1585 lines
44 KiB
C
1585 lines
44 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
|
|
* driver
|
|
*
|
|
* Copyright 2019 Analog Devices Inc.
|
|
*/
|
|
#include <linux/bitfield.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/device.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/iio/iio.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/module.h>
|
|
#include <linux/property.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/spi/spi.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
/* register map */
|
|
#define LTC2983_STATUS_REG 0x0000
|
|
#define LTC2983_TEMP_RES_START_REG 0x0010
|
|
#define LTC2983_TEMP_RES_END_REG 0x005F
|
|
#define LTC2983_GLOBAL_CONFIG_REG 0x00F0
|
|
#define LTC2983_MULT_CHANNEL_START_REG 0x00F4
|
|
#define LTC2983_MULT_CHANNEL_END_REG 0x00F7
|
|
#define LTC2983_MUX_CONFIG_REG 0x00FF
|
|
#define LTC2983_CHAN_ASSIGN_START_REG 0x0200
|
|
#define LTC2983_CHAN_ASSIGN_END_REG 0x024F
|
|
#define LTC2983_CUST_SENS_TBL_START_REG 0x0250
|
|
#define LTC2983_CUST_SENS_TBL_END_REG 0x03CF
|
|
|
|
#define LTC2983_DIFFERENTIAL_CHAN_MIN 2
|
|
#define LTC2983_MAX_CHANNELS_NR 20
|
|
#define LTC2983_MIN_CHANNELS_NR 1
|
|
#define LTC2983_SLEEP 0x97
|
|
#define LTC2983_CUSTOM_STEINHART_SIZE 24
|
|
#define LTC2983_CUSTOM_SENSOR_ENTRY_SZ 6
|
|
#define LTC2983_CUSTOM_STEINHART_ENTRY_SZ 4
|
|
|
|
#define LTC2983_CHAN_START_ADDR(chan) \
|
|
(((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
|
|
#define LTC2983_CHAN_RES_ADDR(chan) \
|
|
(((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
|
|
#define LTC2983_THERMOCOUPLE_DIFF_MASK BIT(3)
|
|
#define LTC2983_THERMOCOUPLE_SGL(x) \
|
|
FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
|
|
#define LTC2983_THERMOCOUPLE_OC_CURR_MASK GENMASK(1, 0)
|
|
#define LTC2983_THERMOCOUPLE_OC_CURR(x) \
|
|
FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
|
|
#define LTC2983_THERMOCOUPLE_OC_CHECK_MASK BIT(2)
|
|
#define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
|
|
FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
|
|
|
|
#define LTC2983_THERMISTOR_DIFF_MASK BIT(2)
|
|
#define LTC2983_THERMISTOR_SGL(x) \
|
|
FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
|
|
#define LTC2983_THERMISTOR_R_SHARE_MASK BIT(1)
|
|
#define LTC2983_THERMISTOR_R_SHARE(x) \
|
|
FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
|
|
#define LTC2983_THERMISTOR_C_ROTATE_MASK BIT(0)
|
|
#define LTC2983_THERMISTOR_C_ROTATE(x) \
|
|
FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
|
|
|
|
#define LTC2983_DIODE_DIFF_MASK BIT(2)
|
|
#define LTC2983_DIODE_SGL(x) \
|
|
FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
|
|
#define LTC2983_DIODE_3_CONV_CYCLE_MASK BIT(1)
|
|
#define LTC2983_DIODE_3_CONV_CYCLE(x) \
|
|
FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
|
|
#define LTC2983_DIODE_AVERAGE_ON_MASK BIT(0)
|
|
#define LTC2983_DIODE_AVERAGE_ON(x) \
|
|
FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
|
|
|
|
#define LTC2983_RTD_4_WIRE_MASK BIT(3)
|
|
#define LTC2983_RTD_ROTATION_MASK BIT(1)
|
|
#define LTC2983_RTD_C_ROTATE(x) \
|
|
FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
|
|
#define LTC2983_RTD_KELVIN_R_SENSE_MASK GENMASK(3, 2)
|
|
#define LTC2983_RTD_N_WIRES_MASK GENMASK(3, 2)
|
|
#define LTC2983_RTD_N_WIRES(x) \
|
|
FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
|
|
#define LTC2983_RTD_R_SHARE_MASK BIT(0)
|
|
#define LTC2983_RTD_R_SHARE(x) \
|
|
FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
|
|
|
|
#define LTC2983_COMMON_HARD_FAULT_MASK GENMASK(31, 30)
|
|
#define LTC2983_COMMON_SOFT_FAULT_MASK GENMASK(27, 25)
|
|
|
|
#define LTC2983_STATUS_START_MASK BIT(7)
|
|
#define LTC2983_STATUS_START(x) FIELD_PREP(LTC2983_STATUS_START_MASK, x)
|
|
#define LTC2983_STATUS_UP_MASK GENMASK(7, 6)
|
|
#define LTC2983_STATUS_UP(reg) FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
|
|
|
|
#define LTC2983_STATUS_CHAN_SEL_MASK GENMASK(4, 0)
|
|
#define LTC2983_STATUS_CHAN_SEL(x) \
|
|
FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
|
|
|
|
#define LTC2983_TEMP_UNITS_MASK BIT(2)
|
|
#define LTC2983_TEMP_UNITS(x) FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
|
|
|
|
#define LTC2983_NOTCH_FREQ_MASK GENMASK(1, 0)
|
|
#define LTC2983_NOTCH_FREQ(x) FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
|
|
|
|
#define LTC2983_RES_VALID_MASK BIT(24)
|
|
#define LTC2983_DATA_MASK GENMASK(23, 0)
|
|
#define LTC2983_DATA_SIGN_BIT 23
|
|
|
|
#define LTC2983_CHAN_TYPE_MASK GENMASK(31, 27)
|
|
#define LTC2983_CHAN_TYPE(x) FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
|
|
|
|
/* cold junction for thermocouples and rsense for rtd's and thermistor's */
|
|
#define LTC2983_CHAN_ASSIGN_MASK GENMASK(26, 22)
|
|
#define LTC2983_CHAN_ASSIGN(x) FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
|
|
|
|
#define LTC2983_CUSTOM_LEN_MASK GENMASK(5, 0)
|
|
#define LTC2983_CUSTOM_LEN(x) FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
|
|
|
|
#define LTC2983_CUSTOM_ADDR_MASK GENMASK(11, 6)
|
|
#define LTC2983_CUSTOM_ADDR(x) FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
