OpenCloudOS-Kernel/drivers/gpu/drm/i915/display/intel_display_power.c

2481 lines
73 KiB
C

/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2019 Intel Corporation
*/
#include <linux/string_helpers.h>
#include "i915_drv.h"
#include "i915_irq.h"
#include "intel_cdclk.h"
#include "intel_combo_phy.h"
#include "intel_de.h"
#include "intel_display_power.h"
#include "intel_display_power_map.h"
#include "intel_display_power_well.h"
#include "intel_display_types.h"
#include "intel_dmc.h"
#include "intel_mchbar_regs.h"
#include "intel_pch_refclk.h"
#include "intel_pcode.h"
#include "intel_pm.h"
#include "intel_snps_phy.h"
#include "vlv_sideband.h"
#define for_each_power_domain_well(__dev_priv, __power_well, __domain) \
for_each_power_well(__dev_priv, __power_well) \
for_each_if(test_bit((__domain), (__power_well)->domains.bits))
#define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
for_each_power_well_reverse(__dev_priv, __power_well) \
for_each_if(test_bit((__domain), (__power_well)->domains.bits))
const char *
intel_display_power_domain_str(enum intel_display_power_domain domain)
{
switch (domain) {
case POWER_DOMAIN_DISPLAY_CORE:
return "DISPLAY_CORE";
case POWER_DOMAIN_PIPE_A:
return "PIPE_A";
case POWER_DOMAIN_PIPE_B:
return "PIPE_B";
case POWER_DOMAIN_PIPE_C:
return "PIPE_C";
case POWER_DOMAIN_PIPE_D:
return "PIPE_D";
case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
return "PIPE_PANEL_FITTER_A";
case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
return "PIPE_PANEL_FITTER_B";
case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
return "PIPE_PANEL_FITTER_C";
case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
return "PIPE_PANEL_FITTER_D";
case POWER_DOMAIN_TRANSCODER_A:
return "TRANSCODER_A";
case POWER_DOMAIN_TRANSCODER_B:
return "TRANSCODER_B";
case POWER_DOMAIN_TRANSCODER_C:
return "TRANSCODER_C";
case POWER_DOMAIN_TRANSCODER_D:
return "TRANSCODER_D";
case POWER_DOMAIN_TRANSCODER_EDP:
return "TRANSCODER_EDP";
case POWER_DOMAIN_TRANSCODER_DSI_A:
return "TRANSCODER_DSI_A";
case POWER_DOMAIN_TRANSCODER_DSI_C:
return "TRANSCODER_DSI_C";
case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
return "TRANSCODER_VDSC_PW2";
case POWER_DOMAIN_PORT_DDI_LANES_A:
return "PORT_DDI_LANES_A";
case POWER_DOMAIN_PORT_DDI_LANES_B:
return "PORT_DDI_LANES_B";
case POWER_DOMAIN_PORT_DDI_LANES_C:
return "PORT_DDI_LANES_C";
case POWER_DOMAIN_PORT_DDI_LANES_D:
return "PORT_DDI_LANES_D";
case POWER_DOMAIN_PORT_DDI_LANES_E:
return "PORT_DDI_LANES_E";
case POWER_DOMAIN_PORT_DDI_LANES_F:
return "PORT_DDI_LANES_F";
case POWER_DOMAIN_PORT_DDI_LANES_TC1:
return "PORT_DDI_LANES_TC1";
case POWER_DOMAIN_PORT_DDI_LANES_TC2:
return "PORT_DDI_LANES_TC2";
case POWER_DOMAIN_PORT_DDI_LANES_TC3:
