OpenCloudOS-Kernel/drivers/mmc/core/core.c

2361 lines
59 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mmc/core/core.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
* SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
* MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/leds.h>
#include <linux/scatterlist.h>
#include <linux/log2.h>
#include <linux/pm_runtime.h>
#include <linux/pm_wakeup.h>
#include <linux/suspend.h>
#include <linux/fault-inject.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/slot-gpio.h>
#define CREATE_TRACE_POINTS
#include <trace/events/mmc.h>
#include "core.h"
#include "card.h"
#include "crypto.h"
#include "bus.h"
#include "host.h"
#include "sdio_bus.h"
#include "pwrseq.h"
#include "mmc_ops.h"
#include "sd_ops.h"
#include "sdio_ops.h"
/* The max erase timeout, used when host->max_busy_timeout isn't specified */
#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
#define SD_DISCARD_TIMEOUT_MS (250)
static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
/*
* Enabling software CRCs on the data blocks can be a significant (30%)
* performance cost, and for other reasons may not always be desired.
* So we allow it to be disabled.
*/
bool use_spi_crc = 1;
module_param(use_spi_crc, bool, 0);
static int mmc_schedule_delayed_work(struct delayed_work *work,
unsigned long delay)
{
/*
* We use the system_freezable_wq, because of two reasons.
* First, it allows several works (not the same work item) to be
* executed simultaneously. Second, the queue becomes frozen when
* userspace becomes frozen during system PM.
*/
return queue_delayed_work(system_freezable_wq, work, delay);
}
#ifdef CONFIG_FAIL_MMC_REQUEST
/*
* Internal function. Inject random data errors.
* If mmc_data is NULL no errors are injected.
*/
static void mmc_should_fail_request(struct mmc_host *host,
struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
static const int data_errors[] = {
-ETIMEDOUT,
-EILSEQ,
-EIO,
};
if (!data)
return;
if ((cmd && cmd->error) || data->error ||
!should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
return;
data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
}
#else /* CONFIG_FAIL_MMC_REQUEST */
static inline void mmc_should_fail_request(struct mmc_host *host,
struct mmc_request *mrq)
{
}
#endif /* CONFIG_FAIL_MMC_REQUEST */
static inline void mmc_complete_cmd(struct mmc_request *mrq)
{
if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
complete_all(&mrq->cmd_completion);
}
void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
{
if (!mrq->cap_cmd_during_tfr)
return;
mmc_complete_cmd(mrq);
pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
mmc_hostname(host), mrq->cmd->opcode);
}
EXPORT_SYMBOL(mmc_command_done);
/**
* mmc_request_done - finish processing an MMC request
* @host: MMC host which completed request
* @mrq: MMC request which request
*
* MMC drivers should call this function when they have completed
* their processing of a request.
*/
void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
int err = cmd->error;
/* Flag re-tuning needed on CRC errors */
if (!mmc_op_tuning(cmd->opcode) &&
!host->retune_crc_disable &&
(err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
(mrq->data && mrq->data->error == -EILSEQ) ||
(mrq->stop && mrq->stop->error == -EILSEQ)))
mmc_retune_needed(host);
if (err && cmd->retries && mmc_host_is_spi(host)) {
if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
cmd->retries = 0;
}
if (host->ongoing_mrq == mrq)
host->ongoing_mrq = NULL;
mmc_complete_cmd(mrq);
trace_mmc_request_done(host, mrq);
/*
* We list various conditions for the command to be considered
* properly done:
*
* - There was no error, OK fine then
* - We are not doing some kind of retry
* - The card was removed (...so just complete everything no matter
* if there are errors or retries)
*/
if (!err || !cmd->retries || mmc_card_removed(host->card)) {
mmc_should_fail_request(host, mrq);
if (!host->ongoing_mrq)
led_trigger_event(host->led, LED_OFF);
if (mrq->sbc) {
pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
mmc_hostname(host), mrq->sbc->opcode,
mrq->sbc->error,
mrq->sbc->resp[0], mrq->sbc->resp[1],
mrq->sbc->resp[2], mrq->sbc->resp[3]);
}
pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
mmc_hostname(host), cmd->opcode, err,
cmd->resp[0], cmd->resp[1],
cmd->resp[2], cmd->resp[3]);
if (mrq->data) {
pr_debug("%s: %d bytes transferred: %d\n",
mmc_hostname(host),
mrq->data->bytes_xfered, mrq->data->error);
}
if (mrq->stop) {
pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
mmc_hostname(host), mrq->stop->opcode,
mrq->stop->error,
mrq->stop->resp[0], mrq->stop->resp[1],
mrq->stop->resp[2], mrq->stop->resp[3]);
}
}
/*
* Request starter must handle retries - see
* mmc_wait_for_req_done().
*/
if (mrq->done)
mrq->done(mrq);
}
EXPORT_SYMBOL(mmc_request_done);
static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
int err;
/* Assumes host controller has been runtime resumed by mmc_claim_host */
err = mmc_retune(host);
if (err) {
mrq->cmd->error = err;
mmc_request_done(host, mrq);
return;
}
/*
* For sdio rw commands we must wait for card busy otherwise some
* sdio devices won't work properly.
* And bypass I/O abort, reset and bus suspend operations.
*/
if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
host->ops->card_busy) {
int tries = 500; /* Wait aprox 500ms at maximum */
while (host->ops->card_busy(host) && --tries)
mmc_delay(1);
if (tries == 0) {
mrq->cmd->error = -EBUSY;
mmc_request_done(host, mrq);
return;
}
}
if (mrq->cap_cmd_during_tfr) {
host->ongoing_mrq = mrq;
/*
* Retry path could come through here without having waiting on
* cmd_completion, so ensure it is reinitialised.
*/
reinit_completion(&mrq->cmd_completion);
}
trace_mmc_request_start(host, mrq);
if (host->cqe_on)
host->cqe_ops->cqe_off(host);
host->ops->request(host, mrq);
}
static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
bool cqe)
{
if (mrq->sbc) {
pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
mmc_hostname(host), mrq->sbc->opcode,
mrq->sbc->arg, mrq->sbc->flags);
}
if (mrq->cmd) {
pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
mmc_hostname(host), cqe ? "CQE direct " : "",
mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
} else if (cqe) {
pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
}
if (mrq->data) {
pr_debug("%s: blksz %d blocks %d flags %08x "
"tsac %d ms nsac %d\n",
mmc_hostname(host), mrq->data->blksz,
mrq->data->blocks, mrq->data->flags,
mrq->data->timeout_ns / 1000000,
mrq->data->timeout_clks);
}
if (mrq->stop) {
pr_debug("%s: CMD%u arg %08x flags %08x\n",
mmc_hostname(host), mrq->stop->opcode,
mrq->stop->arg, mrq->stop->flags);
}
}
static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
{
unsigned int i, sz = 0;
struct scatterlist *sg;
if (mrq->cmd) {
mrq->cmd->error = 0;
mrq->cmd->mrq = mrq;
mrq->cmd->data = mrq->data;
}
if (mrq->sbc) {
mrq->sbc->error = 0;
mrq->sbc->mrq = mrq;
}
if (mrq->data) {
if (mrq->data->blksz > host->max_blk_size ||
mrq->data->blocks > host->max_blk_count ||
mrq->data->blocks * mrq->data->blksz > host->max_req_size)
return -EINVAL;
for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
sz += sg->length;
if (sz != mrq->data->blocks * mrq->data->blksz)
return -EINVAL;
mrq->data->error = 0;
mrq->data->mrq = mrq;
if (mrq->stop) {
mrq->data->stop = mrq->stop;
mrq->stop->error = 0;
mrq->stop->mrq = mrq;
}
}
return 0;
}
int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
int err;
init_completion(&mrq->cmd_completion);
mmc_retune_hold(host);
if (mmc_card_removed(host->card))
return -ENOMEDIUM;
mmc_mrq_pr_debug(host, mrq, false);
WARN_ON(!host->claimed);
err = mmc_mrq_prep(host, mrq);
if (err)
return err;
led_trigger_event(host->led, LED_FULL);
__mmc_start_request(host, mrq);
return 0;
}
EXPORT_SYMBOL(mmc_start_request);
static void mmc_wait_done(struct mmc_request *mrq)
{
complete(&mrq->completion);
}
static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
{
struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
/*
* If there is an ongoing transfer, wait for the command line to become
* available.