|
|
|
|
#define LTC2983_THERMOCOUPLE_CFG_MASK GENMASK(21, 18)
|
|
#define LTC2983_THERMOCOUPLE_CFG(x) \
|
|
FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
|
|
#define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK GENMASK(31, 29)
|
|
#define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK GENMASK(28, 25)
|
|
|
|
#define LTC2983_RTD_CFG_MASK GENMASK(21, 18)
|
|
#define LTC2983_RTD_CFG(x) FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
|
|
#define LTC2983_RTD_EXC_CURRENT_MASK GENMASK(17, 14)
|
|
#define LTC2983_RTD_EXC_CURRENT(x) \
|
|
FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
|
|
#define LTC2983_RTD_CURVE_MASK GENMASK(13, 12)
|
|
#define LTC2983_RTD_CURVE(x) FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
|
|
|
|
#define LTC2983_THERMISTOR_CFG_MASK GENMASK(21, 19)
|
|
#define LTC2983_THERMISTOR_CFG(x) \
|
|
FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
|
|
#define LTC2983_THERMISTOR_EXC_CURRENT_MASK GENMASK(18, 15)
|
|
#define LTC2983_THERMISTOR_EXC_CURRENT(x) \
|
|
FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
|
|
|
|
#define LTC2983_DIODE_CFG_MASK GENMASK(26, 24)
|
|
#define LTC2983_DIODE_CFG(x) FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
|
|
#define LTC2983_DIODE_EXC_CURRENT_MASK GENMASK(23, 22)
|
|
#define LTC2983_DIODE_EXC_CURRENT(x) \
|
|
FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
|
|
#define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0)
|
|
#define LTC2983_DIODE_IDEAL_FACTOR(x) \
|
|
FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
|
|
|
|
#define LTC2983_R_SENSE_VAL_MASK GENMASK(26, 0)
|
|
#define LTC2983_R_SENSE_VAL(x) FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
|
|
|
|
#define LTC2983_ADC_SINGLE_ENDED_MASK BIT(26)
|
|
#define LTC2983_ADC_SINGLE_ENDED(x) \
|
|
FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
|
|
|
|
enum {
|
|
LTC2983_SENSOR_THERMOCOUPLE = 1,
|
|
LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9,
|
|
LTC2983_SENSOR_RTD = 10,
|
|
LTC2983_SENSOR_RTD_CUSTOM = 18,
|
|
LTC2983_SENSOR_THERMISTOR = 19,
|
|
LTC2983_SENSOR_THERMISTOR_STEINHART = 26,
|
|
LTC2983_SENSOR_THERMISTOR_CUSTOM = 27,
|
|
LTC2983_SENSOR_DIODE = 28,
|
|
LTC2983_SENSOR_SENSE_RESISTOR = 29,
|
|
LTC2983_SENSOR_DIRECT_ADC = 30,
|
|
};
|
|
|
|
#define to_thermocouple(_sensor) \
|
|
container_of(_sensor, struct ltc2983_thermocouple, sensor)
|
|
|
|
#define to_rtd(_sensor) \
|
|
container_of(_sensor, struct ltc2983_rtd, sensor)
|
|
|
|
#define to_thermistor(_sensor) \
|
|
container_of(_sensor, struct ltc2983_thermistor, sensor)
|
|
|
|
#define to_diode(_sensor) \
|
|
container_of(_sensor, struct ltc2983_diode, sensor)
|
|
|
|
#define to_rsense(_sensor) \
|
|
container_of(_sensor, struct ltc2983_rsense, sensor)
|
|
|
|
#define to_adc(_sensor) \
|
|
container_of(_sensor, struct ltc2983_adc, sensor)
|
|
|
|
struct ltc2983_data {
|
|
struct regmap *regmap;
|
|
struct spi_device *spi;
|
|
struct mutex lock;
|
|
struct completion completion;
|
|
struct iio_chan_spec *iio_chan;
|
|
struct ltc2983_sensor **sensors;
|
|
u32 mux_delay_config;
|
|
u32 filter_notch_freq;
|
|
u16 custom_table_size;
|
|
u8 num_channels;
|
|
u8 iio_channels;
|
|
/*
|
|
* DMA (thus cache coherency maintenance) may require the
|
|
* transfer buffers to live in their own cache lines.
|
|
* Holds the converted temperature
|
|
*/
|
|
__be32 temp __aligned(IIO_DMA_MINALIGN);
|
|
};
|
|
|
|
struct ltc2983_sensor {
|
|
int (*fault_handler)(const struct ltc2983_data *st, const u32 result);
|
|
int (*assign_chan)(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor);
|
|
/* specifies the sensor channel */
|
|
u32 chan;
|
|
/* sensor type */
|
|
u32 type;
|
|
};
|
|
|
|
struct ltc2983_custom_sensor {
|
|
/* raw table sensor data */
|
|
void *table;
|
|
size_t size;
|
|
/* address offset */
|
|
s8 offset;
|
|
bool is_steinhart;
|
|
};
|
|
|
|
struct ltc2983_thermocouple {
|
|
struct ltc2983_sensor sensor;
|
|
struct ltc2983_custom_sensor *custom;
|
|
u32 sensor_config;
|
|
u32 cold_junction_chan;
|
|
};
|
|
|
|
struct ltc2983_rtd {
|
|
struct ltc2983_sensor sensor;
|
|
struct ltc2983_custom_sensor *custom;
|
|
u32 sensor_config;
|
|
u32 r_sense_chan;
|
|
u32 excitation_current;
|
|
u32 rtd_curve;
|
|
};
|
|
|
|
struct ltc2983_thermistor {
|
|
struct ltc2983_sensor sensor;
|
|
struct ltc2983_custom_sensor *custom;
|
|
u32 sensor_config;
|
|
u32 r_sense_chan;
|
|
u32 excitation_current;
|
|
};
|
|
|
|
struct ltc2983_diode {
|
|
struct ltc2983_sensor sensor;
|
|
u32 sensor_config;
|
|
u32 excitation_current;
|
|
u32 ideal_factor_value;
|
|
};
|
|
|
|
struct ltc2983_rsense {
|
|
struct ltc2983_sensor sensor;
|
|
u32 r_sense_val;
|
|
};
|
|
|
|
struct ltc2983_adc {
|
|
struct ltc2983_sensor sensor;
|
|
bool single_ended;
|
|
};
|
|
|
|
/*
|
|
* Convert to Q format numbers. These number's are integers where
|
|
* the number of integer and fractional bits are specified. The resolution
|
|
* is given by 1/@resolution and tell us the number of fractional bits. For
|
|
* instance a resolution of 2^-10 means we have 10 fractional bits.
