_pool.base) {
ret = -ENOMEM;
d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
goto failure;
}
writel(res->start, base->virtbase + D40_DREG_LCLA);
} else {
ret = d40_lcla_allocate(base);
if (ret) {
d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
goto failure;
}
}
spin_lock_init(&base->lcla_pool.lock);
base->irq = platform_get_irq(pdev, 0);
ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
if (ret) {
d40_err(&pdev->dev, "No IRQ defined\n");
goto failure;
}
if (base->plat_data->use_esram_lcla) {
base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
if (IS_ERR(base->lcpa_regulator)) {
d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
ret = PTR_ERR(base->lcpa_regulator);
base->lcpa_regulator = NULL;
goto failure;
}
ret = regulator_enable(base->lcpa_regulator);
if (ret) {
d40_err(&pdev->dev,
"Failed to enable lcpa_regulator\n");
regulator_put(base->lcpa_regulator);
base->lcpa_regulator = NULL;
goto failure;
}
}
writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
pm_runtime_irq_safe(base->dev);
pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(base->dev);
pm_runtime_mark_last_busy(base->dev);
pm_runtime_set_active(base->dev);
pm_runtime_enable(base->dev);
ret = d40_dmaengine_init(base, num_reserved_chans);
if (ret)
goto failure;
base->dev->dma_parms = &base->dma_parms;
ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
if (ret) {
d40_err(&pdev->dev, "Failed to set dma max seg size\n");
goto failure;
}
d40_hw_init(base);
if (np) {
ret = of_dma_controller_register(np, d40_xlate, NULL);
if (ret)
dev_err(&pdev->dev,
"could not register of_dma_controller\n");
}
dev_info(base->dev, "initialized\n");
return 0;
failure:
if (base) {
if (base->desc_slab)
kmem_cache_destroy(base->desc_slab);
if (base->virtbase)
iounmap(base->virtbase);
if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
iounmap(base->lcla_pool.base);
base->lcla_pool.base = NULL;
}
if (base->lcla_pool.dma_addr)
dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
SZ_1K * base->num_phy_chans,
DMA_TO_DEVICE);
if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
free_pages((unsigned long)base->lcla_pool.base,
base->lcla_pool.pages);
kfree(base->lcla_pool.base_unaligned);
if (base->phy_lcpa)
release_mem_region(base->phy_lcpa,
base->lcpa_size);
if (base->phy_start)
release_mem_region(base->phy_start,
base->phy_size);
if (base->clk) {
clk_disable_unprepare(base->clk);
clk_put(base->clk);
}
if (base->lcpa_regulator) {
regulator_disable(base->lcpa_regulator);
regulator_put(base->lcpa_regulator);
}
kfree(base->lcla_pool.alloc_map);
kfree(base->lookup_log_chans);
kfree(base->lookup_phy_chans);
kfree(base->phy_res);
kfree(base);
}
d40_err(&pdev->dev, "probe failed\n");
return ret;
}
static const struct of_device_id d40_match[] = {
{ .compatible = "stericsson,dma40", },
{}
};
static struct platform_driver d40_driver = {
.driver = {
.name = D40_NAME,
.pm = &dma40_pm_ops,
.of_match_table = d40_match,
},
};
static int __init stedma40_init(void)
{
return platform_driver_probe(&d40_driver, d40_probe);
}
subsys_initcall(stedma40_init);