786 lines
26 KiB
C
786 lines
26 KiB
C
/*
|
|
* NFTL mount code with extensive checks
|
|
*
|
|
* Author: Fabrice Bellard (fabrice.bellard@netgem.com)
|
|
* Copyright © 2000 Netgem S.A.
|
|
* Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <asm/errno.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/nftl.h>
|
|
|
|
#define SECTORSIZE 512
|
|
|
|
/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
|
|
* various device information of the NFTL partition and Bad Unit Table. Update
|
|
* the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
|
|
* is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
|
|
*/
|
|
static int find_boot_record(struct NFTLrecord *nftl)
|
|
{
|
|
struct nftl_uci1 h1;
|
|
unsigned int block, boot_record_count = 0;
|
|
size_t retlen;
|
|
u8 buf[SECTORSIZE];
|
|
struct NFTLMediaHeader *mh = &nftl->MediaHdr;
|
|
struct mtd_info *mtd = nftl->mbd.mtd;
|
|
unsigned int i;
|
|
|
|
/* Assume logical EraseSize == physical erasesize for starting the scan.
|
|
We'll sort it out later if we find a MediaHeader which says otherwise */
|
|
/* Actually, we won't. The new DiskOnChip driver has already scanned
|
|
the MediaHeader and adjusted the virtual erasesize it presents in
|
|
the mtd device accordingly. We could even get rid of
|
|
nftl->EraseSize if there were any point in doing so. */
|
|
nftl->EraseSize = nftl->mbd.mtd->erasesize;
|
|
nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
|
|
|
|
nftl->MediaUnit = BLOCK_NIL;
|
|
nftl->SpareMediaUnit = BLOCK_NIL;
|
|
|
|
/* search for a valid boot record */
|
|
for (block = 0; block < nftl->nb_blocks; block++) {
|
|
int ret;
|
|
|
|
/* Check for ANAND header first. Then can whinge if it's found but later
|
|
checks fail */
|
|
ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
|
|
&retlen, buf);
|
|
/* We ignore ret in case the ECC of the MediaHeader is invalid
|
|
(which is apparently acceptable) */
|
|
if (retlen != SECTORSIZE) {
|
|
static int warncount = 5;
|
|
|
|
if (warncount) {
|
|
printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
|
|
block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
|
|
if (!--warncount)
|
|
printk(KERN_WARNING "Further failures for this block will not be printed\n");
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
|
|
/* ANAND\0 not found. Continue */
|
|
#if 0
|
|
printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
|
|
block * nftl->EraseSize, nftl->mbd.mtd->index);
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
/* To be safer with BIOS, also use erase mark as discriminant */
|
|
if ((ret = nftl_read_oob(mtd, block * nftl->EraseSize +
|
|
SECTORSIZE + 8, 8, &retlen,
|
|
(char *)&h1) < 0)) {
|
|
printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
|
|
block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
|
|
continue;
|
|
}
|
|
|
|
#if 0 /* Some people seem to have devices without ECC or erase marks
|
|
on the Media Header blocks. There are enough other sanity
|
|
checks in here that we can probably do without it.
|
|
*/
|
|
if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
|
|
printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
|
|
block * nftl->EraseSize, nftl->mbd.mtd->index,
|
|
le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
|
|
continue;
|
|
}
|
|
|
|
/* Finally reread to check ECC */
|
|
if ((ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
|
|
&retlen, buf) < 0)) {
|
|
printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
|
|
block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
|
|
continue;
|
|
}
|
|
|
|
/* Paranoia. Check the ANAND header is still there after the ECC read */
|
|
if (memcmp(buf, "ANAND", 6)) {
|
|
printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
|
|
block * nftl->EraseSize, nftl->mbd.mtd->index);
|
|
printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n",
|
|
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
|
|
continue;
|
|
}
|
|
#endif
|
|
/* OK, we like it. */
|
|
|
|
if (boot_record_count) {
|
|
/* We've already processed one. So we just check if
|
|
this one is the same as the first one we found */
|
|
if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
|
|
printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
|
|
nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
|
|
/* if (debug) Print both side by side */
|
|
if (boot_record_count < 2) {
|
|
/* We haven't yet seen two real ones */
|
|
return -1;
|
|
}
|
|
continue;
|
|
}
|
|
if (boot_record_count == 1)
|
|
nftl->SpareMediaUnit = block;
|
|
|
|
/* Mark this boot record (NFTL MediaHeader) block as reserved */
|
|
nftl->ReplUnitTable[block] = BLOCK_RESERVED;
|
|
|
|
|
|
boot_record_count++;
|
|
continue;
|
|
}
|
|
|
|
/* This is the first we've seen. Copy the media header structure into place */
|
|
memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
|
|
|
|
/* Do some sanity checks on it */
|
|
#if 0
|
|
The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
|
|
erasesize based on UnitSizeFactor. So the erasesize we read from the mtd
|
|
device is already correct.