|
|
*/
|
|
static u32 __convert_to_raw(const u64 val, const u32 resolution)
|
|
{
|
|
u64 __res = val * resolution;
|
|
|
|
/* all values are multiplied by 1000000 to remove the fraction */
|
|
do_div(__res, 1000000);
|
|
|
|
return __res;
|
|
}
|
|
|
|
static u32 __convert_to_raw_sign(const u64 val, const u32 resolution)
|
|
{
|
|
s64 __res = -(s32)val;
|
|
|
|
__res = __convert_to_raw(__res, resolution);
|
|
|
|
return (u32)-__res;
|
|
}
|
|
|
|
static int __ltc2983_fault_handler(const struct ltc2983_data *st,
|
|
const u32 result, const u32 hard_mask,
|
|
const u32 soft_mask)
|
|
{
|
|
const struct device *dev = &st->spi->dev;
|
|
|
|
if (result & hard_mask) {
|
|
dev_err(dev, "Invalid conversion: Sensor HARD fault\n");
|
|
return -EIO;
|
|
} else if (result & soft_mask) {
|
|
/* just print a warning */
|
|
dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __ltc2983_chan_assign_common(const struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor,
|
|
u32 chan_val)
|
|
{
|
|
u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan);
|
|
__be32 __chan_val;
|
|
|
|
chan_val |= LTC2983_CHAN_TYPE(sensor->type);
|
|
dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg,
|
|
chan_val);
|
|
__chan_val = cpu_to_be32(chan_val);
|
|
return regmap_bulk_write(st->regmap, reg, &__chan_val,
|
|
sizeof(__chan_val));
|
|
}
|
|
|
|
static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st,
|
|
struct ltc2983_custom_sensor *custom,
|
|
u32 *chan_val)
|
|
{
|
|
u32 reg;
|
|
u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ :
|
|
LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
|
|
const struct device *dev = &st->spi->dev;
|
|
/*
|
|
* custom->size holds the raw size of the table. However, when
|
|
* configuring the sensor channel, we must write the number of
|
|
* entries of the table minus 1. For steinhart sensors 0 is written
|
|
* since the size is constant!
|
|
*/
|
|
const u8 len = custom->is_steinhart ? 0 :
|
|
(custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1;
|
|
/*
|
|
* Check if the offset was assigned already. It should be for steinhart
|
|
* sensors. When coming from sleep, it should be assigned for all.
|
|
*/
|
|
if (custom->offset < 0) {
|
|
/*
|
|
* This needs to be done again here because, from the moment
|
|
* when this test was done (successfully) for this custom
|
|
* sensor, a steinhart sensor might have been added changing
|
|
* custom_table_size...
|
|
*/
|
|
if (st->custom_table_size + custom->size >
|
|
(LTC2983_CUST_SENS_TBL_END_REG -
|
|
LTC2983_CUST_SENS_TBL_START_REG) + 1) {
|
|
dev_err(dev,
|
|
"Not space left(%d) for new custom sensor(%zu)",
|
|
st->custom_table_size,
|
|
custom->size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
custom->offset = st->custom_table_size /
|
|
LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
|
|
st->custom_table_size += custom->size;
|
|
}
|
|
|
|
reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG;
|
|
|
|
*chan_val |= LTC2983_CUSTOM_LEN(len);
|
|
*chan_val |= LTC2983_CUSTOM_ADDR(custom->offset);
|
|
dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
|
|
reg, custom->offset,
|
|
custom->size);
|
|
/* write custom sensor table */
|
|
return regmap_bulk_write(st->regmap, reg, custom->table, custom->size);
|
|
}
|
|
|
|
static struct ltc2983_custom_sensor *
|
|
__ltc2983_custom_sensor_new(struct ltc2983_data *st, const struct fwnode_handle *fn,
|
|
const char *propname, const bool is_steinhart,
|
|
const u32 resolution, const bool has_signed)
|
|
{
|
|
struct ltc2983_custom_sensor *new_custom;
|
|
struct device *dev = &st->spi->dev;
|
|
/*
|
|
* For custom steinhart, the full u32 is taken. For all the others
|
|
* the MSB is discarded.
|
|
*/
|
|
const u8 n_size = is_steinhart ? 4 : 3;
|
|
u8 index, n_entries;
|
|
int ret;
|
|
|
|
if (is_steinhart)
|
|
n_entries = fwnode_property_count_u32(fn, propname);
|
|
else
|
|
n_entries = fwnode_property_count_u64(fn, propname);
|
|
/* n_entries must be an even number */
|
|
if (!n_entries || (n_entries % 2) != 0) {
|
|
dev_err(dev, "Number of entries either 0 or not even\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL);
|
|
if (!new_custom)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
new_custom->size = n_entries * n_size;
|
|
/* check Steinhart size */
|
|
if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) {
|
|
dev_err(dev, "Steinhart sensors size(%zu) must be %u\n", new_custom->size,
|
|
LTC2983_CUSTOM_STEINHART_SIZE);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
/* Check space on the table. */
|
|
if (st->custom_table_size + new_custom->size >
|
|
(LTC2983_CUST_SENS_TBL_END_REG -
|
|
LTC2983_CUST_SENS_TBL_START_REG) + 1) {
|
|
dev_err(dev, "No space left(%d) for new custom sensor(%zu)",
|
|
st->custom_table_size, new_custom->size);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
/* allocate the table */
|
|
if (is_steinhart)
|
|
new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u32), GFP_KERNEL);
|
|
else
|
|
new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u64), GFP_KERNEL);
|
|
if (!new_custom->table)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Steinhart sensors are configured with raw values in the firmware
|
|
* node. For the other sensors we must convert the value to raw.
|
|
* The odd index's correspond to temperatures and always have 1/1024
|
|
* of resolution. Temperatures also come in Kelvin, so signed values
|
|
* are not possible.
|
|
*/
|
|
if (is_steinhart) {
|
|
ret = fwnode_property_read_u32_array(fn, propname, new_custom->table, n_entries);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
cpu_to_be32_array(new_custom->table, new_custom->table, n_entries);
|
|
} else {
|
|
ret = fwnode_property_read_u64_array(fn, propname, new_custom->table, n_entries);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
for (index = 0; index < n_entries; index++) {
|
|
u64 temp = ((u64 *)new_custom->table)[index];
|
|
|
|
if ((index % 2) != 0)
|
|
temp = __convert_to_raw(temp, 1024);
|
|
else if (has_signed && (s64)temp < 0)
|
|
temp = __convert_to_raw_sign(temp, resolution);
|
|
else
|
|
temp = __convert_to_raw(temp, resolution);
|
|
|
|
put_unaligned_be24(temp, new_custom->table + index * 3);
|
|
}
|
|
}
|
|
|
|
new_custom->is_steinhart = is_steinhart;
|
|
/*
|
|
* This is done to first add all the steinhart sensors to the table,
|
|
* in order to maximize the table usage. If we mix adding steinhart
|
|
* with the other sensors, we might have to do some roundup to make
|
|
* sure that sensor_addr - 0x250(start address) is a multiple of 4
|
|
* (for steinhart), and a multiple of 6 for all the other sensors.
