1283 lines
36 KiB
C
1283 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* drivers/usb/core/usb.c
|
|
*
|
|
* (C) Copyright Linus Torvalds 1999
|
|
* (C) Copyright Johannes Erdfelt 1999-2001
|
|
* (C) Copyright Andreas Gal 1999
|
|
* (C) Copyright Gregory P. Smith 1999
|
|
* (C) Copyright Deti Fliegl 1999 (new USB architecture)
|
|
* (C) Copyright Randy Dunlap 2000
|
|
* (C) Copyright David Brownell 2000-2004
|
|
* (C) Copyright Yggdrasil Computing, Inc. 2000
|
|
* (usb_device_id matching changes by Adam J. Richter)
|
|
* (C) Copyright Greg Kroah-Hartman 2002-2003
|
|
*
|
|
* Released under the GPLv2 only.
|
|
*
|
|
* NOTE! This is not actually a driver at all, rather this is
|
|
* just a collection of helper routines that implement the
|
|
* generic USB things that the real drivers can use..
|
|
*
|
|
* Think of this as a "USB library" rather than anything else.
|
|
* It should be considered a slave, with no callbacks. Callbacks
|
|
* are evil.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/string.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h> /* for in_interrupt() */
|
|
#include <linux/kmod.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/usb.h>
|
|
#include <linux/usb/hcd.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/usb/of.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "hub.h"
|
|
|
|
const char *usbcore_name = "usbcore";
|
|
|
|
static bool nousb; /* Disable USB when built into kernel image */
|
|
|
|
module_param(nousb, bool, 0444);
|
|
|
|
/*
|
|
* for external read access to <nousb>
|
|
*/
|
|
int usb_disabled(void)
|
|
{
|
|
return nousb;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_disabled);
|
|
|
|
#ifdef CONFIG_PM
|
|
/* Default delay value, in seconds */
|
|
static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
|
|
module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
|
|
MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
|
|
|
|
#else
|
|
#define usb_autosuspend_delay 0
|
|
#endif
|
|
|
|
static bool match_endpoint(struct usb_endpoint_descriptor *epd,
|
|
struct usb_endpoint_descriptor **bulk_in,
|
|
struct usb_endpoint_descriptor **bulk_out,
|
|
struct usb_endpoint_descriptor **int_in,
|
|
struct usb_endpoint_descriptor **int_out)
|
|
{
|
|
switch (usb_endpoint_type(epd)) {
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
if (usb_endpoint_dir_in(epd)) {
|
|
if (bulk_in && !*bulk_in) {
|
|
*bulk_in = epd;
|
|
break;
|
|
}
|
|
} else {
|
|
if (bulk_out && !*bulk_out) {
|
|
*bulk_out = epd;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
case USB_ENDPOINT_XFER_INT:
|
|
if (usb_endpoint_dir_in(epd)) {
|
|
if (int_in && !*int_in) {
|
|
*int_in = epd;
|
|
break;
|
|
}
|
|
} else {
|
|
if (int_out && !*int_out) {
|
|
*int_out = epd;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
|
|
(!int_in || *int_in) && (!int_out || *int_out);
|
|
}
|
|
|
|
/**
|
|
* usb_find_common_endpoints() -- look up common endpoint descriptors
|
|
* @alt: alternate setting to search
|
|
* @bulk_in: pointer to descriptor pointer, or NULL
|
|
* @bulk_out: pointer to descriptor pointer, or NULL
|
|
* @int_in: pointer to descriptor pointer, or NULL
|
|
* @int_out: pointer to descriptor pointer, or NULL
|
|
*
|
|
* Search the alternate setting's endpoint descriptors for the first bulk-in,
|
|
* bulk-out, interrupt-in and interrupt-out endpoints and return them in the
|
|
* provided pointers (unless they are NULL).
|
|
*
|
|
* If a requested endpoint is not found, the corresponding pointer is set to
|
|
* NULL.
|
|
*
|
|
* Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
|
|
*/
|
|
int usb_find_common_endpoints(struct usb_host_interface *alt,
|
|
struct usb_endpoint_descriptor **bulk_in,
|
|
struct usb_endpoint_descriptor **bulk_out,
|
|
struct usb_endpoint_descriptor **int_in,
|
|
struct usb_endpoint_descriptor **int_out)
|
|
{
|
|
struct usb_endpoint_descriptor *epd;
|
|
int i;
|
|
|
|
if (bulk_in)
|
|
*bulk_in = NULL;
|
|
if (bulk_out)
|
|
*bulk_out = NULL;
|
|
if (int_in)
|
|
*int_in = NULL;
|
|
if (int_out)
|
|
*int_out = NULL;
|
|
|
|
for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
|
|
epd = &alt->endpoint[i].desc;
|
|
|
|
if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
|
|
return 0;
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
|
|
|
|
/**
|
|
* usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
|
|
* @alt: alternate setting to search
|
|
* @bulk_in: pointer to descriptor pointer, or NULL
|
|
* @bulk_out: pointer to descriptor pointer, or NULL
|
|
* @int_in: pointer to descriptor pointer, or NULL
|
|
* @int_out: pointer to descriptor pointer, or NULL
|
|
*
|
|
* Search the alternate setting's endpoint descriptors for the last bulk-in,
|
|
* bulk-out, interrupt-in and interrupt-out endpoints and return them in the
|
|
* provided pointers (unless they are NULL).
|
|
*
|
|
* If a requested endpoint is not found, the corresponding pointer is set to
|
|
* NULL.