|
|
if (mh->UnitSizeFactor == 0) {
|
|
printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
|
|
} else if (mh->UnitSizeFactor < 0xfc) {
|
|
printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
|
|
mh->UnitSizeFactor);
|
|
return -1;
|
|
} else if (mh->UnitSizeFactor != 0xff) {
|
|
printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
|
|
mh->UnitSizeFactor);
|
|
nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
|
|
nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
|
|
}
|
|
#endif
|
|
nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
|
|
if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
|
|
printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
|
|
printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
|
|
nftl->nb_boot_blocks, nftl->nb_blocks);
|
|
return -1;
|
|
}
|
|
|
|
nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
|
|
if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
|
|
printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
|
|
printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
|
|
nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
|
|
return -1;
|
|
}
|
|
|
|
nftl->mbd.size = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
|
|
|
|
/* If we're not using the last sectors in the device for some reason,
|
|
reduce nb_blocks accordingly so we forget they're there */
|
|
nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
|
|
|
|
/* XXX: will be suppressed */
|
|
nftl->lastEUN = nftl->nb_blocks - 1;
|
|
|
|
/* memory alloc */
|
|
nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
|
|
if (!nftl->EUNtable) {
|
|
printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
|
|
if (!nftl->ReplUnitTable) {
|
|
kfree(nftl->EUNtable);
|
|
printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
|
|
for (i = 0; i < nftl->nb_boot_blocks; i++)
|
|
nftl->ReplUnitTable[i] = BLOCK_RESERVED;
|
|
/* mark all remaining blocks as potentially containing data */
|
|
for (; i < nftl->nb_blocks; i++) {
|
|
nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
|
|
}
|
|
|
|
/* Mark this boot record (NFTL MediaHeader) block as reserved */
|
|
nftl->ReplUnitTable[block] = BLOCK_RESERVED;
|
|
|
|
/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
|
|
for (i = 0; i < nftl->nb_blocks; i++) {
|
|
#if 0
|
|
The new DiskOnChip driver already scanned the bad block table. Just query it.
|
|
if ((i & (SECTORSIZE - 1)) == 0) {
|
|
/* read one sector for every SECTORSIZE of blocks */
|
|
if ((ret = mtd->read(nftl->mbd.mtd, block * nftl->EraseSize +
|
|
i + SECTORSIZE, SECTORSIZE, &retlen,
|
|
buf)) < 0) {
|
|
printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
|
|
ret);
|
|
kfree(nftl->ReplUnitTable);
|
|
kfree(nftl->EUNtable);
|
|
return -1;
|
|
}
|
|
}
|
|
/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
|
|
if (buf[i & (SECTORSIZE - 1)] != 0xff)
|
|
nftl->ReplUnitTable[i] = BLOCK_RESERVED;
|
|
#endif
|
|
if (nftl->mbd.mtd->block_isbad(nftl->mbd.mtd, i * nftl->EraseSize))
|
|
nftl->ReplUnitTable[i] = BLOCK_RESERVED;
|
|
}
|
|
|
|
nftl->MediaUnit = block;
|
|
boot_record_count++;
|
|
|
|
} /* foreach (block) */
|
|
|
|
return boot_record_count?0:-1;
|
|
}
|
|
|
|
static int memcmpb(void *a, int c, int n)
|
|
{
|
|
int i;
|
|
for (i = 0; i < n; i++) {
|
|
if (c != ((unsigned char *)a)[i])
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
|
|
static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
|
|
int check_oob)
|
|
{
|
|
u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize];
|
|
struct mtd_info *mtd = nftl->mbd.mtd;
|
|
size_t retlen;
|
|
int i;
|
|
|
|
for (i = 0; i < len; i += SECTORSIZE) {
|
|
if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf))
|
|
return -1;
|
|
if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
|
|
return -1;
|
|
|
|
if (check_oob) {
|
|
if(nftl_read_oob(mtd, address, mtd->oobsize,
|
|
&retlen, &buf[SECTORSIZE]) < 0)
|
|
return -1;
|
|
if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
|
|
return -1;
|
|
}
|
|
address += SECTORSIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
|
|
* Update NFTL metadata. Each erase operation is checked with check_free_sectors
|
|
*
|
|
* Return: 0 when succeed, -1 on error.
