514 lines
14 KiB
C
514 lines
14 KiB
C
/*
|
|
* common.c - C code for kernel entry and exit
|
|
* Copyright (c) 2015 Andrew Lutomirski
|
|
* GPL v2
|
|
*
|
|
* Based on asm and ptrace code by many authors. The code here originated
|
|
* in ptrace.c and signal.c.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/seccomp.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/export.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/user-return-notifier.h>
|
|
#include <linux/uprobes.h>
|
|
|
|
#include <asm/desc.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/cpufeature.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/syscalls.h>
|
|
|
|
static struct thread_info *pt_regs_to_thread_info(struct pt_regs *regs)
|
|
{
|
|
unsigned long top_of_stack =
|
|
(unsigned long)(regs + 1) + TOP_OF_KERNEL_STACK_PADDING;
|
|
return (struct thread_info *)(top_of_stack - THREAD_SIZE);
|
|
}
|
|
|
|
#ifdef CONFIG_CONTEXT_TRACKING
|
|
/* Called on entry from user mode with IRQs off. */
|
|
__visible void enter_from_user_mode(void)
|
|
{
|
|
CT_WARN_ON(ct_state() != CONTEXT_USER);
|
|
user_exit();
|
|
}
|
|
#endif
|
|
|
|
static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
if (arch == AUDIT_ARCH_X86_64) {
|
|
audit_syscall_entry(regs->orig_ax, regs->di,
|
|
regs->si, regs->dx, regs->r10);
|
|
} else
|
|
#endif
|
|
{
|
|
audit_syscall_entry(regs->orig_ax, regs->bx,
|
|
regs->cx, regs->dx, regs->si);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We can return 0 to resume the syscall or anything else to go to phase
|
|
* 2. If we resume the syscall, we need to put something appropriate in
|
|
* regs->orig_ax.
|
|
*
|
|
* NB: We don't have full pt_regs here, but regs->orig_ax and regs->ax
|
|
* are fully functional.
|
|
*
|
|
* For phase 2's benefit, our return value is:
|
|
* 0: resume the syscall
|
|
* 1: go to phase 2; no seccomp phase 2 needed
|
|
* anything else: go to phase 2; pass return value to seccomp
|
|
*/
|
|
unsigned long syscall_trace_enter_phase1(struct pt_regs *regs, u32 arch)
|
|
{
|
|
struct thread_info *ti = pt_regs_to_thread_info(regs);
|
|
unsigned long ret = 0;
|
|
u32 work;
|
|
|
|
if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
|
|
BUG_ON(regs != task_pt_regs(current));
|
|
|
|
work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
|
|
|
|
#ifdef CONFIG_CONTEXT_TRACKING
|
|
/*
|
|
* If TIF_NOHZ is set, we are required to call user_exit() before
|
|
* doing anything that could touch RCU.
|
|
*/
|
|
if (work & _TIF_NOHZ) {
|
|
enter_from_user_mode();
|
|
work &= ~_TIF_NOHZ;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SECCOMP
|
|
/*
|
|
* Do seccomp first -- it should minimize exposure of other
|
|
* code, and keeping seccomp fast is probably more valuable
|
|
* than the rest of this.
|
|
*/
|
|
if (work & _TIF_SECCOMP) {
|
|
struct seccomp_data sd;
|
|
|
|
sd.arch = arch;
|
|
sd.nr = regs->orig_ax;
|
|
sd.instruction_pointer = regs->ip;
|
|
#ifdef CONFIG_X86_64
|
|
if (arch == AUDIT_ARCH_X86_64) {
|
|
sd.args[0] = regs->di;
|
|
sd.args[1] = regs->si;
|
|
sd.args[2] = regs->dx;
|
|
sd.args[3] = regs->r10;
|
|
sd.args[4] = regs->r8;
|
|
sd.args[5] = regs->r9;
|
|
} else
|
|
#endif
|
|
{
|
|
sd.args[0] = regs->bx;
|
|
sd.args[1] = regs->cx;
|
|
sd.args[2] = regs->dx;
|
|
sd.args[3] = regs->si;
|
|
sd.args[4] = regs->di;
|
|
sd.args[5] = regs->bp;
|
|
}
|
|
|
|
BUILD_BUG_ON(SECCOMP_PHASE1_OK != 0);
|
|
BUILD_BUG_ON(SECCOMP_PHASE1_SKIP != 1);
|
|
|
|
ret = seccomp_phase1(&sd);
|
|
if (ret == SECCOMP_PHASE1_SKIP) {
|
|
regs->orig_ax = -1;
|
|
ret = 0;
|
|
} else if (ret != SECCOMP_PHASE1_OK) {
|
|
return ret; /* Go directly to phase 2 */
|
|
}
|
|
|
|
work &= ~_TIF_SECCOMP;
|
|
}
|
|
#endif
|
|
|
|
/* Do our best to finish without phase 2. */
|
|
if (work == 0)
|
|
return ret; /* seccomp and/or nohz only (ret == 0 here) */
|
|
|
|
#ifdef CONFIG_AUDITSYSCALL
|
|
if (work == _TIF_SYSCALL_AUDIT) {
|
|
/*
|
|
* If there is no more work to be done except auditing,
|
|
* then audit in phase 1. Phase 2 always audits, so, if
|
|
* we audit here, then we can't go on to phase 2.