|
|
*
|
|
* Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
|
|
*/
|
|
int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
|
|
struct usb_endpoint_descriptor **bulk_in,
|
|
struct usb_endpoint_descriptor **bulk_out,
|
|
struct usb_endpoint_descriptor **int_in,
|
|
struct usb_endpoint_descriptor **int_out)
|
|
{
|
|
struct usb_endpoint_descriptor *epd;
|
|
int i;
|
|
|
|
if (bulk_in)
|
|
*bulk_in = NULL;
|
|
if (bulk_out)
|
|
*bulk_out = NULL;
|
|
if (int_in)
|
|
*int_in = NULL;
|
|
if (int_out)
|
|
*int_out = NULL;
|
|
|
|
for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
|
|
epd = &alt->endpoint[i].desc;
|
|
|
|
if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
|
|
return 0;
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
|
|
|
|
/**
|
|
* usb_find_alt_setting() - Given a configuration, find the alternate setting
|
|
* for the given interface.
|
|
* @config: the configuration to search (not necessarily the current config).
|
|
* @iface_num: interface number to search in
|
|
* @alt_num: alternate interface setting number to search for.
|
|
*
|
|
* Search the configuration's interface cache for the given alt setting.
|
|
*
|
|
* Return: The alternate setting, if found. %NULL otherwise.
|
|
*/
|
|
struct usb_host_interface *usb_find_alt_setting(
|
|
struct usb_host_config *config,
|
|
unsigned int iface_num,
|
|
unsigned int alt_num)
|
|
{
|
|
struct usb_interface_cache *intf_cache = NULL;
|
|
int i;
|
|
|
|
if (!config)
|
|
return NULL;
|
|
for (i = 0; i < config->desc.bNumInterfaces; i++) {
|
|
if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
|
|
== iface_num) {
|
|
intf_cache = config->intf_cache[i];
|
|
break;
|
|
}
|
|
}
|
|
if (!intf_cache)
|
|
return NULL;
|
|
for (i = 0; i < intf_cache->num_altsetting; i++)
|
|
if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
|
|
return &intf_cache->altsetting[i];
|
|
|
|
printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
|
|
"config %u\n", alt_num, iface_num,
|
|
config->desc.bConfigurationValue);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_find_alt_setting);
|
|
|
|
/**
|
|
* usb_ifnum_to_if - get the interface object with a given interface number
|
|
* @dev: the device whose current configuration is considered
|
|
* @ifnum: the desired interface
|
|
*
|
|
* This walks the device descriptor for the currently active configuration
|
|
* to find the interface object with the particular interface number.
|
|
*
|
|
* Note that configuration descriptors are not required to assign interface
|
|
* numbers sequentially, so that it would be incorrect to assume that
|
|
* the first interface in that descriptor corresponds to interface zero.
|
|
* This routine helps device drivers avoid such mistakes.
|
|
* However, you should make sure that you do the right thing with any
|
|
* alternate settings available for this interfaces.
|
|
*
|
|
* Don't call this function unless you are bound to one of the interfaces
|
|
* on this device or you have locked the device!
|
|
*
|
|
* Return: A pointer to the interface that has @ifnum as interface number,
|
|
* if found. %NULL otherwise.
|
|
*/
|
|
struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
|
|
unsigned ifnum)
|
|
{
|
|
struct usb_host_config *config = dev->actconfig;
|
|
int i;
|
|
|
|
if (!config)
|
|
return NULL;
|
|
for (i = 0; i < config->desc.bNumInterfaces; i++)
|
|
if (config->interface[i]->altsetting[0]
|
|
.desc.bInterfaceNumber == ifnum)
|
|
return config->interface[i];
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
|
|
|
|
/**
|
|
* usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
|
|
* @intf: the interface containing the altsetting in question
|
|
* @altnum: the desired alternate setting number
|
|
*
|
|
* This searches the altsetting array of the specified interface for
|
|
* an entry with the correct bAlternateSetting value.
|
|
*
|
|
* Note that altsettings need not be stored sequentially by number, so
|
|
* it would be incorrect to assume that the first altsetting entry in
|
|
* the array corresponds to altsetting zero. This routine helps device
|
|
* drivers avoid such mistakes.
|
|
*
|
|
* Don't call this function unless you are bound to the intf interface
|
|
* or you have locked the device!
|
|
*
|
|
* Return: A pointer to the entry of the altsetting array of @intf that
|
|
* has @altnum as the alternate setting number. %NULL if not found.
|
|
*/
|
|
struct usb_host_interface *usb_altnum_to_altsetting(
|
|
const struct usb_interface *intf,
|
|
unsigned int altnum)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < intf->num_altsetting; i++) {
|
|
if (intf->altsetting[i].desc.bAlternateSetting == altnum)
|
|
return &intf->altsetting[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
|
|
|
|
struct find_interface_arg {
|
|
int minor;
|
|
struct device_driver *drv;
|
|
};
|
|
|
|
static int __find_interface(struct device *dev, void *data)
|
|
{
|
|
struct find_interface_arg *arg = data;
|
|
struct usb_interface *intf;
|
|
|
|
if (!is_usb_interface(dev))
|
|
return 0;
|
|
|
|
if (dev->driver != arg->drv)
|
|
return 0;
|
|
intf = to_usb_interface(dev);
|
|
return intf->minor == arg->minor;
|
|
}
|
|
|
|
/**
|
|
* usb_find_interface - find usb_interface pointer for driver and device
|
|
* @drv: the driver whose current configuration is considered
|
|
* @minor: the minor number of the desired device
|
|
*
|
|
* This walks the bus device list and returns a pointer to the interface
|
|
* with the matching minor and driver. Note, this only works for devices
|
|
* that share the USB major number.