*/
if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
wait_for_completion(&ongoing_mrq->cmd_completion);
}
static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
{
int err;
mmc_wait_ongoing_tfr_cmd(host);
init_completion(&mrq->completion);
mrq->done = mmc_wait_done;
err = mmc_start_request(host, mrq);
if (err) {
mrq->cmd->error = err;
mmc_complete_cmd(mrq);
complete(&mrq->completion);
}
return err;
}
void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
{
struct mmc_command *cmd;
while (1) {
wait_for_completion(&mrq->completion);
cmd = mrq->cmd;
if (!cmd->error || !cmd->retries ||
mmc_card_removed(host->card))
break;
mmc_retune_recheck(host);
pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
mmc_hostname(host), cmd->opcode, cmd->error);
cmd->retries--;
cmd->error = 0;
__mmc_start_request(host, mrq);
}
mmc_retune_release(host);
}
EXPORT_SYMBOL(mmc_wait_for_req_done);
/*
* mmc_cqe_start_req - Start a CQE request.
* @host: MMC host to start the request
* @mrq: request to start
*
* Start the request, re-tuning if needed and it is possible. Returns an error
* code if the request fails to start or -EBUSY if CQE is busy.
*/
int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
{
int err;
/*
* CQE cannot process re-tuning commands. Caller must hold retuning
* while CQE is in use. Re-tuning can happen here only when CQE has no
* active requests i.e. this is the first. Note, re-tuning will call
* ->cqe_off().
*/
err = mmc_retune(host);
if (err)
goto out_err;
mrq->host = host;
mmc_mrq_pr_debug(host, mrq, true);
err = mmc_mrq_prep(host, mrq);
if (err)
goto out_err;
err = host->cqe_ops->cqe_request(host, mrq);
if (err)
goto out_err;
trace_mmc_request_start(host, mrq);
return 0;
out_err:
if (mrq->cmd) {
pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
mmc_hostname(host), mrq->cmd->opcode, err);
} else {
pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
mmc_hostname(host), mrq->tag, err);
}
return err;
}
EXPORT_SYMBOL(mmc_cqe_start_req);
/**
* mmc_cqe_request_done - CQE has finished processing an MMC request
* @host: MMC host which completed request
* @mrq: MMC request which completed
*
* CQE drivers should call this function when they have completed
* their processing of a request.
*/
void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
{
mmc_should_fail_request(host, mrq);
/* Flag re-tuning needed on CRC errors */
if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
(mrq->data && mrq->data->error == -EILSEQ))
mmc_retune_needed(host);
trace_mmc_request_done(host, mrq);
if (mrq->cmd) {
pr_debug("%s: CQE req done (direct CMD%u): %d\n",
mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
} else {
pr_debug("%s: CQE transfer done tag %d\n",
mmc_hostname(host), mrq->tag);
}
if (mrq->data) {
pr_debug("%s: %d bytes transferred: %d\n",
mmc_hostname(host),
mrq->data->bytes_xfered, mrq->data->error);
}
mrq->done(mrq);
}
EXPORT_SYMBOL(mmc_cqe_request_done);
/**
* mmc_cqe_post_req - CQE post process of a completed MMC request
* @host: MMC host
* @mrq: MMC request to be processed
*/
void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
{
if (host->cqe_ops->cqe_post_req)
host->cqe_ops->cqe_post_req(host, mrq);
}
EXPORT_SYMBOL(mmc_cqe_post_req);
/* Arbitrary 1 second timeout */
#define MMC_CQE_RECOVERY_TIMEOUT 1000
/*
* mmc_cqe_recovery - Recover from CQE errors.
* @host: MMC host to recover
*
* Recovery consists of stopping CQE, stopping eMMC, discarding the queue
* in eMMC, and discarding the queue in CQE. CQE must call
* mmc_cqe_request_done() on all requests. An error is returned if the eMMC
* fails to discard its queue.
*/
int mmc_cqe_recovery(struct mmc_host *host)
{
struct mmc_command cmd;
int err;
mmc_retune_hold_now(host);
/*
* Recovery is expected seldom, if at all, but it reduces performance,
* so make sure it is not completely silent.
*/
pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
host->cqe_ops->cqe_recovery_start(host);
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = MMC_STOP_TRANSMISSION;
cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
mmc_wait_for_cmd(host, &cmd, 0);
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = MMC_CMDQ_TASK_MGMT;
cmd.arg = 1; /* Discard entire queue */
cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
err = mmc_wait_for_cmd(host, &cmd, 0);
host->cqe_ops->cqe_recovery_finish(host);
mmc_retune_release(host);
return err;
}
EXPORT_SYMBOL(mmc_cqe_recovery);
/**
* mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
* @host: MMC host
* @mrq: MMC request
*
* mmc_is_req_done() is used with requests that have
* mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
* starting a request and before waiting for it to complete. That is,
* either in between calls to mmc_start_req(), or after mmc_wait_for_req()
* and before mmc_wait_for_req_done(). If it is called at other times the
* result is not meaningful.
*/
bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
{
return completion_done(&mrq->completion);
}
EXPORT_SYMBOL(mmc_is_req_done);
/**
* mmc_wait_for_req - start a request and wait for completion
* @host: MMC host to start command
* @mrq: MMC request to start
*
* Start a new MMC custom command request for a host, and wait
* for the command to complete. In the case of 'cap_cmd_during_tfr'
* requests, the transfer is ongoing and the caller can issue further
* commands that do not use the data lines, and then wait by calling
* mmc_wait_for_req_done().
* Does not attempt to parse the response.