return "PORT_DDI_LANES_TC3";
case POWER_DOMAIN_PORT_DDI_LANES_TC4:
return "PORT_DDI_LANES_TC4";
case POWER_DOMAIN_PORT_DDI_LANES_TC5:
return "PORT_DDI_LANES_TC5";
case POWER_DOMAIN_PORT_DDI_LANES_TC6:
return "PORT_DDI_LANES_TC6";
case POWER_DOMAIN_PORT_DDI_IO_A:
return "PORT_DDI_IO_A";
case POWER_DOMAIN_PORT_DDI_IO_B:
return "PORT_DDI_IO_B";
case POWER_DOMAIN_PORT_DDI_IO_C:
return "PORT_DDI_IO_C";
case POWER_DOMAIN_PORT_DDI_IO_D:
return "PORT_DDI_IO_D";
case POWER_DOMAIN_PORT_DDI_IO_E:
return "PORT_DDI_IO_E";
case POWER_DOMAIN_PORT_DDI_IO_F:
return "PORT_DDI_IO_F";
case POWER_DOMAIN_PORT_DDI_IO_TC1:
return "PORT_DDI_IO_TC1";
case POWER_DOMAIN_PORT_DDI_IO_TC2:
return "PORT_DDI_IO_TC2";
case POWER_DOMAIN_PORT_DDI_IO_TC3:
return "PORT_DDI_IO_TC3";
case POWER_DOMAIN_PORT_DDI_IO_TC4:
return "PORT_DDI_IO_TC4";
case POWER_DOMAIN_PORT_DDI_IO_TC5:
return "PORT_DDI_IO_TC5";
case POWER_DOMAIN_PORT_DDI_IO_TC6:
return "PORT_DDI_IO_TC6";
case POWER_DOMAIN_PORT_DSI:
return "PORT_DSI";
case POWER_DOMAIN_PORT_CRT:
return "PORT_CRT";
case POWER_DOMAIN_PORT_OTHER:
return "PORT_OTHER";
case POWER_DOMAIN_VGA:
return "VGA";
case POWER_DOMAIN_AUDIO_MMIO:
return "AUDIO_MMIO";
case POWER_DOMAIN_AUDIO_PLAYBACK:
return "AUDIO_PLAYBACK";
case POWER_DOMAIN_AUX_A:
return "AUX_A";
case POWER_DOMAIN_AUX_B:
return "AUX_B";
case POWER_DOMAIN_AUX_C:
return "AUX_C";
case POWER_DOMAIN_AUX_D:
return "AUX_D";
case POWER_DOMAIN_AUX_E:
return "AUX_E";
case POWER_DOMAIN_AUX_F:
return "AUX_F";
case POWER_DOMAIN_AUX_USBC1:
return "AUX_USBC1";
case POWER_DOMAIN_AUX_USBC2:
return "AUX_USBC2";
case POWER_DOMAIN_AUX_USBC3:
return "AUX_USBC3";
case POWER_DOMAIN_AUX_USBC4:
return "AUX_USBC4";
case POWER_DOMAIN_AUX_USBC5:
return "AUX_USBC5";
case POWER_DOMAIN_AUX_USBC6:
return "AUX_USBC6";
case POWER_DOMAIN_AUX_IO_A:
return "AUX_IO_A";
case POWER_DOMAIN_AUX_TBT1:
return "AUX_TBT1";
case POWER_DOMAIN_AUX_TBT2:
return "AUX_TBT2";
case POWER_DOMAIN_AUX_TBT3:
return "AUX_TBT3";
case POWER_DOMAIN_AUX_TBT4:
return "AUX_TBT4";
case POWER_DOMAIN_AUX_TBT5:
return "AUX_TBT5";
case POWER_DOMAIN_AUX_TBT6:
return "AUX_TBT6";
case POWER_DOMAIN_GMBUS:
return "GMBUS";
case POWER_DOMAIN_INIT:
return "INIT";
case POWER_DOMAIN_MODESET:
return "MODESET";
case POWER_DOMAIN_GT_IRQ:
return "GT_IRQ";
case POWER_DOMAIN_DC_OFF:
return "DC_OFF";
case POWER_DOMAIN_TC_COLD_OFF:
return "TC_COLD_OFF";
default:
MISSING_CASE(domain);
return "?";
}
}
/**
* __intel_display_power_is_enabled - unlocked check for a power domain
* @dev_priv: i915 device instance
* @domain: power domain to check
*
* This is the unlocked version of intel_display_power_is_enabled() and should
* only be used from error capture and recovery code where deadlocks are
* possible.
