OpenCloudOS-Kernel/drivers/net/ethernet/intel/i40e/i40e_xsk.c

683 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2018 Intel Corporation. */
#include <linux/bpf_trace.h>
#include <linux/stringify.h>
#include <net/xdp_sock_drv.h>
#include <net/xdp.h>
#include "i40e.h"
#include "i40e_txrx_common.h"
#include "i40e_xsk.h"
int i40e_alloc_rx_bi_zc(struct i40e_ring *rx_ring)
{
unsigned long sz = sizeof(*rx_ring->rx_bi_zc) * rx_ring->count;
rx_ring->rx_bi_zc = kzalloc(sz, GFP_KERNEL);
return rx_ring->rx_bi_zc ? 0 : -ENOMEM;
}
void i40e_clear_rx_bi_zc(struct i40e_ring *rx_ring)
{
memset(rx_ring->rx_bi_zc, 0,
sizeof(*rx_ring->rx_bi_zc) * rx_ring->count);
}
static struct xdp_buff **i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
{
return &rx_ring->rx_bi_zc[idx];
}
/**
* i40e_xsk_pool_enable - Enable/associate an AF_XDP buffer pool to a
* certain ring/qid
* @vsi: Current VSI
* @pool: buffer pool
* @qid: Rx ring to associate buffer pool with
*
* Returns 0 on success, <0 on failure
**/
static int i40e_xsk_pool_enable(struct i40e_vsi *vsi,
struct xsk_buff_pool *pool,
u16 qid)
{
struct net_device *netdev = vsi->netdev;
bool if_running;
int err;
if (vsi->type != I40E_VSI_MAIN)
return -EINVAL;
if (qid >= vsi->num_queue_pairs)
return -EINVAL;
if (qid >= netdev->real_num_rx_queues ||
qid >= netdev->real_num_tx_queues)
return -EINVAL;
err = xsk_pool_dma_map(pool, &vsi->back->pdev->dev, I40E_RX_DMA_ATTR);
if (err)
return err;
set_bit(qid, vsi->af_xdp_zc_qps);
if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
if (if_running) {
err = i40e_queue_pair_disable(vsi, qid);
if (err)
return err;
err = i40e_queue_pair_enable(vsi, qid);
if (err)
return err;
/* Kick start the NAPI context so that receiving will start */
err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX);
if (err)
return err;
}
return 0;
}
/**
* i40e_xsk_pool_disable - Disassociate an AF_XDP buffer pool from a
* certain ring/qid
* @vsi: Current VSI
* @qid: Rx ring to associate buffer pool with
*
* Returns 0 on success, <0 on failure
**/
static int i40e_xsk_pool_disable(struct i40e_vsi *vsi, u16 qid)
{
struct net_device *netdev = vsi->netdev;
struct xsk_buff_pool *pool;
bool if_running;
int err;
pool = xsk_get_pool_from_qid(netdev, qid);
if (!pool)
return -EINVAL;
if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
if (if_running) {
err = i40e_queue_pair_disable(vsi, qid);
if (err)
return err;
}
clear_bit(qid, vsi->af_xdp_zc_qps);
xsk_pool_dma_unmap(pool, I40E_RX_DMA_ATTR);
if (if_running) {
err = i40e_queue_pair_enable(vsi, qid);
if (err)
return err;
}
return 0;
}
/**
* i40e_xsk_pool_setup - Enable/disassociate an AF_XDP buffer pool to/from
* a ring/qid
* @vsi: Current VSI
* @pool: Buffer pool to enable/associate to a ring, or NULL to disable
* @qid: Rx ring to (dis)associate buffer pool (from)to
*
* This function enables or disables a buffer pool to a certain ring.
*
* Returns 0 on success, <0 on failure
**/
int i40e_xsk_pool_setup(struct i40e_vsi *vsi, struct xsk_buff_pool *pool,
u16 qid)
{
return pool ? i40e_xsk_pool_enable(vsi, pool, qid) :
i40e_xsk_pool_disable(vsi, qid);
}
/**
* i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
* @rx_ring: Rx ring
* @xdp: xdp_buff used as input to the XDP program
*
* Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
**/
static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
{
int err, result = I40E_XDP_PASS;
struct i40e_ring *xdp_ring;
struct bpf_prog *xdp_prog;
u32 act;
rcu_read_lock();
/* NB! xdp_prog will always be !NULL, due to the fact that
* this path is enabled by setting an XDP program.