|
|
*
|
|
* Return: A pointer to the interface with the matching major and @minor.
|
|
*/
|
|
struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
|
|
{
|
|
struct find_interface_arg argb;
|
|
struct device *dev;
|
|
|
|
argb.minor = minor;
|
|
argb.drv = &drv->drvwrap.driver;
|
|
|
|
dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
|
|
|
|
/* Drop reference count from bus_find_device */
|
|
put_device(dev);
|
|
|
|
return dev ? to_usb_interface(dev) : NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_find_interface);
|
|
|
|
struct each_dev_arg {
|
|
void *data;
|
|
int (*fn)(struct usb_device *, void *);
|
|
};
|
|
|
|
static int __each_dev(struct device *dev, void *data)
|
|
{
|
|
struct each_dev_arg *arg = (struct each_dev_arg *)data;
|
|
|
|
/* There are struct usb_interface on the same bus, filter them out */
|
|
if (!is_usb_device(dev))
|
|
return 0;
|
|
|
|
return arg->fn(to_usb_device(dev), arg->data);
|
|
}
|
|
|
|
/**
|
|
* usb_for_each_dev - iterate over all USB devices in the system
|
|
* @data: data pointer that will be handed to the callback function
|
|
* @fn: callback function to be called for each USB device
|
|
*
|
|
* Iterate over all USB devices and call @fn for each, passing it @data. If it
|
|
* returns anything other than 0, we break the iteration prematurely and return
|
|
* that value.
|
|
*/
|
|
int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
|
|
{
|
|
struct each_dev_arg arg = {data, fn};
|
|
|
|
return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_for_each_dev);
|
|
|
|
/**
|
|
* usb_release_dev - free a usb device structure when all users of it are finished.
|
|
* @dev: device that's been disconnected
|
|
*
|
|
* Will be called only by the device core when all users of this usb device are
|
|
* done.
|
|
*/
|
|
static void usb_release_dev(struct device *dev)
|
|
{
|
|
struct usb_device *udev;
|
|
struct usb_hcd *hcd;
|
|
|
|
udev = to_usb_device(dev);
|
|
hcd = bus_to_hcd(udev->bus);
|
|
|
|
usb_destroy_configuration(udev);
|
|
usb_release_bos_descriptor(udev);
|
|
of_node_put(dev->of_node);
|
|
usb_put_hcd(hcd);
|
|
kfree(udev->product);
|
|
kfree(udev->manufacturer);
|
|
kfree(udev->serial);
|
|
kfree(udev);
|
|
}
|
|
|
|
static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
|
|
{
|
|
struct usb_device *usb_dev;
|
|
|
|
usb_dev = to_usb_device(dev);
|
|
|
|
if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
|
|
return -ENOMEM;
|
|
|
|
if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
/* USB device Power-Management thunks.
|
|
* There's no need to distinguish here between quiescing a USB device
|
|
* and powering it down; the generic_suspend() routine takes care of
|
|
* it by skipping the usb_port_suspend() call for a quiesce. And for
|
|
* USB interfaces there's no difference at all.
|
|
*/
|
|
|
|
static int usb_dev_prepare(struct device *dev)
|
|
{
|
|
return 0; /* Implement eventually? */
|
|
}
|
|
|
|
static void usb_dev_complete(struct device *dev)
|
|
{
|
|
/* Currently used only for rebinding interfaces */
|
|
usb_resume_complete(dev);
|
|
}
|
|
|
|
static int usb_dev_suspend(struct device *dev)
|
|
{
|
|
return usb_suspend(dev, PMSG_SUSPEND);
|
|
}
|
|
|
|
static int usb_dev_resume(struct device *dev)
|
|
{
|
|
return usb_resume(dev, PMSG_RESUME);
|
|
}
|
|
|
|
static int usb_dev_freeze(struct device *dev)
|
|
{
|
|
return usb_suspend(dev, PMSG_FREEZE);
|
|
}
|
|
|
|
static int usb_dev_thaw(struct device *dev)
|
|
{
|
|
return usb_resume(dev, PMSG_THAW);
|
|
}
|
|
|
|
static int usb_dev_poweroff(struct device *dev)
|
|
{
|
|
return usb_suspend(dev, PMSG_HIBERNATE);
|
|
}
|
|
|
|
static int usb_dev_restore(struct device *dev)
|
|
{
|
|
return usb_resume(dev, PMSG_RESTORE);
|
|
}
|
|
|
|
static const struct dev_pm_ops usb_device_pm_ops = {
|
|
.prepare = usb_dev_prepare,
|
|
.complete = usb_dev_complete,
|
|
.suspend = usb_dev_suspend,
|
|
.resume = usb_dev_resume,
|
|
.freeze = usb_dev_freeze,
|
|
.thaw = usb_dev_thaw,
|
|
.poweroff = usb_dev_poweroff,
|
|
.restore = usb_dev_restore,
|
|
.runtime_suspend = usb_runtime_suspend,
|
|
.runtime_resume = usb_runtime_resume,
|
|
.runtime_idle = usb_runtime_idle,
|
|
};
|
|
|
|