*
* Returns:
* True when the power domain is enabled, false otherwise.
*/
bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_well *power_well;
bool is_enabled;
if (dev_priv->runtime_pm.suspended)
return false;
is_enabled = true;
for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
if (intel_power_well_is_always_on(power_well))
continue;
if (!intel_power_well_is_enabled_cached(power_well)) {
is_enabled = false;
break;
}
}
return is_enabled;
}
/**
* intel_display_power_is_enabled - check for a power domain
* @dev_priv: i915 device instance
* @domain: power domain to check
*
* This function can be used to check the hw power domain state. It is mostly
* used in hardware state readout functions. Everywhere else code should rely
* upon explicit power domain reference counting to ensure that the hardware
* block is powered up before accessing it.
*
* Callers must hold the relevant modesetting locks to ensure that concurrent
* threads can't disable the power well while the caller tries to read a few
* registers.
*
* Returns:
* True when the power domain is enabled, false otherwise.
*/
bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
bool ret;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
ret = __intel_display_power_is_enabled(dev_priv, domain);
mutex_unlock(&power_domains->lock);
return ret;
}
static u32
sanitize_target_dc_state(struct drm_i915_private *dev_priv,
u32 target_dc_state)
{
static const u32 states[] = {
DC_STATE_EN_UPTO_DC6,
DC_STATE_EN_UPTO_DC5,
DC_STATE_EN_DC3CO,
DC_STATE_DISABLE,
};
int i;
for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
if (target_dc_state != states[i])
continue;
if (dev_priv->dmc.allowed_dc_mask & target_dc_state)
break;
target_dc_state = states[i + 1];
}
return target_dc_state;
}
/**
* intel_display_power_set_target_dc_state - Set target dc state.
* @dev_priv: i915 device
* @state: state which needs to be set as target_dc_state.
*
* This function set the "DC off" power well target_dc_state,
* based upon this target_dc_stste, "DC off" power well will
* enable desired DC state.
*/
void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
u32 state)
{
struct i915_power_well *power_well;
bool dc_off_enabled;
struct i915_power_domains *power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
if (drm_WARN_ON(&dev_priv->drm, !power_well))
goto unlock;
state = sanitize_target_dc_state(dev_priv, state);
if (state == dev_priv->dmc.target_dc_state)
goto unlock;
dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
/*
* If DC off power well is disabled, need to enable and disable the
* DC off power well to effect target DC state.
*/
if (!dc_off_enabled)
intel_power_well_enable(dev_priv, power_well);
dev_priv->dmc.target_dc_state = state;
if (!dc_off_enabled)
intel_power_well_disable(dev_priv, power_well);
unlock:
mutex_unlock(&power_domains->lock);
}
#define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
static void __async_put_domains_mask(struct i915_power_domains *power_domains,
struct intel_power_domain_mask *mask)
{
bitmap_or(mask->bits,
power_domains->async_put_domains[0].bits,
power_domains->async_put_domains[1].bits,
POWER_DOMAIN_NUM);
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
static bool
assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
return !drm_WARN_ON(&i915->drm,
bitmap_intersects(power_domains->async_put_domains[0].bits,
power_domains->async_put_domains[1].bits,
POWER_DOMAIN_NUM));
}
static bool
__async_put_domains_state_ok(struct i915_power_domains *power_domains)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
struct intel_power_domain_mask async_put_mask;
enum intel_display_power_domain domain;
bool err = false;
err |= !assert_async_put_domain_masks_disjoint(power_domains);
__async_put_domains_mask(power_domains, &async_put_mask);
err |= drm_WARN_ON(&i915->drm,
!!power_domains->async_put_wakeref !=
!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
for_each_power_domain(domain, &async_put_mask)
err |= drm_WARN_ON(&i915->drm,
power_domains->domain_use_count[domain] != 1);
return !err;
}
static void print_power_domains(struct i915_power_domains *power_domains,
const char *prefix, struct intel_power_domain_mask *mask)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
enum intel_display_power_domain domain;
drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
for_each_power_domain(domain, mask)
drm_dbg(&i915->drm, "%s use_count %d\n",
intel_display_power_domain_str(domain),
power_domains->domain_use_count[domain]);
}
static void
print_async_put_domains_state(struct i915_power_domains *power_domains)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
drm_dbg(&i915->drm, "async_put_wakeref %u\n",
power_domains->async_put_wakeref);
print_power_domains(power_domains, "async_put_domains[0]",
&power_domains->async_put_domains[0]);
print_power_domains(power_domains, "async_put_domains[1]",
&power_domains->async_put_domains[1]);
}
static void
verify_async_put_domains_state(struct i915_power_domains *power_domains)
{
if (!__async_put_domains_state_ok(power_domains))