|
|
*
|
|
* ToDo: 1. Is it necessary to check_free_sector after erasing ??
|
|
*/
|
|
int NFTL_formatblock(struct NFTLrecord *nftl, int block)
|
|
{
|
|
size_t retlen;
|
|
unsigned int nb_erases, erase_mark;
|
|
struct nftl_uci1 uci;
|
|
struct erase_info *instr = &nftl->instr;
|
|
struct mtd_info *mtd = nftl->mbd.mtd;
|
|
|
|
/* Read the Unit Control Information #1 for Wear-Leveling */
|
|
if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
|
|
8, &retlen, (char *)&uci) < 0)
|
|
goto default_uci1;
|
|
|
|
erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
|
|
if (erase_mark != ERASE_MARK) {
|
|
default_uci1:
|
|
uci.EraseMark = cpu_to_le16(ERASE_MARK);
|
|
uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
|
|
uci.WearInfo = cpu_to_le32(0);
|
|
}
|
|
|
|
memset(instr, 0, sizeof(struct erase_info));
|
|
|
|
/* XXX: use async erase interface, XXX: test return code */
|
|
instr->mtd = nftl->mbd.mtd;
|
|
instr->addr = block * nftl->EraseSize;
|
|
instr->len = nftl->EraseSize;
|
|
mtd->erase(mtd, instr);
|
|
|
|
if (instr->state == MTD_ERASE_FAILED) {
|
|
printk("Error while formatting block %d\n", block);
|
|
goto fail;
|
|
}
|
|
|
|
/* increase and write Wear-Leveling info */
|
|
nb_erases = le32_to_cpu(uci.WearInfo);
|
|
nb_erases++;
|
|
|
|
/* wrap (almost impossible with current flash) or free block */
|
|
if (nb_erases == 0)
|
|
nb_erases = 1;
|
|
|
|
/* check the "freeness" of Erase Unit before updating metadata
|
|
* FixMe: is this check really necessary ? since we have check the
|
|
* return code after the erase operation. */
|
|
if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
|
|
goto fail;
|
|
|
|
uci.WearInfo = le32_to_cpu(nb_erases);
|
|
if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
|
|
8, 8, &retlen, (char *)&uci) < 0)
|
|
goto fail;
|
|
return 0;
|
|
fail:
|
|
/* could not format, update the bad block table (caller is responsible
|
|
for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
|
|
nftl->mbd.mtd->block_markbad(nftl->mbd.mtd, instr->addr);
|
|
return -1;
|
|
}
|
|
|
|
/* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
|
|
* Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
|
|
* was being folded when NFTL was interrupted.
|
|
*
|
|
* The check_free_sectors in this function is necessary. There is a possible
|
|
* situation that after writing the Data area, the Block Control Information is
|
|
* not updated according (due to power failure or something) which leaves the block
|
|
* in an inconsistent state. So we have to check if a block is really FREE in this
|
|
* case. */
|
|
static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
|
|
{
|
|
struct mtd_info *mtd = nftl->mbd.mtd;
|
|
unsigned int block, i, status;
|
|
struct nftl_bci bci;
|
|
int sectors_per_block;
|
|
size_t retlen;
|
|
|
|
sectors_per_block = nftl->EraseSize / SECTORSIZE;
|
|
block = first_block;
|
|
for (;;) {
|
|
for (i = 0; i < sectors_per_block; i++) {
|
|
if (nftl_read_oob(mtd,
|
|
block * nftl->EraseSize + i * SECTORSIZE,
|
|
8, &retlen, (char *)&bci) < 0)
|
|
status = SECTOR_IGNORE;
|
|
else
|
|
status = bci.Status | bci.Status1;
|
|
|
|
switch(status) {
|
|
case SECTOR_FREE:
|
|
/* verify that the sector is really free. If not, mark
|
|
as ignore */
|
|
if (memcmpb(&bci, 0xff, 8) != 0 ||
|
|
check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
|
|
SECTORSIZE, 0) != 0) {
|
|
printk("Incorrect free sector %d in block %d: "
|
|
"marking it as ignored\n",
|
|
i, block);
|
|
|
|
/* sector not free actually : mark it as SECTOR_IGNORE */
|
|
bci.Status = SECTOR_IGNORE;
|
|
bci.Status1 = SECTOR_IGNORE;
|
|
nftl_write_oob(mtd, block *
|
|
nftl->EraseSize +
|
|
i * SECTORSIZE, 8,
|
|
&retlen, (char *)&bci);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* proceed to next Erase Unit on the chain */
|
|
block = nftl->ReplUnitTable[block];
|
|
if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
|
|
printk("incorrect ReplUnitTable[] : %d\n", block);
|
|
if (block == BLOCK_NIL || block >= nftl->nb_blocks)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
|
|
static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
|
|
{
|
|
unsigned int length = 0, block = first_block;
|
|
|
|
for (;;) {
|
|
length++;
|
|
/* avoid infinite loops, although this is guaranteed not to
|
|
happen because of the previous checks */
|
|
if (length >= nftl->nb_blocks) {
|
|
printk("nftl: length too long %d !\n", length);
|
|
break;
|
|
}
|
|
|
|
block = nftl->ReplUnitTable[block];
|
|
if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
|
|
printk("incorrect ReplUnitTable[] : %d\n", block);
|
|
if (block == BLOCK_NIL || block >= nftl->nb_blocks)
|
|
break;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
/* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
|
|
* Virtual Unit Chain, i.e. all the units are disconnected.