|
|
* Since we have const 24 bytes for steinhart sensors and 24 is
|
|
* also a multiple of 6, we guarantee that the first non-steinhart
|
|
* sensor will sit in a correct address without the need of filling
|
|
* addresses.
|
|
*/
|
|
if (is_steinhart) {
|
|
new_custom->offset = st->custom_table_size /
|
|
LTC2983_CUSTOM_STEINHART_ENTRY_SZ;
|
|
st->custom_table_size += new_custom->size;
|
|
} else {
|
|
/* mark as unset. This is checked later on the assign phase */
|
|
new_custom->offset = -1;
|
|
}
|
|
|
|
return new_custom;
|
|
}
|
|
|
|
static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st,
|
|
const u32 result)
|
|
{
|
|
return __ltc2983_fault_handler(st, result,
|
|
LTC2983_THERMOCOUPLE_HARD_FAULT_MASK,
|
|
LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK);
|
|
}
|
|
|
|
static int ltc2983_common_fault_handler(const struct ltc2983_data *st,
|
|
const u32 result)
|
|
{
|
|
return __ltc2983_fault_handler(st, result,
|
|
LTC2983_COMMON_HARD_FAULT_MASK,
|
|
LTC2983_COMMON_SOFT_FAULT_MASK);
|
|
}
|
|
|
|
static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_thermocouple *thermo = to_thermocouple(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan);
|
|
chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config);
|
|
|
|
if (thermo->custom) {
|
|
int ret;
|
|
|
|
ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom,
|
|
&chan_val);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static int ltc2983_rtd_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_rtd *rtd = to_rtd(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan);
|
|
chan_val |= LTC2983_RTD_CFG(rtd->sensor_config);
|
|
chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current);
|
|
chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve);
|
|
|
|
if (rtd->custom) {
|
|
int ret;
|
|
|
|
ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom,
|
|
&chan_val);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_thermistor *thermistor = to_thermistor(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan);
|
|
chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config);
|
|
chan_val |=
|
|
LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current);
|
|
|
|
if (thermistor->custom) {
|
|
int ret;
|
|
|
|
ret = __ltc2983_chan_custom_sensor_assign(st,
|
|
thermistor->custom,
|
|
&chan_val);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static int ltc2983_diode_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_diode *diode = to_diode(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_DIODE_CFG(diode->sensor_config);
|
|
chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current);
|
|
chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value);
|
|
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_rsense *rsense = to_rsense(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val);
|
|
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static int ltc2983_adc_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_adc *adc = to_adc(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended);
|
|
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static struct ltc2983_sensor *
|
|
ltc2983_thermocouple_new(const struct fwnode_handle *child, struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_thermocouple *thermo;
|
|
struct fwnode_handle *ref;
|
|
u32 oc_current;
|
|
int ret;
|
|
|
|
thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL);
|
|
if (!thermo)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (fwnode_property_read_bool(child, "adi,single-ended"))
|
|
thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1);
|
|
|
|
ret = fwnode_property_read_u32(child, "adi,sensor-oc-current-microamp", &oc_current);
|
|
if (!ret) {
|
|
switch (oc_current) {
|
|
case 10:
|
|
thermo->sensor_config |=
|
|
LTC2983_THERMOCOUPLE_OC_CURR(0);
|
|
break;
|
|
case 100:
|
|
thermo->sensor_config |=
|
|
LTC2983_THERMOCOUPLE_OC_CURR(1);
|
|
break;
|
|
case 500:
|
|
thermo->sensor_config |=
|
|
LTC2983_THERMOCOUPLE_OC_CURR(2);
|
|
break;
|
|
case 1000:
|
|
thermo->sensor_config |=
|
|
LTC2983_THERMOCOUPLE_OC_CURR(3);
|
|
break;
|
|
default:
|
|
dev_err(&st->spi->dev,
|
|
"Invalid open circuit current:%u", oc_current);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1);
|
|
}
|
|
/* validate channel index */
|
|
if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) &&
|
|
sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev,
|
|
"Invalid chann:%d for differential thermocouple",
|
|
sensor->chan);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
ref = fwnode_find_reference(child, "adi,cold-junction-handle", 0);
|
|
if (IS_ERR(ref)) {
|
|
ref = NULL;
|
|
} else {
|
|
ret = fwnode_property_read_u32(ref, "reg", &thermo->cold_junction_chan);
|
|
if (ret) {
|
|
/*
|
|
* This would be catched later but we can just return
|
|
* the error right away.
|
|
*/
|
|
dev_err(&st->spi->dev, "Property reg must be given\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* check custom sensor */
|
|
if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
|
|
const char *propname = "adi,custom-thermocouple";
|
|
|
|
thermo->custom = __ltc2983_custom_sensor_new(st, child,
|
|
propname, false,
|
|
16384, true);
|
|
if (IS_ERR(thermo->custom)) {
|
|
ret = PTR_ERR(thermo->custom);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* set common parameters */
|
|
thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler;
|
|
thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan;
|
|
|
|
fwnode_handle_put(ref);
|
|
return &thermo->sensor;
|
|
|
|
fail:
|
|
fwnode_handle_put(ref);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct ltc2983_sensor *
|
|
ltc2983_rtd_new(const struct fwnode_handle *child, struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_rtd *rtd;
|
|
int ret = 0;
|
|
struct device *dev = &st->spi->dev;
|
|
struct fwnode_handle *ref;
|
|
u32 excitation_current = 0, n_wires = 0;
|
|
|
|
rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL);
|
|
if (!rtd)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ref = fwnode_find_reference(child, "adi,rsense-handle", 0);
|
|
if (IS_ERR(ref)) {
|
|
dev_err(dev, "Property adi,rsense-handle missing or invalid");
|
|
return ERR_CAST(ref);
|
|
}
|
|
|
|
ret = fwnode_property_read_u32(ref, "reg", &rtd->r_sense_chan);
|
|
if (ret) {
|
|
dev_err(dev, "Property reg must be given\n");
|
|
goto fail;
|
|
}
|
|
|
|
ret = fwnode_property_read_u32(child, "adi,number-of-wires", &n_wires);
|
|
if (!ret) {
|
|
switch (n_wires) {
|
|
case 2:
|
|
rtd->sensor_config = LTC2983_RTD_N_WIRES(0);
|
|
break;
|
|
case 3:
|
|
rtd->sensor_config = LTC2983_RTD_N_WIRES(1);
|
|
break;
|
|
case 4:
|
|
rtd->sensor_config = LTC2983_RTD_N_WIRES(2);
|
|
break;
|
|
case 5:
|
|
/* 4 wires, Kelvin Rsense */
|
|
rtd->sensor_config = LTC2983_RTD_N_WIRES(3);
|
|
break;
|
|
default:
|
|
dev_err(dev, "Invalid number of wires:%u\n", n_wires);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (fwnode_property_read_bool(child, "adi,rsense-share")) {
|
|
/* Current rotation is only available with rsense sharing */
|
|
if (fwnode_property_read_bool(child, "adi,current-rotate")) {
|
|
if (n_wires == 2 || n_wires == 3) {
|
|
dev_err(dev,
|
|
"Rotation not allowed for 2/3 Wire RTDs");
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1);
|
|
} else {
|
|
rtd->sensor_config |= LTC2983_RTD_R_SHARE(1);
|
|
}
|
|
}
|
|
/*
|
|
* rtd channel indexes are a bit more complicated to validate.