|
|
*/
|
|
do_audit_syscall_entry(regs, arch);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
return 1; /* Something is enabled that we can't handle in phase 1 */
|
|
}
|
|
|
|
/* Returns the syscall nr to run (which should match regs->orig_ax). */
|
|
long syscall_trace_enter_phase2(struct pt_regs *regs, u32 arch,
|
|
unsigned long phase1_result)
|
|
{
|
|
struct thread_info *ti = pt_regs_to_thread_info(regs);
|
|
long ret = 0;
|
|
u32 work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
|
|
|
|
if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
|
|
BUG_ON(regs != task_pt_regs(current));
|
|
|
|
/*
|
|
* If we stepped into a sysenter/syscall insn, it trapped in
|
|
* kernel mode; do_debug() cleared TF and set TIF_SINGLESTEP.
|
|
* If user-mode had set TF itself, then it's still clear from
|
|
* do_debug() and we need to set it again to restore the user
|
|
* state. If we entered on the slow path, TF was already set.
|
|
*/
|
|
if (work & _TIF_SINGLESTEP)
|
|
regs->flags |= X86_EFLAGS_TF;
|
|
|
|
#ifdef CONFIG_SECCOMP
|
|
/*
|
|
* Call seccomp_phase2 before running the other hooks so that
|
|
* they can see any changes made by a seccomp tracer.
|
|
*/
|
|
if (phase1_result > 1 && seccomp_phase2(phase1_result)) {
|
|
/* seccomp failures shouldn't expose any additional code. */
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(work & _TIF_SYSCALL_EMU))
|
|
ret = -1L;
|
|
|
|
if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) &&
|
|
tracehook_report_syscall_entry(regs))
|
|
ret = -1L;
|
|
|
|
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
|
|
trace_sys_enter(regs, regs->orig_ax);
|
|
|
|
do_audit_syscall_entry(regs, arch);
|
|
|
|
return ret ?: regs->orig_ax;
|
|
}
|
|
|
|
long syscall_trace_enter(struct pt_regs *regs)
|
|
{
|
|
u32 arch = is_ia32_task() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
|
|
unsigned long phase1_result = syscall_trace_enter_phase1(regs, arch);
|
|
|
|
if (phase1_result == 0)
|
|
return regs->orig_ax;
|
|
else
|
|
return syscall_trace_enter_phase2(regs, arch, phase1_result);
|
|
}
|
|
|
|
#define EXIT_TO_USERMODE_LOOP_FLAGS \
|
|
(_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \
|
|
_TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY)
|
|
|
|
static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
|
|
{
|
|
/*
|
|
* In order to return to user mode, we need to have IRQs off with
|
|
* none of _TIF_SIGPENDING, _TIF_NOTIFY_RESUME, _TIF_USER_RETURN_NOTIFY,
|
|
* _TIF_UPROBE, or _TIF_NEED_RESCHED set. Several of these flags
|
|
* can be set at any time on preemptable kernels if we have IRQs on,
|
|
* so we need to loop. Disabling preemption wouldn't help: doing the
|
|
* work to clear some of the flags can sleep.