*/
void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
{
__mmc_start_req(host, mrq);
if (!mrq->cap_cmd_during_tfr)
mmc_wait_for_req_done(host, mrq);
}
EXPORT_SYMBOL(mmc_wait_for_req);
/**
* mmc_wait_for_cmd - start a command and wait for completion
* @host: MMC host to start command
* @cmd: MMC command to start
* @retries: maximum number of retries
*
* Start a new MMC command for a host, and wait for the command
* to complete. Return any error that occurred while the command
* was executing. Do not attempt to parse the response.
*/
int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
{
struct mmc_request mrq = {};
WARN_ON(!host->claimed);
memset(cmd->resp, 0, sizeof(cmd->resp));
cmd->retries = retries;
mrq.cmd = cmd;
cmd->data = NULL;
mmc_wait_for_req(host, &mrq);
return cmd->error;
}
EXPORT_SYMBOL(mmc_wait_for_cmd);
/**
* mmc_set_data_timeout - set the timeout for a data command
* @data: data phase for command
* @card: the MMC card associated with the data transfer
*
* Computes the data timeout parameters according to the
* correct algorithm given the card type.
*/
void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
{
unsigned int mult;
/*
* SDIO cards only define an upper 1 s limit on access.
*/
if (mmc_card_sdio(card)) {
data->timeout_ns = 1000000000;
data->timeout_clks = 0;
return;
}
/*
* SD cards use a 100 multiplier rather than 10
*/
mult = mmc_card_sd(card) ? 100 : 10;
/*
* Scale up the multiplier (and therefore the timeout) by
* the r2w factor for writes.
*/
if (data->flags & MMC_DATA_WRITE)
mult <<= card->csd.r2w_factor;
data->timeout_ns = card->csd.taac_ns * mult;
data->timeout_clks = card->csd.taac_clks * mult;
/*
* SD cards also have an upper limit on the timeout.
*/
if (mmc_card_sd(card)) {
unsigned int timeout_us, limit_us;
timeout_us = data->timeout_ns / 1000;
if (card->host->ios.clock)
timeout_us += data->timeout_clks * 1000 /
(card->host->ios.clock / 1000);
if (data->flags & MMC_DATA_WRITE)
/*
* The MMC spec "It is strongly recommended
* for hosts to implement more than 500ms
* timeout value even if the card indicates
* the 250ms maximum busy length." Even the
* previous value of 300ms is known to be
* insufficient for some cards.
*/
limit_us = 3000000;
else
limit_us = 100000;
/*
* SDHC cards always use these fixed values.
*/
if (timeout_us > limit_us) {
data->timeout_ns = limit_us * 1000;
data->timeout_clks = 0;
}
/* assign limit value if invalid */
if (timeout_us == 0)
data->timeout_ns = limit_us * 1000;
}
/*
* Some cards require longer data read timeout than indicated in CSD.
* Address this by setting the read timeout to a "reasonably high"
* value. For the cards tested, 600ms has proven enough. If necessary,
* this value can be increased if other problematic cards require this.
*/
if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
data->timeout_ns = 600000000;
data->timeout_clks = 0;
}
/*
* Some cards need very high timeouts if driven in SPI mode.
* The worst observed timeout was 900ms after writing a
* continuous stream of data until the internal logic
* overflowed.
*/
if (mmc_host_is_spi(card->host)) {
if (data->flags & MMC_DATA_WRITE) {
if (data->timeout_ns < 1000000000)
data->timeout_ns = 1000000000; /* 1s */
} else {
if (data->timeout_ns < 100000000)
data->timeout_ns = 100000000; /* 100ms */
}
}
}
EXPORT_SYMBOL(mmc_set_data_timeout);
/*
* Allow claiming an already claimed host if the context is the same or there is
* no context but the task is the same.
*/
static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
struct task_struct *task)
{
return host->claimer == ctx ||
(!ctx && task && host->claimer->task == task);
}
static inline void mmc_ctx_set_claimer(struct mmc_host *host,
struct mmc_ctx *ctx,
struct task_struct *task)
{
if (!host->claimer) {
if (ctx)
host->claimer = ctx;
else
host->claimer = &host->default_ctx;
}
if (task)
host->claimer->task = task;
}
/**
* __mmc_claim_host - exclusively claim a host
* @host: mmc host to claim
* @ctx: context that claims the host or NULL in which case the default
* context will be used
* @abort: whether or not the operation should be aborted
*
* Claim a host for a set of operations. If @abort is non null and
* dereference a non-zero value then this will return prematurely with
* that non-zero value without acquiring the lock. Returns zero
* with the lock held otherwise.
*/
int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
atomic_t *abort)
{
struct task_struct *task = ctx ? NULL : current;
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int stop;
bool pm = false;
might_sleep();
add_wait_queue(&host->wq, &wait);
spin_lock_irqsave(&host->lock, flags);
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
stop = abort ? atomic_read(abort) : 0;
if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
break;
spin_unlock_irqrestore(&host->lock, flags);
schedule();
spin_lock_irqsave(&host->lock, flags);
}
set_current_state(TASK_RUNNING);
if (!stop) {
host->claimed = 1;
mmc_ctx_set_claimer(host, ctx, task);
host->claim_cnt += 1;
if (host->claim_cnt == 1)
pm = true;
} else
wake_up(&host->wq);
spin_unlock_irqrestore(&host->lock, flags);
remove_wait_queue(&host->wq, &wait);
if (pm)
pm_runtime_get_sync(mmc_dev(host));
return stop;
}
EXPORT_SYMBOL(__mmc_claim_host);
/**
* mmc_release_host - release a host
* @host: mmc host to release
*
* Release a MMC host, allowing others to claim the host
* for their operations.
*/
void mmc_release_host(struct mmc_host *host)
{
unsigned long flags;
WARN_ON(!host->claimed);
spin_lock_irqsave(&host->lock, flags);
if (--host->claim_cnt) {
/* Release for nested claim */
spin_unlock_irqrestore(&host->lock, flags);
} else {
host->claimed = 0;
host->claimer->task = NULL;
host->claimer = NULL;
spin_unlock_irqrestore(&host->lock, flags);
wake_up(&host->wq);
pm_runtime_mark_last_busy(mmc_dev(host));
if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
pm_runtime_put_sync_suspend(mmc_dev(host));
else
pm_runtime_put_autosuspend(mmc_dev(host));
}
}
EXPORT_SYMBOL(mmc_release_host);
/*
* This is a helper function, which fetches a runtime pm reference for the
* card device and also claims the host.
*/
void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
{
pm_runtime_get_sync(&card->dev);
__mmc_claim_host(card->host, ctx, NULL);
}
EXPORT_SYMBOL(mmc_get_card);
/*
* This is a helper function, which releases the host and drops the runtime
* pm reference for the card device.
*/
void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
{
struct mmc_host *host = card->host;
WARN_ON(ctx && host->claimer != ctx);
mmc_release_host(host);
pm_runtime_mark_last_busy(&card->dev);
pm_runtime_put_autosuspend(&card->dev);
}
EXPORT_SYMBOL(mmc_put_card);
/*
* Internal function that does the actual ios call to the host driver,
* optionally printing some debug output.