|
|
*
|
|
* It is not strictly correct to begin from the first block of the chain because
|
|
* if we stop the code, we may see again a valid chain if there was a first_block
|
|
* flag in a block inside it. But is it really a problem ?
|
|
*
|
|
* FixMe: Figure out what the last statement means. What if power failure when we are
|
|
* in the for (;;) loop formatting blocks ??
|
|
*/
|
|
static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
|
|
{
|
|
unsigned int block = first_block, block1;
|
|
|
|
printk("Formatting chain at block %d\n", first_block);
|
|
|
|
for (;;) {
|
|
block1 = nftl->ReplUnitTable[block];
|
|
|
|
printk("Formatting block %d\n", block);
|
|
if (NFTL_formatblock(nftl, block) < 0) {
|
|
/* cannot format !!!! Mark it as Bad Unit */
|
|
nftl->ReplUnitTable[block] = BLOCK_RESERVED;
|
|
} else {
|
|
nftl->ReplUnitTable[block] = BLOCK_FREE;
|
|
}
|
|
|
|
/* goto next block on the chain */
|
|
block = block1;
|
|
|
|
if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
|
|
printk("incorrect ReplUnitTable[] : %d\n", block);
|
|
if (block == BLOCK_NIL || block >= nftl->nb_blocks)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
|
|
* totally free (only 0xff).
|
|
*
|
|
* Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
|
|
* following criteria:
|
|
* 1. */
|
|
static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
|
|
{
|
|
struct mtd_info *mtd = nftl->mbd.mtd;
|
|
struct nftl_uci1 h1;
|
|
unsigned int erase_mark;
|
|
size_t retlen;
|
|
|
|
/* check erase mark. */
|
|
if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
|
|
&retlen, (char *)&h1) < 0)
|
|
return -1;
|
|
|
|
erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
|
|
if (erase_mark != ERASE_MARK) {
|
|
/* if no erase mark, the block must be totally free. This is
|
|
possible in two cases : empty filesystem or interrupted erase (very unlikely) */
|
|
if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
|
|
return -1;
|
|
|
|
/* free block : write erase mark */
|
|
h1.EraseMark = cpu_to_le16(ERASE_MARK);
|
|
h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
|
|
h1.WearInfo = cpu_to_le32(0);
|
|
if (nftl_write_oob(mtd,
|
|
block * nftl->EraseSize + SECTORSIZE + 8, 8,
|
|
&retlen, (char *)&h1) < 0)
|
|
return -1;
|
|
} else {
|
|
#if 0
|
|
/* if erase mark present, need to skip it when doing check */
|
|
for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
|
|
/* check free sector */
|
|
if (check_free_sectors (nftl, block * nftl->EraseSize + i,
|
|
SECTORSIZE, 0) != 0)
|
|
return -1;
|
|
|
|
if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
|
|
16, &retlen, buf) < 0)
|
|
return -1;
|
|
if (i == SECTORSIZE) {
|
|
/* skip erase mark */
|
|
if (memcmpb(buf, 0xff, 8))
|
|
return -1;
|
|
} else {
|
|
if (memcmpb(buf, 0xff, 16))
|
|
return -1;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
|
|
* to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
|
|
* is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
|
|
* for some reason. A clean up/check of the VUC is necessary in this case.