|
|
* For 4wire RTD with rotation, the channel selection cannot be
|
|
* >=19 since the chann + 1 is used in this configuration.
|
|
* For 4wire RTDs with kelvin rsense, the rsense channel cannot be
|
|
* <=1 since chanel - 1 and channel - 2 are used.
|
|
*/
|
|
if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) {
|
|
/* 4-wire */
|
|
u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN,
|
|
max = LTC2983_MAX_CHANNELS_NR;
|
|
|
|
if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK)
|
|
max = LTC2983_MAX_CHANNELS_NR - 1;
|
|
|
|
if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK)
|
|
== LTC2983_RTD_KELVIN_R_SENSE_MASK) &&
|
|
(rtd->r_sense_chan <= min)) {
|
|
/* kelvin rsense*/
|
|
dev_err(dev,
|
|
"Invalid rsense chann:%d to use in kelvin rsense",
|
|
rtd->r_sense_chan);
|
|
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
if (sensor->chan < min || sensor->chan > max) {
|
|
dev_err(dev, "Invalid chann:%d for the rtd config",
|
|
sensor->chan);
|
|
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
} else {
|
|
/* same as differential case */
|
|
if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev,
|
|
"Invalid chann:%d for RTD", sensor->chan);
|
|
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* check custom sensor */
|
|
if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) {
|
|
rtd->custom = __ltc2983_custom_sensor_new(st, child,
|
|
"adi,custom-rtd",
|
|
false, 2048, false);
|
|
if (IS_ERR(rtd->custom)) {
|
|
ret = PTR_ERR(rtd->custom);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* set common parameters */
|
|
rtd->sensor.fault_handler = ltc2983_common_fault_handler;
|
|
rtd->sensor.assign_chan = ltc2983_rtd_assign_chan;
|
|
|
|
ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
|
|
&excitation_current);
|
|
if (ret) {
|
|
/* default to 5uA */
|
|
rtd->excitation_current = 1;
|
|
} else {
|
|
switch (excitation_current) {
|
|
case 5:
|
|
rtd->excitation_current = 0x01;
|
|
break;
|
|
case 10:
|
|
rtd->excitation_current = 0x02;
|
|
break;
|
|
case 25:
|
|
rtd->excitation_current = 0x03;
|
|
break;
|
|
case 50:
|
|
rtd->excitation_current = 0x04;
|
|
break;
|
|
case 100:
|
|
rtd->excitation_current = 0x05;
|
|
break;
|
|
case 250:
|
|
rtd->excitation_current = 0x06;
|
|
break;
|
|
case 500:
|
|
rtd->excitation_current = 0x07;
|
|
break;
|
|
case 1000:
|
|
rtd->excitation_current = 0x08;
|
|
break;
|
|
default:
|
|
dev_err(&st->spi->dev,
|
|
"Invalid value for excitation current(%u)",
|
|
excitation_current);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fwnode_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve);
|
|
|
|
fwnode_handle_put(ref);
|
|
return &rtd->sensor;
|
|
fail:
|
|
fwnode_handle_put(ref);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct ltc2983_sensor *
|
|
ltc2983_thermistor_new(const struct fwnode_handle *child, struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_thermistor *thermistor;
|
|
struct device *dev = &st->spi->dev;
|
|
struct fwnode_handle *ref;
|
|
u32 excitation_current = 0;
|
|
int ret = 0;
|
|
|
|
thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL);
|
|
if (!thermistor)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ref = fwnode_find_reference(child, "adi,rsense-handle", 0);
|
|
if (IS_ERR(ref)) {
|
|
dev_err(dev, "Property adi,rsense-handle missing or invalid");
|
|
return ERR_CAST(ref);
|
|
}
|
|
|
|
ret = fwnode_property_read_u32(ref, "reg", &thermistor->r_sense_chan);
|
|
if (ret) {
|
|
dev_err(dev, "rsense channel must be configured...\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (fwnode_property_read_bool(child, "adi,single-ended")) {
|
|
thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1);
|
|
} else if (fwnode_property_read_bool(child, "adi,rsense-share")) {
|
|
/* rotation is only possible if sharing rsense */
|
|
if (fwnode_property_read_bool(child, "adi,current-rotate"))
|
|
thermistor->sensor_config =
|
|
LTC2983_THERMISTOR_C_ROTATE(1);
|
|
else
|
|
thermistor->sensor_config =
|
|
LTC2983_THERMISTOR_R_SHARE(1);
|
|
}
|
|
/* validate channel index */
|
|
if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) &&
|
|
sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev,
|
|
"Invalid chann:%d for differential thermistor",
|
|
sensor->chan);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
/* check custom sensor */
|
|
if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) {
|
|
bool steinhart = false;
|
|
const char *propname;
|
|
|
|
if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) {
|
|
steinhart = true;
|
|
propname = "adi,custom-steinhart";
|
|
} else {
|
|
propname = "adi,custom-thermistor";
|
|
}
|
|
|
|
thermistor->custom = __ltc2983_custom_sensor_new(st, child,
|
|
propname,
|
|
steinhart,
|
|
64, false);
|
|
if (IS_ERR(thermistor->custom)) {
|
|
ret = PTR_ERR(thermistor->custom);
|
|
goto fail;
|
|
}
|
|
}
|
|
/* set common parameters */
|
|
thermistor->sensor.fault_handler = ltc2983_common_fault_handler;
|
|
thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan;
|
|
|
|
ret = fwnode_property_read_u32(child, "adi,excitation-current-nanoamp",
|
|
&excitation_current);
|
|
if (ret) {
|
|
/* Auto range is not allowed for custom sensors */
|
|
if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
|
|
/* default to 1uA */
|
|
thermistor->excitation_current = 0x03;
|
|
else
|
|
/* default to auto-range */
|
|
thermistor->excitation_current = 0x0c;
|
|
} else {
|
|
switch (excitation_current) {
|
|
case 0:
|
|
/* auto range */
|
|
if (sensor->type >=
|
|
LTC2983_SENSOR_THERMISTOR_STEINHART) {
|
|
dev_err(&st->spi->dev,
|
|