*/
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
act = bpf_prog_run_xdp(xdp_prog, xdp);
if (likely(act == XDP_REDIRECT)) {
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
if (err)
goto out_failure;
rcu_read_unlock();
return I40E_XDP_REDIR;
}
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
if (result == I40E_XDP_CONSUMED)
goto out_failure;
break;
default:
bpf_warn_invalid_xdp_action(act);
fallthrough;
case XDP_ABORTED:
out_failure:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
fallthrough; /* handle aborts by dropping packet */
case XDP_DROP:
result = I40E_XDP_CONSUMED;
break;
}
rcu_read_unlock();
return result;
}
bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
{
u16 ntu = rx_ring->next_to_use;
union i40e_rx_desc *rx_desc;
struct xdp_buff **bi, *xdp;
dma_addr_t dma;
bool ok = true;
rx_desc = I40E_RX_DESC(rx_ring, ntu);
bi = i40e_rx_bi(rx_ring, ntu);
do {
xdp = xsk_buff_alloc(rx_ring->xsk_pool);
if (!xdp) {
ok = false;
goto no_buffers;
}
*bi = xdp;
dma = xsk_buff_xdp_get_dma(xdp);
rx_desc->read.pkt_addr = cpu_to_le64(dma);
rx_desc->read.hdr_addr = 0;
rx_desc++;
bi++;
ntu++;
if (unlikely(ntu == rx_ring->count)) {
rx_desc = I40E_RX_DESC(rx_ring, 0);
bi = i40e_rx_bi(rx_ring, 0);
ntu = 0;
}
} while (--count);
no_buffers:
if (rx_ring->next_to_use != ntu) {
/* clear the status bits for the next_to_use descriptor */
rx_desc->wb.qword1.status_error_len = 0;
i40e_release_rx_desc(rx_ring, ntu);
}
return ok;
}
/**
* i40e_construct_skb_zc - Create skbuff from zero-copy Rx buffer
* @rx_ring: Rx ring
* @xdp: xdp_buff
*
* This functions allocates a new skb from a zero-copy Rx buffer.
*
* Returns the skb, or NULL on failure.
**/
static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
struct xdp_buff *xdp)
{
unsigned int metasize = xdp->data - xdp->data_meta;
unsigned int datasize = xdp->data_end - xdp->data;
struct sk_buff *skb;
/* allocate a skb to store the frags */
skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
xdp->data_end - xdp->data_hard_start,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
goto out;
skb_reserve(skb, xdp->data - xdp->data_hard_start);
memcpy(__skb_put(skb, datasize), xdp->data, datasize);
if (metasize)
skb_metadata_set(skb, metasize);
out:
xsk_buff_free(xdp);
return skb;
}
static void i40e_handle_xdp_result_zc(struct i40e_ring *rx_ring,
struct xdp_buff *xdp_buff,
union i40e_rx_desc *rx_desc,
unsigned int *rx_packets,
unsigned int *rx_bytes,
unsigned int size,
unsigned int xdp_res)
{
struct sk_buff *skb;
*rx_packets = 1;
*rx_bytes = size;
if (likely(xdp_res == I40E_XDP_REDIR) || xdp_res == I40E_XDP_TX)
return;
if (xdp_res == I40E_XDP_CONSUMED) {
xsk_buff_free(xdp_buff);
return;
}
if (xdp_res == I40E_XDP_PASS) {
/* NB! We are not checking for errors using
* i40e_test_staterr with
* BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
* SBP is *not* set in PRT_SBPVSI (default not set).
*/
skb = i40e_construct_skb_zc(rx_ring, xdp_buff);
if (!skb) {
rx_ring->rx_stats.alloc_buff_failed++;
*rx_packets = 0;
*rx_bytes = 0;
return;
}
if (eth_skb_pad(skb)) {
*rx_packets = 0;
*rx_bytes = 0;
return;
}
*rx_bytes = skb->len;
i40e_process_skb_fields(rx_ring, rx_desc, skb);
napi_gro_receive(&rx_ring->q_vector->napi, skb);
return;
}
/* Should never get here, as all valid cases have been handled already.
*/
WARN_ON_ONCE(1);
}
/**
* i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
* @rx_ring: Rx ring
* @budget: NAPI budget
*
* Returns amount of work completed
**/
int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
{
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
u16 next_to_clean = rx_ring->next_to_clean;
u16 count_mask = rx_ring->count - 1;
unsigned int xdp_res, xdp_xmit = 0;
bool failure = false;
while (likely(total_rx_packets < (unsigned int)budget)) {
union i40e_rx_desc *rx_desc;
unsigned int rx_packets;
unsigned int rx_bytes;
struct xdp_buff *bi;
unsigned int size;
u64 qword;
rx_desc = I40E_RX_DESC(rx_ring, next_to_clean);
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we have
* verified the descriptor has been written back.