#endif /* CONFIG_PM */
|
|
|
|
|
|
static char *usb_devnode(struct device *dev,
|
|
umode_t *mode, kuid_t *uid, kgid_t *gid)
|
|
{
|
|
struct usb_device *usb_dev;
|
|
|
|
usb_dev = to_usb_device(dev);
|
|
return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
|
|
usb_dev->bus->busnum, usb_dev->devnum);
|
|
}
|
|
|
|
struct device_type usb_device_type = {
|
|
.name = "usb_device",
|
|
.release = usb_release_dev,
|
|
.uevent = usb_dev_uevent,
|
|
.devnode = usb_devnode,
|
|
#ifdef CONFIG_PM
|
|
.pm = &usb_device_pm_ops,
|
|
#endif
|
|
};
|
|
|
|
|
|
/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
|
|
static unsigned usb_bus_is_wusb(struct usb_bus *bus)
|
|
{
|
|
struct usb_hcd *hcd = bus_to_hcd(bus);
|
|
return hcd->wireless;
|
|
}
|
|
|
|
static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
|
|
{
|
|
struct usb_hub *hub;
|
|
|
|
if (!dev->parent)
|
|
return true; /* Root hub always ok [and always wired] */
|
|
|
|
switch (hcd->dev_policy) {
|
|
case USB_DEVICE_AUTHORIZE_NONE:
|
|
default:
|
|
return false;
|
|
|
|
case USB_DEVICE_AUTHORIZE_ALL:
|
|
return true;
|
|
|
|
case USB_DEVICE_AUTHORIZE_INTERNAL:
|
|
hub = usb_hub_to_struct_hub(dev->parent);
|
|
return hub->ports[dev->portnum - 1]->connect_type ==
|
|
USB_PORT_CONNECT_TYPE_HARD_WIRED;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* usb_alloc_dev - usb device constructor (usbcore-internal)
|
|
* @parent: hub to which device is connected; null to allocate a root hub
|
|
* @bus: bus used to access the device
|
|
* @port1: one-based index of port; ignored for root hubs
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Only hub drivers (including virtual root hub drivers for host
|
|
* controllers) should ever call this.
|
|
*
|
|
* This call may not be used in a non-sleeping context.
|
|
*
|
|
* Return: On success, a pointer to the allocated usb device. %NULL on
|
|
* failure.
|
|
*/
|
|
struct usb_device *usb_alloc_dev(struct usb_device *parent,
|
|
struct usb_bus *bus, unsigned port1)
|
|
{
|
|
struct usb_device *dev;
|
|
struct usb_hcd *usb_hcd = bus_to_hcd(bus);
|
|
unsigned root_hub = 0;
|
|
unsigned raw_port = port1;
|
|
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
|
if (!dev)
|
|
return NULL;
|
|
|
|
if (!usb_get_hcd(usb_hcd)) {
|
|
kfree(dev);
|
|
return NULL;
|
|
}
|
|
/* Root hubs aren't true devices, so don't allocate HCD resources */
|
|
if (usb_hcd->driver->alloc_dev && parent &&
|
|
!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
|
|
usb_put_hcd(bus_to_hcd(bus));
|
|
kfree(dev);
|
|
return NULL;
|
|
}
|
|
|
|
device_initialize(&dev->dev);
|
|
dev->dev.bus = &usb_bus_type;
|
|
dev->dev.type = &usb_device_type;
|
|
dev->dev.groups = usb_device_groups;
|
|
/*
|
|
* Fake a dma_mask/offset for the USB device:
|
|
* We cannot really use the dma-mapping API (dma_alloc_* and
|
|
* dma_map_*) for USB devices but instead need to use
|
|
* usb_alloc_coherent and pass data in 'urb's, but some subsystems
|
|
* manually look into the mask/offset pair to determine whether
|
|
* they need bounce buffers.
|
|
* Note: calling dma_set_mask() on a USB device would set the
|
|
* mask for the entire HCD, so don't do that.
|
|
*/
|
|
dev->dev.dma_mask = bus->sysdev->dma_mask;
|
|
dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
|
|
set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
|
|
dev->state = USB_STATE_ATTACHED;
|
|
dev->lpm_disable_count = 1;
|
|
atomic_set(&dev->urbnum, 0);
|
|
|
|
INIT_LIST_HEAD(&dev->ep0.urb_list);
|
|
dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
|
|
dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
|
|
/* ep0 maxpacket comes later, from device descriptor */
|
|
usb_enable_endpoint(dev, &dev->ep0, false);
|
|
dev->can_submit = 1;
|
|
|
|
/* Save readable and stable topology id, distinguishing devices
|
|
* by location for diagnostics, tools, driver model, etc. The
|
|
* string is a path along hub ports, from the root. Each device's
|
|
* dev->devpath will be stable until USB is re-cabled, and hubs
|
|
* are often labeled with these port numbers. The name isn't
|
|
* as stable: bus->busnum changes easily from modprobe order,
|
|
* cardbus or pci hotplugging, and so on.