"Auto Range not allowed for custom sensors\n");
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
thermistor->excitation_current = 0x0c;
|
|
break;
|
|
case 250:
|
|
thermistor->excitation_current = 0x01;
|
|
break;
|
|
case 500:
|
|
thermistor->excitation_current = 0x02;
|
|
break;
|
|
case 1000:
|
|
thermistor->excitation_current = 0x03;
|
|
break;
|
|
case 5000:
|
|
thermistor->excitation_current = 0x04;
|
|
break;
|
|
case 10000:
|
|
thermistor->excitation_current = 0x05;
|
|
break;
|
|
case 25000:
|
|
thermistor->excitation_current = 0x06;
|
|
break;
|
|
case 50000:
|
|
thermistor->excitation_current = 0x07;
|
|
break;
|
|
case 100000:
|
|
thermistor->excitation_current = 0x08;
|
|
break;
|
|
case 250000:
|
|
thermistor->excitation_current = 0x09;
|
|
break;
|
|
case 500000:
|
|
thermistor->excitation_current = 0x0a;
|
|
break;
|
|
case 1000000:
|
|
thermistor->excitation_current = 0x0b;
|
|
break;
|
|
default:
|
|
dev_err(&st->spi->dev,
|
|
"Invalid value for excitation current(%u)",
|
|
excitation_current);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fwnode_handle_put(ref);
|
|
return &thermistor->sensor;
|
|
fail:
|
|
fwnode_handle_put(ref);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct ltc2983_sensor *
|
|
ltc2983_diode_new(const struct fwnode_handle *child, const struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_diode *diode;
|
|
u32 temp = 0, excitation_current = 0;
|
|
int ret;
|
|
|
|
diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL);
|
|
if (!diode)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (fwnode_property_read_bool(child, "adi,single-ended"))
|
|
diode->sensor_config = LTC2983_DIODE_SGL(1);
|
|
|
|
if (fwnode_property_read_bool(child, "adi,three-conversion-cycles"))
|
|
diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1);
|
|
|
|
if (fwnode_property_read_bool(child, "adi,average-on"))
|
|
diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1);
|
|
|
|
/* validate channel index */
|
|
if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) &&
|
|
sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev,
|
|
"Invalid chann:%d for differential thermistor",
|
|
sensor->chan);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
/* set common parameters */
|
|
diode->sensor.fault_handler = ltc2983_common_fault_handler;
|
|
diode->sensor.assign_chan = ltc2983_diode_assign_chan;
|
|
|
|
ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
|
|
&excitation_current);
|
|
if (!ret) {
|
|
switch (excitation_current) {
|
|
case 10:
|
|
diode->excitation_current = 0x00;
|
|
break;
|
|
case 20:
|
|
diode->excitation_current = 0x01;
|
|
break;
|
|
case 40:
|
|
diode->excitation_current = 0x02;
|
|
break;
|
|
case 80:
|
|
diode->excitation_current = 0x03;
|
|
break;
|
|
default:
|
|
dev_err(&st->spi->dev,
|
|
"Invalid value for excitation current(%u)",
|
|
excitation_current);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
}
|
|
|
|
fwnode_property_read_u32(child, "adi,ideal-factor-value", &temp);
|
|
|
|
/* 2^20 resolution */
|
|
diode->ideal_factor_value = __convert_to_raw(temp, 1048576);
|
|
|
|
return &diode->sensor;
|
|
}
|
|
|
|
static struct ltc2983_sensor *ltc2983_r_sense_new(struct fwnode_handle *child,
|
|
struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_rsense *rsense;
|
|
int ret;
|
|
u32 temp;
|
|
|
|
rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL);
|
|
if (!rsense)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* validate channel index */
|
|
if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev, "Invalid chann:%d for r_sense",
|
|
sensor->chan);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
ret = fwnode_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp);
|
|
if (ret) {
|
|
dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
/*
|
|
* Times 1000 because we have milli-ohms and __convert_to_raw
|
|
* expects scales of 1000000 which are used for all other
|
|
* properties.
|
|
* 2^10 resolution
|
|
*/
|
|
rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024);
|
|
|
|
/* set common parameters */
|
|
rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan;
|
|
|
|
return &rsense->sensor;
|
|
}
|
|
|
|
static struct ltc2983_sensor *ltc2983_adc_new(struct fwnode_handle *child,
|
|
struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_adc *adc;
|
|
|
|
adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL);
|
|
if (!adc)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (fwnode_property_read_bool(child, "adi,single-ended"))
|
|
adc->single_ended = true;
|
|
|
|
if (!adc->single_ended &&
|
|
sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n",
|
|
sensor->chan);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
/* set common parameters */
|
|
adc->sensor.assign_chan = ltc2983_adc_assign_chan;
|
|
adc->sensor.fault_handler = ltc2983_common_fault_handler;
|
|
|
|
return &adc->sensor;
|
|
}
|
|
|
|
static int ltc2983_chan_read(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor, int *val)
|
|
{
|
|
u32 start_conversion = 0;
|
|
int ret;
|
|
unsigned long time;
|
|
|
|
start_conversion = LTC2983_STATUS_START(true);
|
|
start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan);
|
|
dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n",
|
|
sensor->chan, start_conversion);
|
|
/* start conversion */
|
|
ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reinit_completion(&st->completion);
|
|
/*
|
|
* wait for conversion to complete.
|
|
* 300 ms should be more than enough to complete the conversion.
|
|
* Depending on the sensor configuration, there are 2/3 conversions
|
|
* cycles of 82ms.