*/
static inline void mmc_set_ios(struct mmc_host *host)
{
struct mmc_ios *ios = &host->ios;
pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
"width %u timing %u\n",
mmc_hostname(host), ios->clock, ios->bus_mode,
ios->power_mode, ios->chip_select, ios->vdd,
1 << ios->bus_width, ios->timing);
host->ops->set_ios(host, ios);
}
/*
* Control chip select pin on a host.
*/
void mmc_set_chip_select(struct mmc_host *host, int mode)
{
host->ios.chip_select = mode;
mmc_set_ios(host);
}
/*
* Sets the host clock to the highest possible frequency that
* is below "hz".
*/
void mmc_set_clock(struct mmc_host *host, unsigned int hz)
{
WARN_ON(hz && hz < host->f_min);
if (hz > host->f_max)
hz = host->f_max;
host->ios.clock = hz;
mmc_set_ios(host);
}
int mmc_execute_tuning(struct mmc_card *card)
{
struct mmc_host *host = card->host;
u32 opcode;
int err;
if (!host->ops->execute_tuning)
return 0;
if (host->cqe_on)
host->cqe_ops->cqe_off(host);
if (mmc_card_mmc(card))
opcode = MMC_SEND_TUNING_BLOCK_HS200;
else
opcode = MMC_SEND_TUNING_BLOCK;
err = host->ops->execute_tuning(host, opcode);
if (!err) {
mmc_retune_clear(host);
mmc_retune_enable(host);
return 0;
}
/* Only print error when we don't check for card removal */
if (!host->detect_change) {
pr_err("%s: tuning execution failed: %d\n",
mmc_hostname(host), err);
mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
}
return err;
}
/*
* Change the bus mode (open drain/push-pull) of a host.
*/
void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
{
host->ios.bus_mode = mode;
mmc_set_ios(host);
}
/*
* Change data bus width of a host.
*/
void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
{
host->ios.bus_width = width;
mmc_set_ios(host);
}
/*
* Set initial state after a power cycle or a hw_reset.
*/
void mmc_set_initial_state(struct mmc_host *host)
{
if (host->cqe_on)
host->cqe_ops->cqe_off(host);
mmc_retune_disable(host);
if (mmc_host_is_spi(host))
host->ios.chip_select = MMC_CS_HIGH;
else
host->ios.chip_select = MMC_CS_DONTCARE;
host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
host->ios.bus_width = MMC_BUS_WIDTH_1;
host->ios.timing = MMC_TIMING_LEGACY;
host->ios.drv_type = 0;
host->ios.enhanced_strobe = false;
/*
* Make sure we are in non-enhanced strobe mode before we
* actually enable it in ext_csd.
*/
if ((host->caps2 & MMC_CAP2_HS400_ES) &&
host->ops->hs400_enhanced_strobe)
host->ops->hs400_enhanced_strobe(host, &host->ios);
mmc_set_ios(host);
mmc_crypto_set_initial_state(host);
}
/**
* mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
* @vdd: voltage (mV)
* @low_bits: prefer low bits in boundary cases
*
* This function returns the OCR bit number according to the provided @vdd
* value. If conversion is not possible a negative errno value returned.
*
* Depending on the @low_bits flag the function prefers low or high OCR bits
* on boundary voltages. For example,
* with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
* with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
*
* Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
*/
static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
{
const int max_bit = ilog2(MMC_VDD_35_36);
int bit;
if (vdd < 1650 || vdd > 3600)
return -EINVAL;
if (vdd >= 1650 && vdd <= 1950)
return ilog2(MMC_VDD_165_195);
if (low_bits)
vdd -= 1;
/* Base 2000 mV, step 100 mV, bit's base 8. */
bit = (vdd - 2000) / 100 + 8;
if (bit > max_bit)
return max_bit;
return bit;
}
/**
* mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
* @vdd_min: minimum voltage value (mV)
* @vdd_max: maximum voltage value (mV)
*
* This function returns the OCR mask bits according to the provided @vdd_min
* and @vdd_max values. If conversion is not possible the function returns 0.
*
* Notes wrt boundary cases:
* This function sets the OCR bits for all boundary voltages, for example
* [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
* MMC_VDD_34_35 mask.
*/
u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
{
u32 mask = 0;
if (vdd_max < vdd_min)
return 0;
/* Prefer high bits for the boundary vdd_max values. */
vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
if (vdd_max < 0)
return 0;
/* Prefer low bits for the boundary vdd_min values. */
vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
if (vdd_min < 0)
return 0;
/* Fill the mask, from max bit to min bit. */
while (vdd_max >= vdd_min)
mask |= 1 << vdd_max--;
return mask;
}
static int mmc_of_get_func_num(struct device_node *node)
{
u32 reg;
int ret;
ret = of_property_read_u32(node, "reg", &reg);
if (ret < 0)
return ret;
return reg;
}
struct device_node *mmc_of_find_child_device(struct mmc_host *host,
unsigned func_num)
{
struct device_node *node;
if (!host->parent || !host->parent->of_node)
return NULL;
for_each_child_of_node(host->parent->of_node, node) {
if (mmc_of_get_func_num(node) == func_num)
return node;
}
return NULL;
}
/*
* Mask off any voltages we don't support and select
* the lowest voltage
*/
u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
{
int bit;
/*
* Sanity check the voltages that the card claims to
* support.
*/
if (ocr & 0x7F) {
dev_warn(mmc_dev(host),
"card claims to support voltages below defined range\n");
ocr &= ~0x7F;
}
ocr &= host->ocr_avail;
if (!ocr) {
dev_warn(mmc_dev(host), "no support for card's volts\n");
return 0;
}
if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
bit = ffs(ocr) - 1;
ocr &= 3 << bit;
mmc_power_cycle(host, ocr);
} else {
bit = fls(ocr) - 1;
/*
* The bit variable represents the highest voltage bit set in
* the OCR register.
* To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
* we must shift the mask '3' with (bit - 1).
*/
ocr &= 3 << (bit - 1);
if (bit != host->ios.vdd)
dev_warn(mmc_dev(host), "exceeding card's volts\n");
}
return ocr;
}
int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
{
int err = 0;
int old_signal_voltage = host->ios.signal_voltage;
host->ios.signal_voltage = signal_voltage;
if (host->ops->start_signal_voltage_switch)
err = host->ops->start_signal_voltage_switch(host, &host->ios);
if (err)
host->ios.signal_voltage = old_signal_voltage;
return err;
}
void mmc_set_initial_signal_voltage(struct mmc_host *host)
{
/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
}
int mmc_host_set_uhs_voltage(struct mmc_host *host)
{
u32 clock;
/*
* During a signal voltage level switch, the clock must be gated
* for 5 ms according to the SD spec
*/
clock = host->ios.clock;
host->ios.clock = 0;
mmc_set_ios(host);
if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
return -EAGAIN;
/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
mmc_delay(10);
host->ios.clock = clock;
mmc_set_ios(host);
return 0;
}
int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
{
struct mmc_command cmd = {};
int err = 0;
/*
* If we cannot switch voltages, return failure so the caller
* can continue without UHS mode
*/
if (!host->ops->start_signal_voltage_switch)
return -EPERM;
if (!host->ops->card_busy)
pr_warn("%s: cannot verify signal voltage switch\n",
mmc_hostname(host));
cmd.opcode = SD_SWITCH_VOLTAGE;
cmd.arg = 0;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(host, &cmd, 0);
if (err)
goto power_cycle;
if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
return -EIO;
/*
* The card should drive cmd and dat[0:3] low immediately
* after the response of cmd11, but wait 1 ms to be sure
*/
mmc_delay(1);
if (host->ops->card_busy && !host->ops->card_busy(host)) {
err = -EAGAIN;
goto power_cycle;
}
if (mmc_host_set_uhs_voltage(host)) {
/*
* Voltages may not have been switched, but we've already
* sent CMD11, so a power cycle is required anyway
*/
err = -EAGAIN;
goto power_cycle;
}
/* Wait for at least 1 ms according to spec */
mmc_delay(1);
/*
* Failure to switch is indicated by the card holding
* dat[0:3] low
*/
if (host->ops->card_busy && host->ops->card_busy(host))
err = -EAGAIN;
power_cycle:
if (err) {
pr_debug("%s: Signal voltage switch failed, "
"power cycling card\n", mmc_hostname(host));
mmc_power_cycle(host, ocr);
}
return err;
}
/*
* Select timing parameters for host.