|
|
*/
|
|
if (unlikely(!parent)) {
|
|
dev->devpath[0] = '0';
|
|
dev->route = 0;
|
|
|
|
dev->dev.parent = bus->controller;
|
|
device_set_of_node_from_dev(&dev->dev, bus->sysdev);
|
|
dev_set_name(&dev->dev, "usb%d", bus->busnum);
|
|
root_hub = 1;
|
|
} else {
|
|
/* match any labeling on the hubs; it's one-based */
|
|
if (parent->devpath[0] == '0') {
|
|
snprintf(dev->devpath, sizeof dev->devpath,
|
|
"%d", port1);
|
|
/* Root ports are not counted in route string */
|
|
dev->route = 0;
|
|
} else {
|
|
snprintf(dev->devpath, sizeof dev->devpath,
|
|
"%s.%d", parent->devpath, port1);
|
|
/* Route string assumes hubs have less than 16 ports */
|
|
if (port1 < 15)
|
|
dev->route = parent->route +
|
|
(port1 << ((parent->level - 1)*4));
|
|
else
|
|
dev->route = parent->route +
|
|
(15 << ((parent->level - 1)*4));
|
|
}
|
|
|
|
dev->dev.parent = &parent->dev;
|
|
dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
|
|
|
|
if (!parent->parent) {
|
|
/* device under root hub's port */
|
|
raw_port = usb_hcd_find_raw_port_number(usb_hcd,
|
|
port1);
|
|
}
|
|
dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
|
|
|
|
/* hub driver sets up TT records */
|
|
}
|
|
|
|
dev->portnum = port1;
|
|
dev->bus = bus;
|
|
dev->parent = parent;
|
|
INIT_LIST_HEAD(&dev->filelist);
|
|
|
|
#ifdef CONFIG_PM
|
|
pm_runtime_set_autosuspend_delay(&dev->dev,
|
|
usb_autosuspend_delay * 1000);
|
|
dev->connect_time = jiffies;
|
|
dev->active_duration = -jiffies;
|
|
#endif
|
|
|
|
dev->authorized = usb_dev_authorized(dev, usb_hcd);
|
|
if (!root_hub)
|
|
dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
|
|
|
|
return dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_alloc_dev);
|
|
|
|
/**
|
|
* usb_get_dev - increments the reference count of the usb device structure
|
|
* @dev: the device being referenced
|
|
*
|
|
* Each live reference to a device should be refcounted.
|
|
*
|
|
* Drivers for USB interfaces should normally record such references in
|
|
* their probe() methods, when they bind to an interface, and release
|
|
* them by calling usb_put_dev(), in their disconnect() methods.
|
|
*
|
|
* Return: A pointer to the device with the incremented reference counter.
|
|
*/
|
|
struct usb_device *usb_get_dev(struct usb_device *dev)
|
|
{
|
|
if (dev)
|
|
get_device(&dev->dev);
|
|
return dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_get_dev);
|
|
|
|
/**
|
|
* usb_put_dev - release a use of the usb device structure
|
|
* @dev: device that's been disconnected
|
|
*
|
|
* Must be called when a user of a device is finished with it. When the last
|
|
* user of the device calls this function, the memory of the device is freed.
|
|
*/
|
|
void usb_put_dev(struct usb_device *dev)
|
|
{
|
|
if (dev)
|
|
put_device(&dev->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_put_dev);
|
|
|
|
/**
|
|
* usb_get_intf - increments the reference count of the usb interface structure
|
|
* @intf: the interface being referenced
|
|
*
|
|
* Each live reference to a interface must be refcounted.
|
|
*
|
|
* Drivers for USB interfaces should normally record such references in
|
|
* their probe() methods, when they bind to an interface, and release
|
|
* them by calling usb_put_intf(), in their disconnect() methods.
|
|
*
|
|
* Return: A pointer to the interface with the incremented reference counter.
|
|
*/
|
|
struct usb_interface *usb_get_intf(struct usb_interface *intf)
|
|
{
|
|
if (intf)
|
|
get_device(&intf->dev);
|
|
return intf;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_get_intf);
|
|
|
|
/**
|
|
* usb_put_intf - release a use of the usb interface structure
|
|
* @intf: interface that's been decremented
|
|
*
|
|
* Must be called when a user of an interface is finished with it. When the
|
|
* last user of the interface calls this function, the memory of the interface
|
|
* is freed.
|
|
*/
|
|
void usb_put_intf(struct usb_interface *intf)
|
|
{
|
|
if (intf)
|
|
put_device(&intf->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_put_intf);
|
|
|
|
/* USB device locking
|
|
*
|
|
* USB devices and interfaces are locked using the semaphore in their
|
|
* embedded struct device. The hub driver guarantees that whenever a
|
|
* device is connected or disconnected, drivers are called with the
|
|
* USB device locked as well as their particular interface.
|
|
*
|
|
* Complications arise when several devices are to be locked at the same
|
|
* time. Only hub-aware drivers that are part of usbcore ever have to
|
|
* do this; nobody else needs to worry about it. The rule for locking
|
|
* is simple:
|
|
*
|
|
* When locking both a device and its parent, always lock the
|
|
* the parent first.
|
|
*/
|
|
|
|
/**
|
|
* usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
|
|
* @udev: device that's being locked
|
|
* @iface: interface bound to the driver making the request (optional)
|
|
*
|
|
* Attempts to acquire the device lock, but fails if the device is
|
|
* NOTATTACHED or SUSPENDED, or if iface is specified and the interface
|
|
* is neither BINDING nor BOUND. Rather than sleeping to wait for the
|
|
* lock, the routine polls repeatedly. This is to prevent deadlock with
|
|
* disconnect; in some drivers (such as usb-storage) the disconnect()
|
|
* or suspend() method will block waiting for a device reset to complete.
|
|
*
|
|
* Return: A negative error code for failure, otherwise 0.