print_async_put_domains_state(power_domains);
}
#else
static void
assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
{
}
static void
verify_async_put_domains_state(struct i915_power_domains *power_domains)
{
}
#endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
static void async_put_domains_mask(struct i915_power_domains *power_domains,
struct intel_power_domain_mask *mask)
{
assert_async_put_domain_masks_disjoint(power_domains);
__async_put_domains_mask(power_domains, mask);
}
static void
async_put_domains_clear_domain(struct i915_power_domains *power_domains,
enum intel_display_power_domain domain)
{
assert_async_put_domain_masks_disjoint(power_domains);
clear_bit(domain, power_domains->async_put_domains[0].bits);
clear_bit(domain, power_domains->async_put_domains[1].bits);
}
static bool
intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct intel_power_domain_mask async_put_mask;
bool ret = false;
async_put_domains_mask(power_domains, &async_put_mask);
if (!test_bit(domain, async_put_mask.bits))
goto out_verify;
async_put_domains_clear_domain(power_domains, domain);
ret = true;
async_put_domains_mask(power_domains, &async_put_mask);
if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
goto out_verify;
cancel_delayed_work(&power_domains->async_put_work);
intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
fetch_and_zero(&power_domains->async_put_wakeref));
out_verify:
verify_async_put_domains_state(power_domains);
return ret;
}
static void
__intel_display_power_get_domain(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
if (intel_display_power_grab_async_put_ref(dev_priv, domain))
return;
for_each_power_domain_well(dev_priv, power_well, domain)
intel_power_well_get(dev_priv, power_well);
power_domains->domain_use_count[domain]++;
}
/**
* intel_display_power_get - grab a power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function grabs a power domain reference for @domain and ensures that the
* power domain and all its parents are powered up. Therefore users should only
* grab a reference to the innermost power domain they need.
*
* Any power domain reference obtained by this function must have a symmetric
* call to intel_display_power_put() to release the reference again.
*/
intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
mutex_lock(&power_domains->lock);
__intel_display_power_get_domain(dev_priv, domain);
mutex_unlock(&power_domains->lock);
return wakeref;
}
/**
* intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function grabs a power domain reference for @domain and ensures that the
* power domain and all its parents are powered up. Therefore users should only
* grab a reference to the innermost power domain they need.
*
* Any power domain reference obtained by this function must have a symmetric
* call to intel_display_power_put() to release the reference again.
*/
intel_wakeref_t
intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
intel_wakeref_t wakeref;
bool is_enabled;
wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
if (!wakeref)
return false;
mutex_lock(&power_domains->lock);
if (__intel_display_power_is_enabled(dev_priv, domain)) {
__intel_display_power_get_domain(dev_priv, domain);
is_enabled = true;
} else {
is_enabled = false;
}
mutex_unlock(&power_domains->lock);
if (!is_enabled) {
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
wakeref = 0;
}
return wakeref;
}
static void
__intel_display_power_put_domain(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
const char *name = intel_display_power_domain_str(domain);
struct intel_power_domain_mask async_put_mask;
power_domains = &dev_priv->power_domains;
drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
"Use count on domain %s is already zero\n",
name);
async_put_domains_mask(power_domains, &async_put_mask);
drm_WARN(&dev_priv->drm,
test_bit(domain, async_put_mask.bits),
"Async disabling of domain %s is pending\n",
name);
power_domains->domain_use_count[domain]--;
for_each_power_domain_well_reverse(dev_priv, power_well, domain)
intel_power_well_put(dev_priv, power_well);
}
static void __intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
__intel_display_power_put_domain(dev_priv, domain);
mutex_unlock(&power_domains->lock);
}
static void
queue_async_put_domains_work(struct i915_power_domains *power_domains,
intel_wakeref_t wakeref)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
power_domains->async_put_wakeref = wakeref;
drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
&power_domains->async_put_work,
msecs_to_jiffies(100)));
}
static void
release_async_put_domains(struct i915_power_domains *power_domains,
struct intel_power_domain_mask *mask)
{
struct drm_i915_private *dev_priv =
container_of(power_domains, struct drm_i915_private,
power_domains);
struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
enum intel_display_power_domain domain;
intel_wakeref_t wakeref;
/*
* The caller must hold already raw wakeref, upgrade that to a proper
* wakeref to make the state checker happy about the HW access during
* power well disabling.