*/
void mmc_set_timing(struct mmc_host *host, unsigned int timing)
{
host->ios.timing = timing;
mmc_set_ios(host);
}
/*
* Select appropriate driver type for host.
*/
void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
{
host->ios.drv_type = drv_type;
mmc_set_ios(host);
}
int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
int card_drv_type, int *drv_type)
{
struct mmc_host *host = card->host;
int host_drv_type = SD_DRIVER_TYPE_B;
*drv_type = 0;
if (!host->ops->select_drive_strength)
return 0;
/* Use SD definition of driver strength for hosts */
if (host->caps & MMC_CAP_DRIVER_TYPE_A)
host_drv_type |= SD_DRIVER_TYPE_A;
if (host->caps & MMC_CAP_DRIVER_TYPE_C)
host_drv_type |= SD_DRIVER_TYPE_C;
if (host->caps & MMC_CAP_DRIVER_TYPE_D)
host_drv_type |= SD_DRIVER_TYPE_D;
/*
* The drive strength that the hardware can support
* depends on the board design. Pass the appropriate
* information and let the hardware specific code
* return what is possible given the options
*/
return host->ops->select_drive_strength(card, max_dtr,
host_drv_type,
card_drv_type,
drv_type);
}
/*
* Apply power to the MMC stack. This is a two-stage process.
* First, we enable power to the card without the clock running.
* We then wait a bit for the power to stabilise. Finally,
* enable the bus drivers and clock to the card.
*
* We must _NOT_ enable the clock prior to power stablising.
*
* If a host does all the power sequencing itself, ignore the
* initial MMC_POWER_UP stage.
*/
void mmc_power_up(struct mmc_host *host, u32 ocr)
{
if (host->ios.power_mode == MMC_POWER_ON)
return;
mmc_pwrseq_pre_power_on(host);
host->ios.vdd = fls(ocr) - 1;
host->ios.power_mode = MMC_POWER_UP;
/* Set initial state and call mmc_set_ios */
mmc_set_initial_state(host);
mmc_set_initial_signal_voltage(host);
/*
* This delay should be sufficient to allow the power supply
* to reach the minimum voltage.
*/
mmc_delay(host->ios.power_delay_ms);
mmc_pwrseq_post_power_on(host);
host->ios.clock = host->f_init;
host->ios.power_mode = MMC_POWER_ON;
mmc_set_ios(host);
/*
* This delay must be at least 74 clock sizes, or 1 ms, or the
* time required to reach a stable voltage.
*/
mmc_delay(host->ios.power_delay_ms);
}
void mmc_power_off(struct mmc_host *host)
{
if (host->ios.power_mode == MMC_POWER_OFF)
return;
mmc_pwrseq_power_off(host);
host->ios.clock = 0;
host->ios.vdd = 0;
host->ios.power_mode = MMC_POWER_OFF;
/* Set initial state and call mmc_set_ios */
mmc_set_initial_state(host);
/*
* Some configurations, such as the 802.11 SDIO card in the OLPC
* XO-1.5, require a short delay after poweroff before the card
* can be successfully turned on again.
*/
mmc_delay(1);
}
void mmc_power_cycle(struct mmc_host *host, u32 ocr)
{
mmc_power_off(host);
/* Wait at least 1 ms according to SD spec */
mmc_delay(1);
mmc_power_up(host, ocr);
}
/*
* Assign a mmc bus handler to a host. Only one bus handler may control a
* host at any given time.
*/
void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
{
host->bus_ops = ops;
}
/*
* Remove the current bus handler from a host.
*/
void mmc_detach_bus(struct mmc_host *host)
{
host->bus_ops = NULL;
}
void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
{
/*
* Prevent system sleep for 5s to allow user space to consume the
* corresponding uevent. This is especially useful, when CD irq is used
* as a system wakeup, but doesn't hurt in other cases.
*/
if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
__pm_wakeup_event(host->ws, 5000);
host->detect_change = 1;
mmc_schedule_delayed_work(&host->detect, delay);
}
/**
* mmc_detect_change - process change of state on a MMC socket
* @host: host which changed state.
* @delay: optional delay to wait before detection (jiffies)
*
* MMC drivers should call this when they detect a card has been
* inserted or removed. The MMC layer will confirm that any
* present card is still functional, and initialize any newly
* inserted.
*/
void mmc_detect_change(struct mmc_host *host, unsigned long delay)
{
_mmc_detect_change(host, delay, true);
}
EXPORT_SYMBOL(mmc_detect_change);
void mmc_init_erase(struct mmc_card *card)
{
unsigned int sz;
if (is_power_of_2(card->erase_size))
card->erase_shift = ffs(card->erase_size) - 1;
else
card->erase_shift = 0;
/*
* It is possible to erase an arbitrarily large area of an SD or MMC
* card. That is not desirable because it can take a long time
* (minutes) potentially delaying more important I/O, and also the
* timeout calculations become increasingly hugely over-estimated.
* Consequently, 'pref_erase' is defined as a guide to limit erases
* to that size and alignment.
*
* For SD cards that define Allocation Unit size, limit erases to one
* Allocation Unit at a time.
* For MMC, have a stab at ai good value and for modern cards it will
* end up being 4MiB. Note that if the value is too small, it can end
* up taking longer to erase. Also note, erase_size is already set to
* High Capacity Erase Size if available when this function is called.