*/
dma_rmb();
if (i40e_rx_is_programming_status(qword)) {
i40e_clean_programming_status(rx_ring,
rx_desc->raw.qword[0],
qword);
bi = *i40e_rx_bi(rx_ring, next_to_clean);
xsk_buff_free(bi);
next_to_clean = (next_to_clean + 1) & count_mask;
continue;
}
size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
if (!size)
break;
bi = *i40e_rx_bi(rx_ring, next_to_clean);
bi->data_end = bi->data + size;
xsk_buff_dma_sync_for_cpu(bi, rx_ring->xsk_pool);
xdp_res = i40e_run_xdp_zc(rx_ring, bi);
i40e_handle_xdp_result_zc(rx_ring, bi, rx_desc, &rx_packets,
&rx_bytes, size, xdp_res);
total_rx_packets += rx_packets;
total_rx_bytes += rx_bytes;
xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
next_to_clean = (next_to_clean + 1) & count_mask;
}
rx_ring->next_to_clean = next_to_clean;
cleaned_count = (next_to_clean - rx_ring->next_to_use - 1) & count_mask;
if (cleaned_count >= I40E_RX_BUFFER_WRITE)
failure = !i40e_alloc_rx_buffers_zc(rx_ring, cleaned_count);
i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
if (failure || next_to_clean == rx_ring->next_to_use)
xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
else
xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
return (int)total_rx_packets;
}
return failure ? budget : (int)total_rx_packets;
}
static void i40e_xmit_pkt(struct i40e_ring *xdp_ring, struct xdp_desc *desc,
unsigned int *total_bytes)
{
struct i40e_tx_desc *tx_desc;
dma_addr_t dma;
dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
tx_desc->buffer_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | I40E_TX_DESC_CMD_EOP,
0, desc->len, 0);
*total_bytes += desc->len;
}
static void i40e_xmit_pkt_batch(struct i40e_ring *xdp_ring, struct xdp_desc *desc,
unsigned int *total_bytes)
{
u16 ntu = xdp_ring->next_to_use;
struct i40e_tx_desc *tx_desc;
dma_addr_t dma;
u32 i;
loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc[i].addr);
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc[i].len);
tx_desc = I40E_TX_DESC(xdp_ring, ntu++);
tx_desc->buffer_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC |
I40E_TX_DESC_CMD_EOP,
0, desc[i].len, 0);
*total_bytes += desc[i].len;
}
xdp_ring->next_to_use = ntu;
}
static void i40e_fill_tx_hw_ring(struct i40e_ring *xdp_ring, struct xdp_desc *descs, u32 nb_pkts,
unsigned int *total_bytes)
{
u32 batched, leftover, i;
batched = nb_pkts & ~(PKTS_PER_BATCH - 1);
leftover = nb_pkts & (PKTS_PER_BATCH - 1);
for (i = 0; i < batched; i += PKTS_PER_BATCH)
i40e_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
for (i = batched; i < batched + leftover; i++)
i40e_xmit_pkt(xdp_ring, &descs[i], total_bytes);
}
static void i40e_set_rs_bit(struct i40e_ring *xdp_ring)
{
u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1;
struct i40e_tx_desc *tx_desc;
tx_desc = I40E_TX_DESC(xdp_ring, ntu);
tx_desc->cmd_type_offset_bsz |= cpu_to_le64(I40E_TX_DESC_CMD_RS << I40E_TXD_QW1_CMD_SHIFT);
}
/**
* i40e_xmit_zc - Performs zero-copy Tx AF_XDP
* @xdp_ring: XDP Tx ring
* @budget: NAPI budget
*
* Returns true if the work is finished.
**/
static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
{
struct xdp_desc *descs = xdp_ring->xsk_descs;
u32 nb_pkts, nb_processed = 0;
unsigned int total_bytes = 0;
nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, descs, budget);
if (!nb_pkts)
return true;
if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
nb_processed = xdp_ring->count - xdp_ring->next_to_use;
i40e_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
xdp_ring->next_to_use = 0;
}
i40e_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
&total_bytes);
/* Request an interrupt for the last frame and bump tail ptr. */
i40e_set_rs_bit(xdp_ring);
i40e_xdp_ring_update_tail(xdp_ring);
i40e_update_tx_stats(xdp_ring, nb_pkts, total_bytes);
return nb_pkts < budget;
}
/**
* i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
* @tx_ring: XDP Tx ring
* @tx_bi: Tx buffer info to clean
**/
static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
struct i40e_tx_buffer *tx_bi)
{
xdp_return_frame(tx_bi->xdpf);
tx_ring->xdp_tx_active--;
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_bi, dma),
dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
dma_unmap_len_set(tx_bi, len, 0);
}
/**
* i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
* @vsi: Current VSI
* @tx_ring: XDP Tx ring
*
* Returns true if cleanup/tranmission is done.