|
|
*/
|
|
int usb_lock_device_for_reset(struct usb_device *udev,
|
|
const struct usb_interface *iface)
|
|
{
|
|
unsigned long jiffies_expire = jiffies + HZ;
|
|
|
|
if (udev->state == USB_STATE_NOTATTACHED)
|
|
return -ENODEV;
|
|
if (udev->state == USB_STATE_SUSPENDED)
|
|
return -EHOSTUNREACH;
|
|
if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
|
|
iface->condition == USB_INTERFACE_UNBOUND))
|
|
return -EINTR;
|
|
|
|
while (!usb_trylock_device(udev)) {
|
|
|
|
/* If we can't acquire the lock after waiting one second,
|
|
* we're probably deadlocked */
|
|
if (time_after(jiffies, jiffies_expire))
|
|
return -EBUSY;
|
|
|
|
msleep(15);
|
|
if (udev->state == USB_STATE_NOTATTACHED)
|
|
return -ENODEV;
|
|
if (udev->state == USB_STATE_SUSPENDED)
|
|
return -EHOSTUNREACH;
|
|
if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
|
|
iface->condition == USB_INTERFACE_UNBOUND))
|
|
return -EINTR;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
|
|
|
|
/**
|
|
* usb_get_current_frame_number - return current bus frame number
|
|
* @dev: the device whose bus is being queried
|
|
*
|
|
* Return: The current frame number for the USB host controller used
|
|
* with the given USB device. This can be used when scheduling
|
|
* isochronous requests.
|
|
*
|
|
* Note: Different kinds of host controller have different "scheduling
|
|
* horizons". While one type might support scheduling only 32 frames
|
|
* into the future, others could support scheduling up to 1024 frames
|
|
* into the future.
|
|
*
|
|
*/
|
|
int usb_get_current_frame_number(struct usb_device *dev)
|
|
{
|
|
return usb_hcd_get_frame_number(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
|
|
|
|
/*-------------------------------------------------------------------*/
|
|
/*
|
|
* __usb_get_extra_descriptor() finds a descriptor of specific type in the
|
|
* extra field of the interface and endpoint descriptor structs.
|
|
*/
|
|
|
|
int __usb_get_extra_descriptor(char *buffer, unsigned size,
|
|
unsigned char type, void **ptr, size_t minsize)
|
|
{
|
|
struct usb_descriptor_header *header;
|
|
|
|
while (size >= sizeof(struct usb_descriptor_header)) {
|
|
header = (struct usb_descriptor_header *)buffer;
|
|
|
|
if (header->bLength < 2 || header->bLength > size) {
|
|
printk(KERN_ERR
|
|
"%s: bogus descriptor, type %d length %d\n",
|
|
usbcore_name,
|
|
header->bDescriptorType,
|
|
header->bLength);
|
|
return -1;
|
|
}
|
|
|
|
if (header->bDescriptorType == type && header->bLength >= minsize) {
|
|
*ptr = header;
|
|
return 0;
|
|
}
|
|
|
|
buffer += header->bLength;
|
|
size -= header->bLength;
|
|
}
|
|
return -1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
|
|
|
|
/**
|
|
* usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
|
|
* @dev: device the buffer will be used with
|
|
* @size: requested buffer size
|
|
* @mem_flags: affect whether allocation may block
|
|
* @dma: used to return DMA address of buffer
|
|
*
|
|
* Return: Either null (indicating no buffer could be allocated), or the
|
|
* cpu-space pointer to a buffer that may be used to perform DMA to the
|
|
* specified device. Such cpu-space buffers are returned along with the DMA
|
|
* address (through the pointer provided).
|
|
*
|
|
* Note:
|
|
* These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
|
|
* to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
|
|
* hardware during URB completion/resubmit. The implementation varies between
|
|
* platforms, depending on details of how DMA will work to this device.
|
|
* Using these buffers also eliminates cacheline sharing problems on
|
|
* architectures where CPU caches are not DMA-coherent. On systems without
|
|
* bus-snooping caches, these buffers are uncached.
|
|
*
|
|
* When the buffer is no longer used, free it with usb_free_coherent().
|
|
*/
|
|
void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
|
|
dma_addr_t *dma)
|
|
{
|
|
if (!dev || !dev->bus)
|
|
return NULL;
|
|
return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_alloc_coherent);
|
|
|
|
/**
|
|
* usb_free_coherent - free memory allocated with usb_alloc_coherent()
|
|
* @dev: device the buffer was used with
|
|
* @size: requested buffer size
|
|
* @addr: CPU address of buffer
|
|
* @dma: DMA address of buffer
|
|
*
|
|
* This reclaims an I/O buffer, letting it be reused. The memory must have
|
|
* been allocated using usb_alloc_coherent(), and the parameters must match
|
|
* those provided in that allocation request.
|
|
*/
|
|
void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
|
|
dma_addr_t dma)
|
|
{
|
|
if (!dev || !dev->bus)
|
|
return;
|
|
if (!addr)
|
|
return;
|
|
hcd_buffer_free(dev->bus, size, addr, dma);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_free_coherent);
|
|
|
|
/**
|
|
* usb_buffer_map - create DMA mapping(s) for an urb
|
|
* @urb: urb whose transfer_buffer/setup_packet will be mapped
|
|
*
|
|
* URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
|
|
* succeeds. If the device is connected to this system through a non-DMA
|
|
* controller, this operation always succeeds.
|
|
*
|
|
* This call would normally be used for an urb which is reused, perhaps
|
|
* as the target of a large periodic transfer, with usb_buffer_dmasync()
|
|
* calls to synchronize memory and dma state.
|
|
*
|
|
* Reverse the effect of this call with usb_buffer_unmap().
|
|
*
|
|
* Return: Either %NULL (indicating no buffer could be mapped), or @urb.