*/
if (mmc_card_sd(card) && card->ssr.au) {
card->pref_erase = card->ssr.au;
card->erase_shift = ffs(card->ssr.au) - 1;
} else if (card->erase_size) {
sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
if (sz < 128)
card->pref_erase = 512 * 1024 / 512;
else if (sz < 512)
card->pref_erase = 1024 * 1024 / 512;
else if (sz < 1024)
card->pref_erase = 2 * 1024 * 1024 / 512;
else
card->pref_erase = 4 * 1024 * 1024 / 512;
if (card->pref_erase < card->erase_size)
card->pref_erase = card->erase_size;
else {
sz = card->pref_erase % card->erase_size;
if (sz)
card->pref_erase += card->erase_size - sz;
}
} else
card->pref_erase = 0;
}
static bool is_trim_arg(unsigned int arg)
{
return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
}
static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
unsigned int arg, unsigned int qty)
{
unsigned int erase_timeout;
if (arg == MMC_DISCARD_ARG ||
(arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
erase_timeout = card->ext_csd.trim_timeout;
} else if (card->ext_csd.erase_group_def & 1) {
/* High Capacity Erase Group Size uses HC timeouts */
if (arg == MMC_TRIM_ARG)
erase_timeout = card->ext_csd.trim_timeout;
else
erase_timeout = card->ext_csd.hc_erase_timeout;
} else {
/* CSD Erase Group Size uses write timeout */
unsigned int mult = (10 << card->csd.r2w_factor);
unsigned int timeout_clks = card->csd.taac_clks * mult;
unsigned int timeout_us;
/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
if (card->csd.taac_ns < 1000000)
timeout_us = (card->csd.taac_ns * mult) / 1000;
else
timeout_us = (card->csd.taac_ns / 1000) * mult;
/*
* ios.clock is only a target. The real clock rate might be
* less but not that much less, so fudge it by multiplying by 2.
*/
timeout_clks <<= 1;
timeout_us += (timeout_clks * 1000) /
(card->host->ios.clock / 1000);
erase_timeout = timeout_us / 1000;
/*
* Theoretically, the calculation could underflow so round up
* to 1ms in that case.
*/
if (!erase_timeout)
erase_timeout = 1;
}
/* Multiplier for secure operations */
if (arg & MMC_SECURE_ARGS) {
if (arg == MMC_SECURE_ERASE_ARG)
erase_timeout *= card->ext_csd.sec_erase_mult;
else
erase_timeout *= card->ext_csd.sec_trim_mult;
}
erase_timeout *= qty;
/*
* Ensure at least a 1 second timeout for SPI as per
* 'mmc_set_data_timeout()'
*/
if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
erase_timeout = 1000;
return erase_timeout;
}
static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
unsigned int arg,
unsigned int qty)
{
unsigned int erase_timeout;
/* for DISCARD none of the below calculation applies.
* the busy timeout is 250msec per discard command.
*/
if (arg == SD_DISCARD_ARG)
return SD_DISCARD_TIMEOUT_MS;
if (card->ssr.erase_timeout) {
/* Erase timeout specified in SD Status Register (SSR) */
erase_timeout = card->ssr.erase_timeout * qty +
card->ssr.erase_offset;
} else {
/*
* Erase timeout not specified in SD Status Register (SSR) so
* use 250ms per write block.
*/
erase_timeout = 250 * qty;
}
/* Must not be less than 1 second */
if (erase_timeout < 1000)
erase_timeout = 1000;
return erase_timeout;
}
static unsigned int mmc_erase_timeout(struct mmc_card *card,
unsigned int arg,
unsigned int qty)
{
if (mmc_card_sd(card))
return mmc_sd_erase_timeout(card, arg, qty);
else
return mmc_mmc_erase_timeout(card, arg, qty);
}
static int mmc_do_erase(struct mmc_card *card, unsigned int from,
unsigned int to, unsigned int arg)
{
struct mmc_command cmd = {};
unsigned int qty = 0, busy_timeout = 0;
bool use_r1b_resp;
int err;
mmc_retune_hold(card->host);
/*
* qty is used to calculate the erase timeout which depends on how many
* erase groups (or allocation units in SD terminology) are affected.
* We count erasing part of an erase group as one erase group.
* For SD, the allocation units are always a power of 2. For MMC, the
* erase group size is almost certainly also power of 2, but it does not
* seem to insist on that in the JEDEC standard, so we fall back to
* division in that case. SD may not specify an allocation unit size,
* in which case the timeout is based on the number of write blocks.
*
* Note that the timeout for secure trim 2 will only be correct if the
* number of erase groups specified is the same as the total of all
* preceding secure trim 1 commands. Since the power may have been
* lost since the secure trim 1 commands occurred, it is generally
* impossible to calculate the secure trim 2 timeout correctly.
*/
if (card->erase_shift)
qty += ((to >> card->erase_shift) -
(from >> card->erase_shift)) + 1;
else if (mmc_card_sd(card))
qty += to - from + 1;
else
qty += ((to / card->erase_size) -
(from / card->erase_size)) + 1;
if (!mmc_card_blockaddr(card)) {
from <<= 9;
to <<= 9;
}
if (mmc_card_sd(card))
cmd.opcode = SD_ERASE_WR_BLK_START;
else
cmd.opcode = MMC_ERASE_GROUP_START;
cmd.arg = from;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: group start error %d, "
"status %#x\n", err, cmd.resp[0]);
err = -EIO;
goto out;
}
memset(&cmd, 0, sizeof(struct mmc_command));
if (mmc_card_sd(card))
cmd.opcode = SD_ERASE_WR_BLK_END;
else
cmd.opcode = MMC_ERASE_GROUP_END;
cmd.arg = to;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: group end error %d, status %#x\n",
err, cmd.resp[0]);
err = -EIO;
goto out;
}
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_ERASE;
cmd.arg = arg;
busy_timeout = mmc_erase_timeout(card, arg, qty);
use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_err("mmc_erase: erase error %d, status %#x\n",
err, cmd.resp[0]);
err = -EIO;
goto out;
}
if (mmc_host_is_spi(card->host))
goto out;
/*
* In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
* shall be avoided.
*/
if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
goto out;
/* Let's poll to find out when the erase operation completes. */
err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
out:
mmc_retune_release(card->host);
return err;
}
static unsigned int mmc_align_erase_size(struct mmc_card *card,
unsigned int *from,
unsigned int *to,
unsigned int nr)
{
unsigned int from_new = *from, nr_new = nr, rem;
/*
* When the 'card->erase_size' is power of 2, we can use round_up/down()
* to align the erase size efficiently.
*/
if (is_power_of_2(card->erase_size)) {
unsigned int temp = from_new;
from_new = round_up(temp, card->erase_size);
rem = from_new - temp;
if (nr_new > rem)
nr_new -= rem;
else
return 0;
nr_new = round_down(nr_new, card->erase_size);
} else {
rem = from_new % card->erase_size;
if (rem) {
rem = card->erase_size - rem;
from_new += rem;
if (nr_new > rem)
nr_new -= rem;
else
return 0;
}
rem = nr_new % card->erase_size;
if (rem)
nr_new -= rem;
}
if (nr_new == 0)
return 0;
*to = from_new + nr_new;
*from = from_new;
return nr_new;
}
/**
* mmc_erase - erase sectors.
* @card: card to erase
* @from: first sector to erase
* @nr: number of sectors to erase
* @arg: erase command argument
*
* Caller must claim host before calling this function.