|
|
*/
|
|
while (true) {
|
|
/* We have work to do. */
|
|
local_irq_enable();
|
|
|
|
if (cached_flags & _TIF_NEED_RESCHED)
|
|
schedule();
|
|
|
|
if (cached_flags & _TIF_UPROBE)
|
|
uprobe_notify_resume(regs);
|
|
|
|
/* deal with pending signal delivery */
|
|
if (cached_flags & _TIF_SIGPENDING)
|
|
do_signal(regs);
|
|
|
|
if (cached_flags & _TIF_NOTIFY_RESUME) {
|
|
clear_thread_flag(TIF_NOTIFY_RESUME);
|
|
tracehook_notify_resume(regs);
|
|
}
|
|
|
|
if (cached_flags & _TIF_USER_RETURN_NOTIFY)
|
|
fire_user_return_notifiers();
|
|
|
|
/* Disable IRQs and retry */
|
|
local_irq_disable();
|
|
|
|
cached_flags = READ_ONCE(pt_regs_to_thread_info(regs)->flags);
|
|
|
|
if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
/* Called with IRQs disabled. */
|
|
__visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
|
|
{
|
|
u32 cached_flags;
|
|
|
|
if (IS_ENABLED(CONFIG_PROVE_LOCKING) && WARN_ON(!irqs_disabled()))
|
|
local_irq_disable();
|
|
|
|
lockdep_sys_exit();
|
|
|
|
cached_flags =
|
|
READ_ONCE(pt_regs_to_thread_info(regs)->flags);
|
|
|
|
if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
|
|
exit_to_usermode_loop(regs, cached_flags);
|
|
|
|
user_enter();
|
|
}
|
|
|
|
#define SYSCALL_EXIT_WORK_FLAGS \
|
|
(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \
|
|
_TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
|
|
|
|
static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
|
|
{
|
|
bool step;
|
|
|
|
audit_syscall_exit(regs);
|
|
|
|
if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
|
|
trace_sys_exit(regs, regs->ax);
|
|
|
|
/*
|
|
* If TIF_SYSCALL_EMU is set, we only get here because of
|
|
* TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
|
|
* We already reported this syscall instruction in
|
|
* syscall_trace_enter().
|
|
*/
|
|
step = unlikely(
|
|
(cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
|
|
== _TIF_SINGLESTEP);
|
|
if (step || cached_flags & _TIF_SYSCALL_TRACE)
|
|
tracehook_report_syscall_exit(regs, step);
|
|
}
|
|
|
|
/*
|
|
* Called with IRQs on and fully valid regs. Returns with IRQs off in a
|
|
* state such that we can immediately switch to user mode.
|
|
*/
|
|
__visible inline void syscall_return_slowpath(struct pt_regs *regs)
|
|
{
|
|
struct thread_info *ti = pt_regs_to_thread_info(regs);
|
|
u32 cached_flags = READ_ONCE(ti->flags);
|
|
|
|
CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
|
|
|
|
if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
|
|
WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* First do one-time work. If these work items are enabled, we
|
|
* want to run them exactly once per syscall exit with IRQs on.
|
|
*/
|
|
if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
|
|
syscall_slow_exit_work(regs, cached_flags);
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
/*
|
|
* Compat syscalls set TS_COMPAT. Make sure we clear it before
|
|
* returning to user mode.
|
|
*/
|
|
ti->status &= ~TS_COMPAT;
|
|
#endif
|
|
|
|
local_irq_disable();
|
|
prepare_exit_to_usermode(regs);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
__visible void do_syscall_64(struct pt_regs *regs)
|
|
{
|
|
struct thread_info *ti = pt_regs_to_thread_info(regs);
|
|
unsigned long nr = regs->orig_ax;
|
|
|
|
local_irq_enable();
|
|
|
|
if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
|
|
nr = syscall_trace_enter(regs);
|
|
|
|
/*
|
|
* NB: Native and x32 syscalls are dispatched from the same
|
|
* table. The only functional difference is the x32 bit in
|
|
* regs->orig_ax, which changes the behavior of some syscalls.
|
|
*/
|
|
if (likely((nr & __SYSCALL_MASK) < NR_syscalls)) {
|
|
regs->ax = sys_call_table[nr & __SYSCALL_MASK](
|
|
regs->di, regs->si, regs->dx,
|
|
regs->r10, regs->r8, regs->r9);
|
|
}
|
|
|
|
syscall_return_slowpath(regs);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
|
|
/*
|
|
* Does a 32-bit syscall. Called with IRQs on and does all entry and
|
|
* exit work and returns with IRQs off. This function is extremely hot
|
|
* in workloads that use it, and it's usually called from
|
|
* do_fast_syscall_32, so forcibly inline it to improve performance.