|
|
*
|
|
*/
|
|
#if 0
|
|
struct urb *usb_buffer_map(struct urb *urb)
|
|
{
|
|
struct usb_bus *bus;
|
|
struct device *controller;
|
|
|
|
if (!urb
|
|
|| !urb->dev
|
|
|| !(bus = urb->dev->bus)
|
|
|| !(controller = bus->sysdev))
|
|
return NULL;
|
|
|
|
if (controller->dma_mask) {
|
|
urb->transfer_dma = dma_map_single(controller,
|
|
urb->transfer_buffer, urb->transfer_buffer_length,
|
|
usb_pipein(urb->pipe)
|
|
? DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
/* FIXME generic api broken like pci, can't report errors */
|
|
/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
|
|
} else
|
|
urb->transfer_dma = ~0;
|
|
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
|
|
return urb;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_buffer_map);
|
|
#endif /* 0 */
|
|
|
|
/* XXX DISABLED, no users currently. If you wish to re-enable this
|
|
* XXX please determine whether the sync is to transfer ownership of
|
|
* XXX the buffer from device to cpu or vice verse, and thusly use the
|
|
* XXX appropriate _for_{cpu,device}() method. -DaveM
|
|
*/
|
|
#if 0
|
|
|
|
/**
|
|
* usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
|
|
* @urb: urb whose transfer_buffer/setup_packet will be synchronized
|
|
*/
|
|
void usb_buffer_dmasync(struct urb *urb)
|
|
{
|
|
struct usb_bus *bus;
|
|
struct device *controller;
|
|
|
|
if (!urb
|
|
|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
|
|
|| !urb->dev
|
|
|| !(bus = urb->dev->bus)
|
|
|| !(controller = bus->sysdev))
|
|
return;
|
|
|
|
if (controller->dma_mask) {
|
|
dma_sync_single_for_cpu(controller,
|
|
urb->transfer_dma, urb->transfer_buffer_length,
|
|
usb_pipein(urb->pipe)
|
|
? DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
if (usb_pipecontrol(urb->pipe))
|
|
dma_sync_single_for_cpu(controller,
|
|
urb->setup_dma,
|
|
sizeof(struct usb_ctrlrequest),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
|
|
#endif
|
|
|
|
/**
|
|
* usb_buffer_unmap - free DMA mapping(s) for an urb
|
|
* @urb: urb whose transfer_buffer will be unmapped
|
|
*
|
|
* Reverses the effect of usb_buffer_map().
|
|
*/
|
|
#if 0
|
|
void usb_buffer_unmap(struct urb *urb)
|
|
{
|
|
struct usb_bus *bus;
|
|
struct device *controller;
|
|
|
|
if (!urb
|
|
|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
|
|
|| !urb->dev
|
|
|| !(bus = urb->dev->bus)
|
|
|| !(controller = bus->sysdev))
|
|
return;
|
|
|
|
if (controller->dma_mask) {
|
|
dma_unmap_single(controller,
|
|
urb->transfer_dma, urb->transfer_buffer_length,
|
|
usb_pipein(urb->pipe)
|
|
? DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
}
|
|
urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_buffer_unmap);
|
|
#endif /* 0 */
|
|
|
|
#if 0
|
|
/**
|
|
* usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
|
|
* @dev: device to which the scatterlist will be mapped
|
|
* @is_in: mapping transfer direction
|
|
* @sg: the scatterlist to map
|
|
* @nents: the number of entries in the scatterlist
|
|
*
|
|
* Return: Either < 0 (indicating no buffers could be mapped), or the
|
|
* number of DMA mapping array entries in the scatterlist.
|
|
*
|
|
* Note:
|
|
* The caller is responsible for placing the resulting DMA addresses from
|
|
* the scatterlist into URB transfer buffer pointers, and for setting the
|
|
* URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
|
|
*
|
|
* Top I/O rates come from queuing URBs, instead of waiting for each one
|
|
* to complete before starting the next I/O. This is particularly easy
|
|
* to do with scatterlists. Just allocate and submit one URB for each DMA
|
|
* mapping entry returned, stopping on the first error or when all succeed.
|
|
* Better yet, use the usb_sg_*() calls, which do that (and more) for you.
|
|
*
|
|
* This call would normally be used when translating scatterlist requests,
|
|
* rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
|
|
* may be able to coalesce mappings for improved I/O efficiency.
|
|
*
|
|
* Reverse the effect of this call with usb_buffer_unmap_sg().
|
|
*/
|
|
int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
|
|
struct scatterlist *sg, int nents)
|
|
{
|
|
struct usb_bus *bus;
|
|
struct device *controller;
|
|
|
|
if (!dev
|
|
|| !(bus = dev->bus)
|
|
|| !(controller = bus->sysdev)
|
|
|| !controller->dma_mask)
|
|
return -EINVAL;
|
|
|
|
/* FIXME generic api broken like pci, can't report errors */
|
|
return dma_map_sg(controller, sg, nents,
|
|
is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
|
|
#endif
|
|
|
|
/* XXX DISABLED, no users currently. If you wish to re-enable this
|
|
* XXX please determine whether the sync is to transfer ownership of
|
|
* XXX the buffer from device to cpu or vice verse, and thusly use the
|
|
* XXX appropriate _for_{cpu,device}() method. -DaveM
|
|
*/
|
|
#if 0
|
|
|
|
/**
|
|
* usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
|
|
* @dev: device to which the scatterlist will be mapped
|
|
* @is_in: mapping transfer direction
|
|
* @sg: the scatterlist to synchronize
|
|
* @n_hw_ents: the positive return value from usb_buffer_map_sg
|
|
*
|
|
* Use this when you are re-using a scatterlist's data buffers for
|
|
* another USB request.