|
|
*/
|
|
time = wait_for_completion_timeout(&st->completion,
|
|
msecs_to_jiffies(300));
|
|
if (!time) {
|
|
dev_warn(&st->spi->dev, "Conversion timed out\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* read the converted data */
|
|
ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan),
|
|
&st->temp, sizeof(st->temp));
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = __be32_to_cpu(st->temp);
|
|
|
|
if (!(LTC2983_RES_VALID_MASK & *val)) {
|
|
dev_err(&st->spi->dev, "Invalid conversion detected\n");
|
|
return -EIO;
|
|
}
|
|
|
|
ret = sensor->fault_handler(st, *val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT);
|
|
return 0;
|
|
}
|
|
|
|
static int ltc2983_read_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
int *val, int *val2, long mask)
|
|
{
|
|
struct ltc2983_data *st = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
/* sanity check */
|
|
if (chan->address >= st->num_channels) {
|
|
dev_err(&st->spi->dev, "Invalid chan address:%ld",
|
|
chan->address);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_RAW:
|
|
mutex_lock(&st->lock);
|
|
ret = ltc2983_chan_read(st, st->sensors[chan->address], val);
|
|
mutex_unlock(&st->lock);
|
|
return ret ?: IIO_VAL_INT;
|
|
case IIO_CHAN_INFO_SCALE:
|
|
switch (chan->type) {
|
|
case IIO_TEMP:
|
|
/* value in milli degrees */
|
|
*val = 1000;
|
|
/* 2^10 */
|
|
*val2 = 1024;
|
|
return IIO_VAL_FRACTIONAL;
|
|
case IIO_VOLTAGE:
|
|
/* value in millivolt */
|
|
*val = 1000;
|
|
/* 2^21 */
|
|
*val2 = 2097152;
|
|
return IIO_VAL_FRACTIONAL;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int ltc2983_reg_access(struct iio_dev *indio_dev,
|
|
unsigned int reg,
|
|
unsigned int writeval,
|
|
unsigned int *readval)
|
|
{
|
|
struct ltc2983_data *st = iio_priv(indio_dev);
|
|
|
|
if (readval)
|
|
return regmap_read(st->regmap, reg, readval);
|
|
else
|
|
return regmap_write(st->regmap, reg, writeval);
|
|
}
|
|
|
|
static irqreturn_t ltc2983_irq_handler(int irq, void *data)
|
|
{
|
|
struct ltc2983_data *st = data;
|
|
|
|
complete(&st->completion);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#define LTC2983_CHAN(__type, index, __address) ({ \
|
|
struct iio_chan_spec __chan = { \
|
|
.type = __type, \
|
|
.indexed = 1, \
|
|
.channel = index, \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
|
|
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
|
|
.address = __address, \
|
|
}; \
|
|
__chan; \
|
|
})
|
|
|
|
static int ltc2983_parse_dt(struct ltc2983_data *st)
|
|
{
|
|
struct device *dev = &st->spi->dev;
|
|
struct fwnode_handle *child;
|
|
int ret = 0, chan = 0, channel_avail_mask = 0;
|
|
|
|
device_property_read_u32(dev, "adi,mux-delay-config-us", &st->mux_delay_config);
|
|
|
|
device_property_read_u32(dev, "adi,filter-notch-freq", &st->filter_notch_freq);
|
|
|
|
st->num_channels = device_get_child_node_count(dev);
|
|
if (!st->num_channels) {
|
|
dev_err(&st->spi->dev, "At least one channel must be given!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors),
|
|
GFP_KERNEL);
|
|
if (!st->sensors)
|
|
return -ENOMEM;
|
|
|
|
st->iio_channels = st->num_channels;
|
|
device_for_each_child_node(dev, child) {
|
|
struct ltc2983_sensor sensor;
|
|
|
|
ret = fwnode_property_read_u32(child, "reg", &sensor.chan);
|
|
if (ret) {
|
|
dev_err(dev, "reg property must given for child nodes\n");
|
|
goto put_child;
|
|
}
|
|
|
|
/* check if we have a valid channel */
|
|
if (sensor.chan < LTC2983_MIN_CHANNELS_NR ||
|
|
sensor.chan > LTC2983_MAX_CHANNELS_NR) {
|
|
ret = -EINVAL;
|
|
dev_err(dev, "chan:%d must be from %u to %u\n", sensor.chan,
|
|
LTC2983_MIN_CHANNELS_NR, LTC2983_MAX_CHANNELS_NR);
|
|
goto put_child;
|
|
} else if (channel_avail_mask & BIT(sensor.chan)) {
|
|
ret = -EINVAL;
|
|
dev_err(dev, "chan:%d already in use\n", sensor.chan);
|
|
goto put_child;
|
|
}
|
|
|
|
ret = fwnode_property_read_u32(child, "adi,sensor-type", &sensor.type);
|
|
if (ret) {
|
|
dev_err(dev,
|
|
"adi,sensor-type property must given for child nodes\n");
|
|
goto put_child;
|
|
}
|
|
|
|
dev_dbg(dev, "Create new sensor, type %u, chann %u",
|
|
sensor.type,
|
|
sensor.chan);
|
|
|
|
if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE &&
|
|
sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
|
|
st->sensors[chan] = ltc2983_thermocouple_new(child, st,
|
|
&sensor);
|
|
} else if (sensor.type >= LTC2983_SENSOR_RTD &&
|
|
sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) {
|
|
st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor);
|
|
} else if (sensor.type >= LTC2983_SENSOR_THERMISTOR &&
|
|
sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) {
|
|
st->sensors[chan] = ltc2983_thermistor_new(child, st,
|
|
&sensor);
|
|
} else if (sensor.type == LTC2983_SENSOR_DIODE) {
|
|
st->sensors[chan] = ltc2983_diode_new(child, st,
|
|
&sensor);
|
|
} else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) {
|
|
st->sensors[chan] = ltc2983_r_sense_new(child, st,
|
|
&sensor);
|
|
/* don't add rsense to iio */
|
|
st->iio_channels--;
|
|
} else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) {
|
|
st->sensors[chan] = ltc2983_adc_new(child, st, &sensor);
|
|
} else {
|
|
dev_err(dev, "Unknown sensor type %d\n", sensor.type);
|
|
ret = -EINVAL;
|
|
goto put_child;
|
|
}
|
|
|
|
if (IS_ERR(st->sensors[chan])) {
|
|
dev_err(dev, "Failed to create sensor %ld",
|
|
PTR_ERR(st->sensors[chan]));
|
|
ret = PTR_ERR(st->sensors[chan]);
|
|
goto put_child;
|
|
}
|
|
/* set generic sensor parameters */
|
|
st->sensors[chan]->chan = sensor.chan;
|
|
st->sensors[chan]->type = sensor.type;
|
|
|
|
channel_avail_mask |= BIT(sensor.chan);
|
|
chan++;
|
|
}
|
|
|
|
return 0;
|
|
put_child:
|
|
fwnode_handle_put(child);
|
|
return ret;
|
|
}
|
|
|
|
static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio)
|
|
{
|
|
u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status;
|
|
int ret;
|
|
|
|
/* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
|
|
ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status,
|
|
LTC2983_STATUS_UP(status) == 1, 25000,
|
|
25000 * 10);
|
|
if (ret) {
|
|
dev_err(&st->spi->dev, "Device startup timed out\n");
|
|
return ret;
|
|
}
|
|
|
|
st->iio_chan = devm_kzalloc(&st->spi->dev,
|
|
st->iio_channels * sizeof(*st->iio_chan),
|
|
GFP_KERNEL);
|
|
|
|
if (!st->iio_chan)
|
|
return -ENOMEM;
|
|
|
|
ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG,
|
|
LTC2983_NOTCH_FREQ_MASK,
|
|
LTC2983_NOTCH_FREQ(st->filter_notch_freq));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG,
|
|
st->mux_delay_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (chan = 0; chan < st->num_channels; chan++) {
|
|
u32 chan_type = 0, *iio_chan;
|
|
|
|
ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* The assign_iio flag is necessary for when the device is
|
|
* coming out of sleep. In that case, we just need to
|
|
* re-configure the device channels.