*/
int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
unsigned int arg)
{
unsigned int rem, to = from + nr;
int err;
if (!(card->csd.cmdclass & CCC_ERASE))
return -EOPNOTSUPP;
if (!card->erase_size)
return -EOPNOTSUPP;
if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
return -EOPNOTSUPP;
if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
return -EOPNOTSUPP;
if (mmc_card_mmc(card) && is_trim_arg(arg) &&
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
return -EOPNOTSUPP;
if (arg == MMC_SECURE_ERASE_ARG) {
if (from % card->erase_size || nr % card->erase_size)
return -EINVAL;
}
if (arg == MMC_ERASE_ARG)
nr = mmc_align_erase_size(card, &from, &to, nr);
if (nr == 0)
return 0;
if (to <= from)
return -EINVAL;
/* 'from' and 'to' are inclusive */
to -= 1;
/*
* Special case where only one erase-group fits in the timeout budget:
* If the region crosses an erase-group boundary on this particular
* case, we will be trimming more than one erase-group which, does not
* fit in the timeout budget of the controller, so we need to split it
* and call mmc_do_erase() twice if necessary. This special case is
* identified by the card->eg_boundary flag.
*/
rem = card->erase_size - (from % card->erase_size);
if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
err = mmc_do_erase(card, from, from + rem - 1, arg);
from += rem;
if ((err) || (to <= from))
return err;
}
return mmc_do_erase(card, from, to, arg);
}
EXPORT_SYMBOL(mmc_erase);
int mmc_can_erase(struct mmc_card *card)
{
if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_erase);
int mmc_can_trim(struct mmc_card *card)
{
if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
(!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_trim);
int mmc_can_discard(struct mmc_card *card)
{
/*
* As there's no way to detect the discard support bit at v4.5
* use the s/w feature support filed.
*/
if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_discard);
int mmc_can_sanitize(struct mmc_card *card)
{
if (!mmc_can_trim(card) && !mmc_can_erase(card))
return 0;
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
return 1;
return 0;
}
int mmc_can_secure_erase_trim(struct mmc_card *card)
{
if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
return 1;
return 0;
}
EXPORT_SYMBOL(mmc_can_secure_erase_trim);
int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
unsigned int nr)
{
if (!card->erase_size)
return 0;
if (from % card->erase_size || nr % card->erase_size)
return 0;
return 1;
}
EXPORT_SYMBOL(mmc_erase_group_aligned);
static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
unsigned int arg)
{
struct mmc_host *host = card->host;
unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
unsigned int last_timeout = 0;
unsigned int max_busy_timeout = host->max_busy_timeout ?
host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
if (card->erase_shift) {
max_qty = UINT_MAX >> card->erase_shift;
min_qty = card->pref_erase >> card->erase_shift;
} else if (mmc_card_sd(card)) {
max_qty = UINT_MAX;
min_qty = card->pref_erase;
} else {
max_qty = UINT_MAX / card->erase_size;
min_qty = card->pref_erase / card->erase_size;
}
/*
* We should not only use 'host->max_busy_timeout' as the limitation
* when deciding the max discard sectors. We should set a balance value
* to improve the erase speed, and it can not get too long timeout at
* the same time.
*
* Here we set 'card->pref_erase' as the minimal discard sectors no
* matter what size of 'host->max_busy_timeout', but if the
* 'host->max_busy_timeout' is large enough for more discard sectors,
* then we can continue to increase the max discard sectors until we
* get a balance value. In cases when the 'host->max_busy_timeout'
* isn't specified, use the default max erase timeout.
*/
do {
y = 0;
for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
timeout = mmc_erase_timeout(card, arg, qty + x);
if (qty + x > min_qty && timeout > max_busy_timeout)
break;
if (timeout < last_timeout)
break;
last_timeout = timeout;
y = x;
}
qty += y;
} while (y);
if (!qty)
return 0;
/*
* When specifying a sector range to trim, chances are we might cross
* an erase-group boundary even if the amount of sectors is less than
* one erase-group.
* If we can only fit one erase-group in the controller timeout budget,
* we have to care that erase-group boundaries are not crossed by a
* single trim operation. We flag that special case with "eg_boundary".
* In all other cases we can just decrement qty and pretend that we
* always touch (qty + 1) erase-groups as a simple optimization.
*/
if (qty == 1)
card->eg_boundary = 1;
else
qty--;
/* Convert qty to sectors */
if (card->erase_shift)
max_discard = qty << card->erase_shift;
else if (mmc_card_sd(card))
max_discard = qty + 1;
else
max_discard = qty * card->erase_size;
return max_discard;
}
unsigned int mmc_calc_max_discard(struct mmc_card *card)
{
struct mmc_host *host = card->host;
unsigned int max_discard, max_trim;
/*
* Without erase_group_def set, MMC erase timeout depends on clock
* frequence which can change. In that case, the best choice is
* just the preferred erase size.
*/
if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
return card->pref_erase;
max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
if (mmc_can_trim(card)) {
max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
if (max_trim < max_discard || max_discard == 0)
max_discard = max_trim;
} else if (max_discard < card->erase_size) {
max_discard = 0;
}
pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
mmc_hostname(host), max_discard, host->max_busy_timeout ?
host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
return max_discard;
}
EXPORT_SYMBOL(mmc_calc_max_discard);
bool mmc_card_is_blockaddr(struct mmc_card *card)
{
return card ? mmc_card_blockaddr(card) : false;
}
EXPORT_SYMBOL(mmc_card_is_blockaddr);
int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
{
struct mmc_command cmd = {};
if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
mmc_card_hs400(card) || mmc_card_hs400es(card))
return 0;
cmd.opcode = MMC_SET_BLOCKLEN;
cmd.arg = blocklen;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &cmd, 5);
}
EXPORT_SYMBOL(mmc_set_blocklen);
static void mmc_hw_reset_for_init(struct mmc_host *host)
{
mmc_pwrseq_reset(host);
if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
return;
host->ops->card_hw_reset(host);
}
/**
* mmc_hw_reset - reset the card in hardware
* @card: card to be reset
*
* Hard reset the card. This function is only for upper layers, like the
* block layer or card drivers. You cannot use it in host drivers (struct
* mmc_card might be gone then).
*
* Return: 0 on success, -errno on failure
*/
int mmc_hw_reset(struct mmc_card *card)
{
struct mmc_host *host = card->host;
int ret;
ret = host->bus_ops->hw_reset(host);
if (ret < 0)
pr_warn("%s: tried to HW reset card, got error %d\n",
mmc_hostname(host), ret);
return ret;
}
EXPORT_SYMBOL(mmc_hw_reset);
int mmc_sw_reset(struct mmc_card *card)
{
struct mmc_host *host = card->host;
int ret;
if (!host->bus_ops->sw_reset)
return -EOPNOTSUPP;
ret = host->bus_ops->sw_reset(host);
if (ret)
pr_warn("%s: tried to SW reset card, got error %d\n",
mmc_hostname(host), ret);
return ret;
}
EXPORT_SYMBOL(mmc_sw_reset);
static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
{
host->f_init = freq;
pr_debug("%s: %s: trying to init card at %u Hz\n",
mmc_hostname(host), __func__, host->f_init);
mmc_power_up(host, host->ocr_avail);
/*
* Some eMMCs (with VCCQ always on) may not be reset after power up, so
* do a hardware reset if possible.