*/
assert_rpm_raw_wakeref_held(rpm);
wakeref = intel_runtime_pm_get(rpm);
for_each_power_domain(domain, mask) {
/* Clear before put, so put's sanity check is happy. */
async_put_domains_clear_domain(power_domains, domain);
__intel_display_power_put_domain(dev_priv, domain);
}
intel_runtime_pm_put(rpm, wakeref);
}
static void
intel_display_power_put_async_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private,
power_domains.async_put_work.work);
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
intel_wakeref_t old_work_wakeref = 0;
mutex_lock(&power_domains->lock);
/*
* Bail out if all the domain refs pending to be released were grabbed
* by subsequent gets or a flush_work.
*/
old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
if (!old_work_wakeref)
goto out_verify;
release_async_put_domains(power_domains,
&power_domains->async_put_domains[0]);
/* Requeue the work if more domains were async put meanwhile. */
if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
bitmap_copy(power_domains->async_put_domains[0].bits,
power_domains->async_put_domains[1].bits,
POWER_DOMAIN_NUM);
bitmap_zero(power_domains->async_put_domains[1].bits,
POWER_DOMAIN_NUM);
queue_async_put_domains_work(power_domains,
fetch_and_zero(&new_work_wakeref));
} else {
/*
* Cancel the work that got queued after this one got dequeued,
* since here we released the corresponding async-put reference.
*/
cancel_delayed_work(&power_domains->async_put_work);
}
out_verify:
verify_async_put_domains_state(power_domains);
mutex_unlock(&power_domains->lock);
if (old_work_wakeref)
intel_runtime_pm_put_raw(rpm, old_work_wakeref);
if (new_work_wakeref)
intel_runtime_pm_put_raw(rpm, new_work_wakeref);
}
/**
* intel_display_power_put_async - release a power domain reference asynchronously
* @i915: i915 device instance
* @domain: power domain to reference
* @wakeref: wakeref acquired for the reference that is being released
*
* This function drops the power domain reference obtained by
* intel_display_power_get*() and schedules a work to power down the
* corresponding hardware block if this is the last reference.
*/
void __intel_display_power_put_async(struct drm_i915_private *i915,
enum intel_display_power_domain domain,
intel_wakeref_t wakeref)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct intel_runtime_pm *rpm = &i915->runtime_pm;
intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
mutex_lock(&power_domains->lock);
if (power_domains->domain_use_count[domain] > 1) {
__intel_display_power_put_domain(i915, domain);
goto out_verify;
}
drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
/* Let a pending work requeue itself or queue a new one. */
if (power_domains->async_put_wakeref) {
set_bit(domain, power_domains->async_put_domains[1].bits);
} else {
set_bit(domain, power_domains->async_put_domains[0].bits);
queue_async_put_domains_work(power_domains,
fetch_and_zero(&work_wakeref));
}
out_verify:
verify_async_put_domains_state(power_domains);
mutex_unlock(&power_domains->lock);
if (work_wakeref)
intel_runtime_pm_put_raw(rpm, work_wakeref);
intel_runtime_pm_put(rpm, wakeref);
}
/**
* intel_display_power_flush_work - flushes the async display power disabling work
* @i915: i915 device instance
*
* Flushes any pending work that was scheduled by a preceding
* intel_display_power_put_async() call, completing the disabling of the
* corresponding power domains.