**/
bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, struct i40e_ring *tx_ring)
{
struct xsk_buff_pool *bp = tx_ring->xsk_pool;
u32 i, completed_frames, xsk_frames = 0;
u32 head_idx = i40e_get_head(tx_ring);
struct i40e_tx_buffer *tx_bi;
unsigned int ntc;
if (head_idx < tx_ring->next_to_clean)
head_idx += tx_ring->count;
completed_frames = head_idx - tx_ring->next_to_clean;
if (completed_frames == 0)
goto out_xmit;
if (likely(!tx_ring->xdp_tx_active)) {
xsk_frames = completed_frames;
goto skip;
}
ntc = tx_ring->next_to_clean;
for (i = 0; i < completed_frames; i++) {
tx_bi = &tx_ring->tx_bi[ntc];
if (tx_bi->xdpf) {
i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
tx_bi->xdpf = NULL;
} else {
xsk_frames++;
}
if (++ntc >= tx_ring->count)
ntc = 0;
}
skip:
tx_ring->next_to_clean += completed_frames;
if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
tx_ring->next_to_clean -= tx_ring->count;
if (xsk_frames)
xsk_tx_completed(bp, xsk_frames);
i40e_arm_wb(tx_ring, vsi, completed_frames);
out_xmit:
if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
return i40e_xmit_zc(tx_ring, I40E_DESC_UNUSED(tx_ring));
}
/**
* i40e_xsk_wakeup - Implements the ndo_xsk_wakeup
* @dev: the netdevice
* @queue_id: queue id to wake up
* @flags: ignored in our case since we have Rx and Tx in the same NAPI.
*
* Returns <0 for errors, 0 otherwise.
**/
int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
{
struct i40e_netdev_priv *np = netdev_priv(dev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
struct i40e_ring *ring;
if (test_bit(__I40E_CONFIG_BUSY, pf->state))
return -EAGAIN;
if (test_bit(__I40E_VSI_DOWN, vsi->state))
return -ENETDOWN;
if (!i40e_enabled_xdp_vsi(vsi))
return -ENXIO;
if (queue_id >= vsi->num_queue_pairs)
return -ENXIO;
if (!vsi->xdp_rings[queue_id]->xsk_pool)
return -ENXIO;
ring = vsi->xdp_rings[queue_id];
/* The idea here is that if NAPI is running, mark a miss, so
* it will run again. If not, trigger an interrupt and
* schedule the NAPI from interrupt context. If NAPI would be
* scheduled here, the interrupt affinity would not be
* honored.
*/
if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
i40e_force_wb(vsi, ring->q_vector);
return 0;
}
void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
{
u16 count_mask = rx_ring->count - 1;
u16 ntc = rx_ring->next_to_clean;
u16 ntu = rx_ring->next_to_use;
for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) {
struct xdp_buff *rx_bi = *i40e_rx_bi(rx_ring, ntc);
xsk_buff_free(rx_bi);
}
}
/**
* i40e_xsk_clean_tx_ring - Clean the XDP Tx ring on shutdown
* @tx_ring: XDP Tx ring
**/
void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
{
u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
struct xsk_buff_pool *bp = tx_ring->xsk_pool;
struct i40e_tx_buffer *tx_bi;
u32 xsk_frames = 0;
while (ntc != ntu) {
tx_bi = &tx_ring->tx_bi[ntc];
if (tx_bi->xdpf)
i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
else
xsk_frames++;
tx_bi->xdpf = NULL;
ntc++;
if (ntc >= tx_ring->count)
ntc = 0;
}
if (xsk_frames)
xsk_tx_completed(bp, xsk_frames);
}
/**
* i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have an AF_XDP
* buffer pool attached
* @vsi: vsi
*
* Returns true if any of the Rx rings has an AF_XDP buffer pool attached
**/
bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
{
struct net_device *netdev = vsi->netdev;
int i;
for (i = 0; i < vsi->num_queue_pairs; i++) {
if (xsk_get_pool_from_qid(netdev, i))
return true;
}
return false;
}