|
|
* We also don't assign iio channels for rsense.
|
|
*/
|
|
if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR ||
|
|
!assign_iio)
|
|
continue;
|
|
|
|
/* assign iio channel */
|
|
if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) {
|
|
chan_type = IIO_TEMP;
|
|
iio_chan = &iio_chan_t;
|
|
} else {
|
|
chan_type = IIO_VOLTAGE;
|
|
iio_chan = &iio_chan_v;
|
|
}
|
|
|
|
/*
|
|
* add chan as the iio .address so that, we can directly
|
|
* reference the sensor given the iio_chan_spec
|
|
*/
|
|
st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++,
|
|
chan);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct regmap_range ltc2983_reg_ranges[] = {
|
|
regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG),
|
|
regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG),
|
|
regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG),
|
|
regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG,
|
|
LTC2983_MULT_CHANNEL_END_REG),
|
|
regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG),
|
|
regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG,
|
|
LTC2983_CHAN_ASSIGN_END_REG),
|
|
regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG,
|
|
LTC2983_CUST_SENS_TBL_END_REG),
|
|
};
|
|
|
|
static const struct regmap_access_table ltc2983_reg_table = {
|
|
.yes_ranges = ltc2983_reg_ranges,
|
|
.n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges),
|
|
};
|
|
|
|
/*
|
|
* The reg_bits are actually 12 but the device needs the first *complete*
|
|
* byte for the command (R/W).
|
|
*/
|
|
static const struct regmap_config ltc2983_regmap_config = {
|
|
.reg_bits = 24,
|
|
.val_bits = 8,
|
|
.wr_table = <c2983_reg_table,
|
|
.rd_table = <c2983_reg_table,
|
|
.read_flag_mask = GENMASK(1, 0),
|
|
.write_flag_mask = BIT(1),
|
|
};
|
|
|
|
static const struct iio_info ltc2983_iio_info = {
|
|
.read_raw = ltc2983_read_raw,
|
|
.debugfs_reg_access = ltc2983_reg_access,
|
|
};
|
|
|
|
static int ltc2983_probe(struct spi_device *spi)
|
|
{
|
|
struct ltc2983_data *st;
|
|
struct iio_dev *indio_dev;
|
|
struct gpio_desc *gpio;
|
|
const char *name = spi_get_device_id(spi)->name;
|
|
int ret;
|
|
|
|
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
|
|
if (!indio_dev)
|
|
return -ENOMEM;
|
|
|
|
st = iio_priv(indio_dev);
|
|
|
|
st->regmap = devm_regmap_init_spi(spi, <c2983_regmap_config);
|
|
if (IS_ERR(st->regmap)) {
|
|
dev_err(&spi->dev, "Failed to initialize regmap\n");
|
|
return PTR_ERR(st->regmap);
|
|
}
|
|
|
|
mutex_init(&st->lock);
|
|
init_completion(&st->completion);
|
|
st->spi = spi;
|
|
spi_set_drvdata(spi, st);
|
|
|
|
ret = ltc2983_parse_dt(st);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gpio = devm_gpiod_get_optional(&st->spi->dev, "reset", GPIOD_OUT_HIGH);
|
|
if (IS_ERR(gpio))
|
|
return PTR_ERR(gpio);
|
|
|
|
if (gpio) {
|
|
/* bring the device out of reset */
|
|
usleep_range(1000, 1200);
|
|
gpiod_set_value_cansleep(gpio, 0);
|
|
}
|
|
|
|
ret = ltc2983_setup(st, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler,
|
|
IRQF_TRIGGER_RISING, name, st);
|
|
if (ret) {
|
|
dev_err(&spi->dev, "failed to request an irq, %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
indio_dev->name = name;
|
|
indio_dev->num_channels = st->iio_channels;
|
|
indio_dev->channels = st->iio_chan;
|
|
indio_dev->modes = INDIO_DIRECT_MODE;
|
|
indio_dev->info = <c2983_iio_info;
|
|
|
|
return devm_iio_device_register(&spi->dev, indio_dev);
|
|
}
|
|
|
|
static int ltc2983_resume(struct device *dev)
|
|
{
|
|
struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
|
|
int dummy;
|
|
|
|
/* dummy read to bring the device out of sleep */
|
|
regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy);
|
|
/* we need to re-assign the channels */
|
|
return ltc2983_setup(st, false);
|
|
}
|
|
|
|
static int ltc2983_suspend(struct device *dev)
|
|
{
|
|
struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
|
|
|
|
return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP);
|
|
}
|
|
|
|
static DEFINE_SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend,
|
|
ltc2983_resume);
|
|
|
|
static const struct spi_device_id ltc2983_id_table[] = {
|
|
{ "ltc2983" },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(spi, ltc2983_id_table);
|
|
|
|
static const struct of_device_id ltc2983_of_match[] = {
|
|
{ .compatible = "adi,ltc2983" },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, ltc2983_of_match);
|
|
|
|
static struct spi_driver ltc2983_driver = {
|
|
.driver = {
|
|
.name = "ltc2983",
|
|
.of_match_table = ltc2983_of_match,
|
|
.pm = pm_sleep_ptr(<c2983_pm_ops),
|
|
},
|
|
.probe = ltc2983_probe,
|
|
.id_table = ltc2983_id_table,
|
|
};
|
|
|
|
module_spi_driver(ltc2983_driver);
|
|
|
|
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
|
|
MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
|
|
MODULE_LICENSE("GPL");
|