|
|
*
|
|
* WARNING: return 0 if read error
|
|
*/
|
|
static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
|
|
{
|
|
struct mtd_info *mtd = nftl->mbd.mtd;
|
|
struct nftl_uci2 uci;
|
|
size_t retlen;
|
|
|
|
if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
|
|
8, &retlen, (char *)&uci) < 0)
|
|
return 0;
|
|
|
|
return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
|
|
}
|
|
|
|
int NFTL_mount(struct NFTLrecord *s)
|
|
{
|
|
int i;
|
|
unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
|
|
unsigned int block, first_block, is_first_block;
|
|
int chain_length, do_format_chain;
|
|
struct nftl_uci0 h0;
|
|
struct nftl_uci1 h1;
|
|
struct mtd_info *mtd = s->mbd.mtd;
|
|
size_t retlen;
|
|
|
|
/* search for NFTL MediaHeader and Spare NFTL Media Header */
|
|
if (find_boot_record(s) < 0) {
|
|
printk("Could not find valid boot record\n");
|
|
return -1;
|
|
}
|
|
|
|
/* init the logical to physical table */
|
|
for (i = 0; i < s->nb_blocks; i++) {
|
|
s->EUNtable[i] = BLOCK_NIL;
|
|
}
|
|
|
|
/* first pass : explore each block chain */
|
|
first_logical_block = 0;
|
|
for (first_block = 0; first_block < s->nb_blocks; first_block++) {
|
|
/* if the block was not already explored, we can look at it */
|
|
if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
|
|
block = first_block;
|
|
chain_length = 0;
|
|
do_format_chain = 0;
|
|
|
|
for (;;) {
|
|
/* read the block header. If error, we format the chain */
|
|
if (nftl_read_oob(mtd,
|
|
block * s->EraseSize + 8, 8,
|
|
&retlen, (char *)&h0) < 0 ||
|
|
nftl_read_oob(mtd,
|
|
block * s->EraseSize +
|
|
SECTORSIZE + 8, 8,
|
|
&retlen, (char *)&h1) < 0) {
|
|
s->ReplUnitTable[block] = BLOCK_NIL;
|
|
do_format_chain = 1;
|
|
break;
|
|
}
|
|
|
|
logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
|
|
rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
|
|
nb_erases = le32_to_cpu (h1.WearInfo);
|
|
erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
|
|
|
|
is_first_block = !(logical_block >> 15);
|
|
logical_block = logical_block & 0x7fff;
|
|
|
|
/* invalid/free block test */
|
|
if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
|
|
if (chain_length == 0) {
|
|
/* if not currently in a chain, we can handle it safely */
|
|
if (check_and_mark_free_block(s, block) < 0) {
|
|
/* not really free: format it */
|
|
printk("Formatting block %d\n", block);
|
|
if (NFTL_formatblock(s, block) < 0) {
|
|
/* could not format: reserve the block */
|
|
s->ReplUnitTable[block] = BLOCK_RESERVED;
|
|
} else {
|
|
s->ReplUnitTable[block] = BLOCK_FREE;
|
|
}
|
|
} else {
|
|
/* free block: mark it */
|
|
s->ReplUnitTable[block] = BLOCK_FREE;
|
|
}
|
|
/* directly examine the next block. */
|
|
goto examine_ReplUnitTable;
|
|
} else {
|
|
/* the block was in a chain : this is bad. We
|
|
must format all the chain */
|
|
printk("Block %d: free but referenced in chain %d\n",
|
|
block, first_block);
|
|
s->ReplUnitTable[block] = BLOCK_NIL;
|
|
do_format_chain = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* we accept only first blocks here */
|
|
if (chain_length == 0) {
|
|
/* this block is not the first block in chain :
|
|
ignore it, it will be included in a chain
|
|
later, or marked as not explored */
|
|
if (!is_first_block)
|
|
goto examine_ReplUnitTable;
|
|
first_logical_block = logical_block;
|
|
} else {
|
|
if (logical_block != first_logical_block) {
|
|
printk("Block %d: incorrect logical block: %d expected: %d\n",
|
|
block, logical_block, first_logical_block);
|
|
/* the chain is incorrect : we must format it,
|
|
but we need to read it completely */
|
|
do_format_chain = 1;
|
|
}
|
|
if (is_first_block) {
|
|
/* we accept that a block is marked as first
|
|
block while being last block in a chain
|
|
only if the chain is being folded */
|
|
if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
|
|
rep_block != 0xffff) {
|
|