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
/* 32-bit kernels use a trap gate for INT80, and the asm code calls here. */
|
|
__visible
|
|
#else
|
|
/* 64-bit kernels use do_syscall_32_irqs_off() instead. */
|
|
static
|
|
#endif
|
|
__always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
|
|
{
|
|
struct thread_info *ti = pt_regs_to_thread_info(regs);
|
|
unsigned int nr = (unsigned int)regs->orig_ax;
|
|
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
ti->status |= TS_COMPAT;
|
|
#endif
|
|
|
|
if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
|
|
/*
|
|
* Subtlety here: if ptrace pokes something larger than
|
|
* 2^32-1 into orig_ax, this truncates it. This may or
|
|
* may not be necessary, but it matches the old asm
|
|
* behavior.
|
|
*/
|
|
nr = syscall_trace_enter(regs);
|
|
}
|
|
|
|
if (likely(nr < IA32_NR_syscalls)) {
|
|
/*
|
|
* It's possible that a 32-bit syscall implementation
|
|
* takes a 64-bit parameter but nonetheless assumes that
|
|
* the high bits are zero. Make sure we zero-extend all
|
|
* of the args.
|
|
*/
|
|
regs->ax = ia32_sys_call_table[nr](
|
|
(unsigned int)regs->bx, (unsigned int)regs->cx,
|
|
(unsigned int)regs->dx, (unsigned int)regs->si,
|
|
(unsigned int)regs->di, (unsigned int)regs->bp);
|
|
}
|
|
|
|
syscall_return_slowpath(regs);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* Handles INT80 on 64-bit kernels */
|
|
__visible void do_syscall_32_irqs_off(struct pt_regs *regs)
|
|
{
|
|
local_irq_enable();
|
|
do_syscall_32_irqs_on(regs);
|
|
}
|
|
#endif
|
|
|
|
/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
|
|
__visible long do_fast_syscall_32(struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* Called using the internal vDSO SYSENTER/SYSCALL32 calling
|
|
* convention. Adjust regs so it looks like we entered using int80.
|
|
*/
|
|
|
|
unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
|
|
vdso_image_32.sym_int80_landing_pad;
|
|
|
|
/*
|
|
* SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
|
|
* so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
|
|
* Fix it up.
|
|
*/
|
|
regs->ip = landing_pad;
|
|
|
|
/*
|
|
* Fetch EBP from where the vDSO stashed it.
|
|
*
|
|
* WARNING: We are in CONTEXT_USER and RCU isn't paying attention!
|
|
*/
|
|
local_irq_enable();
|
|
if (
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Micro-optimization: the pointer we're following is explicitly
|
|
* 32 bits, so it can't be out of range.
|
|
*/
|
|
__get_user(*(u32 *)®s->bp,
|
|
(u32 __user __force *)(unsigned long)(u32)regs->sp)
|
|
#else
|
|
get_user(*(u32 *)®s->bp,
|
|
(u32 __user __force *)(unsigned long)(u32)regs->sp)
|
|
#endif
|
|
) {
|
|
|
|
/* User code screwed up. */
|
|
local_irq_disable();
|
|
regs->ax = -EFAULT;
|
|
#ifdef CONFIG_CONTEXT_TRACKING
|
|
enter_from_user_mode();
|
|
#endif
|
|
prepare_exit_to_usermode(regs);
|
|
return 0; /* Keep it simple: use IRET. */
|
|
}
|
|
|
|
/* Now this is just like a normal syscall. */
|
|
do_syscall_32_irqs_on(regs);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Opportunistic SYSRETL: if possible, try to return using SYSRETL.
|
|
* SYSRETL is available on all 64-bit CPUs, so we don't need to
|
|
* bother with SYSEXIT.
|
|
*
|
|
* Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
|
|
* because the ECX fixup above will ensure that this is essentially
|
|
* never the case.
|
|
*/
|
|
return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
|
|
regs->ip == landing_pad &&
|
|
(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
|
|
#else
|
|
/*
|
|
* Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
|
|
*
|
|
* Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
|
|
* because the ECX fixup above will ensure that this is essentially
|
|
* never the case.
|
|
*
|
|
* We don't allow syscalls at all from VM86 mode, but we still
|
|
* need to check VM, because we might be returning from sys_vm86.
|
|
*/
|
|
return static_cpu_has(X86_FEATURE_SEP) &&
|
|
regs->cs == __USER_CS && regs->ss == __USER_DS &&
|
|
regs->ip == landing_pad &&
|
|
(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
|
|
#endif
|
|
}
|
|
#endif
|