|
|
*/
|
|
void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
|
|
struct scatterlist *sg, int n_hw_ents)
|
|
{
|
|
struct usb_bus *bus;
|
|
struct device *controller;
|
|
|
|
if (!dev
|
|
|| !(bus = dev->bus)
|
|
|| !(controller = bus->sysdev)
|
|
|| !controller->dma_mask)
|
|
return;
|
|
|
|
dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
|
|
is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
|
|
#endif
|
|
|
|
#if 0
|
|
/**
|
|
* usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
|
|
* @dev: device to which the scatterlist will be mapped
|
|
* @is_in: mapping transfer direction
|
|
* @sg: the scatterlist to unmap
|
|
* @n_hw_ents: the positive return value from usb_buffer_map_sg
|
|
*
|
|
* Reverses the effect of usb_buffer_map_sg().
|
|
*/
|
|
void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
|
|
struct scatterlist *sg, int n_hw_ents)
|
|
{
|
|
struct usb_bus *bus;
|
|
struct device *controller;
|
|
|
|
if (!dev
|
|
|| !(bus = dev->bus)
|
|
|| !(controller = bus->sysdev)
|
|
|| !controller->dma_mask)
|
|
return;
|
|
|
|
dma_unmap_sg(controller, sg, n_hw_ents,
|
|
is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
|
|
#endif
|
|
|
|
/*
|
|
* Notifications of device and interface registration
|
|
*/
|
|
static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
|
|
void *data)
|
|
{
|
|
struct device *dev = data;
|
|
|
|
switch (action) {
|
|
case BUS_NOTIFY_ADD_DEVICE:
|
|
if (dev->type == &usb_device_type)
|
|
(void) usb_create_sysfs_dev_files(to_usb_device(dev));
|
|
else if (dev->type == &usb_if_device_type)
|
|
usb_create_sysfs_intf_files(to_usb_interface(dev));
|
|
break;
|
|
|
|
case BUS_NOTIFY_DEL_DEVICE:
|
|
if (dev->type == &usb_device_type)
|
|
usb_remove_sysfs_dev_files(to_usb_device(dev));
|
|
else if (dev->type == &usb_if_device_type)
|
|
usb_remove_sysfs_intf_files(to_usb_interface(dev));
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block usb_bus_nb = {
|
|
.notifier_call = usb_bus_notify,
|
|
};
|
|
|
|
struct dentry *usb_debug_root;
|
|
EXPORT_SYMBOL_GPL(usb_debug_root);
|
|
|
|
static void usb_debugfs_init(void)
|
|
{
|
|
usb_debug_root = debugfs_create_dir("usb", NULL);
|
|
debugfs_create_file("devices", 0444, usb_debug_root, NULL,
|
|
&usbfs_devices_fops);
|
|
}
|
|
|
|
static void usb_debugfs_cleanup(void)
|
|
{
|
|
debugfs_remove_recursive(usb_debug_root);
|
|
}
|
|
|
|
/*
|
|
* Init
|
|
*/
|
|
static int __init usb_init(void)
|
|
{
|
|
int retval;
|
|
if (usb_disabled()) {
|
|
pr_info("%s: USB support disabled\n", usbcore_name);
|
|
return 0;
|
|
}
|
|
usb_init_pool_max();
|
|
|
|
usb_debugfs_init();
|
|
|
|
usb_acpi_register();
|
|
retval = bus_register(&usb_bus_type);
|
|
if (retval)
|
|
goto bus_register_failed;
|
|
retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
|
|
if (retval)
|
|
goto bus_notifier_failed;
|
|
retval = usb_major_init();
|
|
if (retval)
|
|
goto major_init_failed;
|
|
retval = usb_register(&usbfs_driver);
|
|
if (retval)
|
|
goto driver_register_failed;
|
|
retval = usb_devio_init();
|
|
if (retval)
|
|
goto usb_devio_init_failed;
|
|
retval = usb_hub_init();
|
|
if (retval)
|
|
goto hub_init_failed;
|
|
retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
|
|
if (!retval)
|
|
goto out;
|
|
|
|
usb_hub_cleanup();
|
|
hub_init_failed:
|
|
usb_devio_cleanup();
|
|
usb_devio_init_failed:
|
|
usb_deregister(&usbfs_driver);
|
|
driver_register_failed:
|
|
usb_major_cleanup();
|
|
major_init_failed:
|
|
bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
|
|
bus_notifier_failed:
|
|
bus_unregister(&usb_bus_type);
|
|
bus_register_failed:
|
|
usb_acpi_unregister();
|
|
usb_debugfs_cleanup();
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Cleanup
|
|
*/
|
|
static void __exit usb_exit(void)
|
|
{
|
|
/* This will matter if shutdown/reboot does exitcalls. */
|
|
if (usb_disabled())
|
|
return;
|
|
|
|
usb_release_quirk_list();
|
|
usb_deregister_device_driver(&usb_generic_driver);
|
|
usb_major_cleanup();
|
|
usb_deregister(&usbfs_driver);
|
|
usb_devio_cleanup();
|
|
usb_hub_cleanup();
|
|
bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
|
|
bus_unregister(&usb_bus_type);
|
|
usb_acpi_unregister();
|
|
usb_debugfs_cleanup();
|
|
idr_destroy(&usb_bus_idr);
|
|
}
|
|
|
|
subsys_initcall(usb_init);
|
|
module_exit(usb_exit);
|
|
MODULE_LICENSE("GPL");
|