*/
mmc_hw_reset_for_init(host);
/*
* sdio_reset sends CMD52 to reset card. Since we do not know
* if the card is being re-initialized, just send it. CMD52
* should be ignored by SD/eMMC cards.
* Skip it if we already know that we do not support SDIO commands
*/
if (!(host->caps2 & MMC_CAP2_NO_SDIO))
sdio_reset(host);
mmc_go_idle(host);
if (!(host->caps2 & MMC_CAP2_NO_SD)) {
if (mmc_send_if_cond_pcie(host, host->ocr_avail))
goto out;
if (mmc_card_sd_express(host))
return 0;
}
/* Order's important: probe SDIO, then SD, then MMC */
if (!(host->caps2 & MMC_CAP2_NO_SDIO))
if (!mmc_attach_sdio(host))
return 0;
if (!(host->caps2 & MMC_CAP2_NO_SD))
if (!mmc_attach_sd(host))
return 0;
if (!(host->caps2 & MMC_CAP2_NO_MMC))
if (!mmc_attach_mmc(host))
return 0;
out:
mmc_power_off(host);
return -EIO;
}
int _mmc_detect_card_removed(struct mmc_host *host)
{
int ret;
if (!host->card || mmc_card_removed(host->card))
return 1;
ret = host->bus_ops->alive(host);
/*
* Card detect status and alive check may be out of sync if card is
* removed slowly, when card detect switch changes while card/slot
* pads are still contacted in hardware (refer to "SD Card Mechanical
* Addendum, Appendix C: Card Detection Switch"). So reschedule a
* detect work 200ms later for this case.
*/
if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
mmc_detect_change(host, msecs_to_jiffies(200));
pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
}
if (ret) {
mmc_card_set_removed(host->card);
pr_debug("%s: card remove detected\n", mmc_hostname(host));
}
return ret;
}
int mmc_detect_card_removed(struct mmc_host *host)
{
struct mmc_card *card = host->card;
int ret;
WARN_ON(!host->claimed);
if (!card)
return 1;
if (!mmc_card_is_removable(host))
return 0;
ret = mmc_card_removed(card);
/*
* The card will be considered unchanged unless we have been asked to
* detect a change or host requires polling to provide card detection.
*/
if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
return ret;
host->detect_change = 0;
if (!ret) {
ret = _mmc_detect_card_removed(host);
if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
/*
* Schedule a detect work as soon as possible to let a
* rescan handle the card removal.
*/
cancel_delayed_work(&host->detect);
_mmc_detect_change(host, 0, false);
}
}
return ret;
}
EXPORT_SYMBOL(mmc_detect_card_removed);
int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
{
unsigned int boot_sectors_num;
if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
return -EOPNOTSUPP;
/* filter out unrelated cards */
if (card->ext_csd.rev < 3 ||
!mmc_card_mmc(card) ||
!mmc_card_is_blockaddr(card) ||
mmc_card_is_removable(card->host))
return -ENOENT;
/*
* eMMC storage has two special boot partitions in addition to the
* main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
* accesses, this means that the partition table addresses are shifted
* by the size of boot partitions. In accordance with the eMMC
* specification, the boot partition size is calculated as follows:
*
* boot partition size = 128K byte x BOOT_SIZE_MULT
*
* Calculate number of sectors occupied by the both boot partitions.
*/
boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
SZ_512 * MMC_NUM_BOOT_PARTITION;
/* Defined by NVIDIA and used by Android devices. */
*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
return 0;
}
EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
void mmc_rescan(struct work_struct *work)
{
struct mmc_host *host =
container_of(work, struct mmc_host, detect.work);
int i;
if (host->rescan_disable)
return;
/* If there is a non-removable card registered, only scan once */
if (!mmc_card_is_removable(host) && host->rescan_entered)
return;
host->rescan_entered = 1;
if (host->trigger_card_event && host->ops->card_event) {
mmc_claim_host(host);
host->ops->card_event(host);
mmc_release_host(host);
host->trigger_card_event = false;
}
/* Verify a registered card to be functional, else remove it. */
if (host->bus_ops)
host->bus_ops->detect(host);
host->detect_change = 0;
/* if there still is a card present, stop here */
if (host->bus_ops != NULL)
goto out;
mmc_claim_host(host);
if (mmc_card_is_removable(host) && host->ops->get_cd &&
host->ops->get_cd(host) == 0) {
mmc_power_off(host);
mmc_release_host(host);
goto out;
}
/* If an SD express card is present, then leave it as is. */
if (mmc_card_sd_express(host)) {
mmc_release_host(host);
goto out;
}
for (i = 0; i < ARRAY_SIZE(freqs); i++) {
unsigned int freq = freqs[i];
if (freq > host->f_max) {
if (i + 1 < ARRAY_SIZE(freqs))
continue;
freq = host->f_max;
}
if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
break;
if (freqs[i] <= host->f_min)
break;
}
/* A non-removable card should have been detected by now. */
if (!mmc_card_is_removable(host) && !host->bus_ops)
pr_info("%s: Failed to initialize a non-removable card",
mmc_hostname(host));
/*
* Ignore the command timeout errors observed during
* the card init as those are excepted.
*/
host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
mmc_release_host(host);
out:
if (host->caps & MMC_CAP_NEEDS_POLL)
mmc_schedule_delayed_work(&host->detect, HZ);
}
void mmc_start_host(struct mmc_host *host)
{
host->f_init = max(min(freqs[0], host->f_max), host->f_min);
host->rescan_disable = 0;
if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
mmc_claim_host(host);
mmc_power_up(host, host->ocr_avail);
mmc_release_host(host);
}
mmc_gpiod_request_cd_irq(host);
_mmc_detect_change(host, 0, false);
}
void __mmc_stop_host(struct mmc_host *host)
{
if (host->slot.cd_irq >= 0) {
mmc_gpio_set_cd_wake(host, false);
disable_irq(host->slot.cd_irq);
}
host->rescan_disable = 1;
cancel_delayed_work_sync(&host->detect);
}
void mmc_stop_host(struct mmc_host *host)
{
__mmc_stop_host(host);
/* clear pm flags now and let card drivers set them as needed */
host->pm_flags = 0;
if (host->bus_ops) {
/* Calling bus_ops->remove() with a claimed host can deadlock */
host->bus_ops->remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
return;
}
mmc_claim_host(host);
mmc_power_off(host);
mmc_release_host(host);
}
static int __init mmc_init(void)
{
int ret;
ret = mmc_register_bus();
if (ret)
return ret;
ret = mmc_register_host_class();
if (ret)
goto unregister_bus;
ret = sdio_register_bus();
if (ret)
goto unregister_host_class;
return 0;
unregister_host_class:
mmc_unregister_host_class();
unregister_bus:
mmc_unregister_bus();
return ret;
}
static void __exit mmc_exit(void)
{
sdio_unregister_bus();
mmc_unregister_host_class();
mmc_unregister_bus();
}
subsys_initcall(mmc_init);
module_exit(mmc_exit);
MODULE_LICENSE("GPL");