printk("Block %d: incorrectly marked as first block in chain\n",
|
|
block);
|
|
/* the chain is incorrect : we must format it,
|
|
but we need to read it completely */
|
|
do_format_chain = 1;
|
|
} else {
|
|
printk("Block %d: folding in progress - ignoring first block flag\n",
|
|
block);
|
|
}
|
|
}
|
|
}
|
|
chain_length++;
|
|
if (rep_block == 0xffff) {
|
|
/* no more blocks after */
|
|
s->ReplUnitTable[block] = BLOCK_NIL;
|
|
break;
|
|
} else if (rep_block >= s->nb_blocks) {
|
|
printk("Block %d: referencing invalid block %d\n",
|
|
block, rep_block);
|
|
do_format_chain = 1;
|
|
s->ReplUnitTable[block] = BLOCK_NIL;
|
|
break;
|
|
} else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
|
|
/* same problem as previous 'is_first_block' test:
|
|
we accept that the last block of a chain has
|
|
the first_block flag set if folding is in
|
|
progress. We handle here the case where the
|
|
last block appeared first */
|
|
if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
|
|
s->EUNtable[first_logical_block] == rep_block &&
|
|
get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
|
|
/* EUNtable[] will be set after */
|
|
printk("Block %d: folding in progress - ignoring first block flag\n",
|
|
rep_block);
|
|
s->ReplUnitTable[block] = rep_block;
|
|
s->EUNtable[first_logical_block] = BLOCK_NIL;
|
|
} else {
|
|
printk("Block %d: referencing block %d already in another chain\n",
|
|
block, rep_block);
|
|
/* XXX: should handle correctly fold in progress chains */
|
|
do_format_chain = 1;
|
|
s->ReplUnitTable[block] = BLOCK_NIL;
|
|
}
|
|
break;
|
|
} else {
|
|
/* this is OK */
|
|
s->ReplUnitTable[block] = rep_block;
|
|
block = rep_block;
|
|
}
|
|
}
|
|
|
|
/* the chain was completely explored. Now we can decide
|
|
what to do with it */
|
|
if (do_format_chain) {
|
|
/* invalid chain : format it */
|
|
format_chain(s, first_block);
|
|
} else {
|
|
unsigned int first_block1, chain_to_format, chain_length1;
|
|
int fold_mark;
|
|
|
|
/* valid chain : get foldmark */
|
|
fold_mark = get_fold_mark(s, first_block);
|
|
if (fold_mark == 0) {
|
|
/* cannot get foldmark : format the chain */
|
|
printk("Could read foldmark at block %d\n", first_block);
|
|
format_chain(s, first_block);
|
|
} else {
|
|
if (fold_mark == FOLD_MARK_IN_PROGRESS)
|
|
check_sectors_in_chain(s, first_block);
|
|
|
|
/* now handle the case where we find two chains at the
|
|
same virtual address : we select the longer one,
|
|
because the shorter one is the one which was being
|
|
folded if the folding was not done in place */
|
|
first_block1 = s->EUNtable[first_logical_block];
|
|
if (first_block1 != BLOCK_NIL) {
|
|
/* XXX: what to do if same length ? */
|
|
chain_length1 = calc_chain_length(s, first_block1);
|
|
printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
|
|
first_block1, chain_length1, first_block, chain_length);
|
|
|
|
if (chain_length >= chain_length1) {
|
|
chain_to_format = first_block1;
|
|
s->EUNtable[first_logical_block] = first_block;
|
|
} else {
|
|
chain_to_format = first_block;
|
|
}
|
|
format_chain(s, chain_to_format);
|
|
} else {
|
|
s->EUNtable[first_logical_block] = first_block;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
examine_ReplUnitTable:;
|
|
}
|
|
|
|
/* second pass to format unreferenced blocks and init free block count */
|
|
s->numfreeEUNs = 0;
|
|
s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
|
|
|
|
for (block = 0; block < s->nb_blocks; block++) {
|
|
if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
|
|
printk("Unreferenced block %d, formatting it\n", block);
|
|
if (NFTL_formatblock(s, block) < 0)
|
|
s->ReplUnitTable[block] = BLOCK_RESERVED;
|
|
else
|
|
s->ReplUnitTable[block] = BLOCK_FREE;
|
|
}
|
|
if (s->ReplUnitTable[block] == BLOCK_FREE) {
|
|
s->numfreeEUNs++;
|
|
s->LastFreeEUN = block;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|