*
* Note that the work handler function may still be running after this
* function returns; to ensure that the work handler isn't running use
* intel_display_power_flush_work_sync() instead.
*/
void intel_display_power_flush_work(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct intel_power_domain_mask async_put_mask;
intel_wakeref_t work_wakeref;
mutex_lock(&power_domains->lock);
work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
if (!work_wakeref)
goto out_verify;
async_put_domains_mask(power_domains, &async_put_mask);
release_async_put_domains(power_domains, &async_put_mask);
cancel_delayed_work(&power_domains->async_put_work);
out_verify:
verify_async_put_domains_state(power_domains);
mutex_unlock(&power_domains->lock);
if (work_wakeref)
intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
}
/**
* intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
* @i915: i915 device instance
*
* Like intel_display_power_flush_work(), but also ensure that the work
* handler function is not running any more when this function returns.
*/
static void
intel_display_power_flush_work_sync(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
intel_display_power_flush_work(i915);
cancel_delayed_work_sync(&power_domains->async_put_work);
verify_async_put_domains_state(power_domains);
drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
/**
* intel_display_power_put - release a power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
* @wakeref: wakeref acquired for the reference that is being released
*
* This function drops the power domain reference obtained by
* intel_display_power_get() and might power down the corresponding hardware
* block right away if this is the last reference.
*/
void intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain,
intel_wakeref_t wakeref)
{
__intel_display_power_put(dev_priv, domain);
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
}
#else
/**
* intel_display_power_put_unchecked - release an unchecked power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function drops the power domain reference obtained by
* intel_display_power_get() and might power down the corresponding hardware
* block right away if this is the last reference.
*
* This function is only for the power domain code's internal use to suppress wakeref
* tracking when the correspondig debug kconfig option is disabled, should not
* be used otherwise.
*/
void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
__intel_display_power_put(dev_priv, domain);
intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
}
#endif
void
intel_display_power_get_in_set(struct drm_i915_private *i915,
struct intel_display_power_domain_set *power_domain_set,
enum intel_display_power_domain domain)
{
intel_wakeref_t __maybe_unused wf;
drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
wf = intel_display_power_get(i915, domain);
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
power_domain_set->wakerefs[domain] = wf;
#endif
set_bit(domain, power_domain_set->mask.bits);
}
bool
intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
struct intel_display_power_domain_set *power_domain_set,
enum intel_display_power_domain domain)
{
intel_wakeref_t wf;
drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
wf = intel_display_power_get_if_enabled(i915, domain);
if (!wf)
return false;
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
power_domain_set->wakerefs[domain] = wf;
#endif
set_bit(domain, power_domain_set->mask.bits);
return true;
}
void
intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
struct intel_display_power_domain_set *power_domain_set,
struct intel_power_domain_mask *mask)
{
enum intel_display_power_domain domain;
drm_WARN_ON(&i915->drm,
!bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
for_each_power_domain(domain, mask) {
intel_wakeref_t __maybe_unused wf = -1;
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
#endif
intel_display_power_put(i915, domain, wf);
clear_bit(domain, power_domain_set->mask.bits);
}
}
static int
sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
int disable_power_well)
{
if (disable_power_well >= 0)
return !!disable_power_well;
return 1;
}
static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
int enable_dc)
{
u32 mask;
int requested_dc;
int max_dc;
if (!HAS_DISPLAY(dev_priv))
return 0;
if (IS_DG1(dev_priv))
max_dc = 3;
else if (DISPLAY_VER(dev_priv) >= 12)
max_dc = 4;
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
max_dc = 1;
else if (DISPLAY_VER(dev_priv) >= 9)
max_dc = 2;
else
max_dc = 0;
/*
* DC9 has a separate HW flow from the rest of the DC states,
* not depending on the DMC firmware. It's needed by system
* suspend/resume, so allow it unconditionally.
*/
mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
DISPLAY_VER(dev_priv) >= 11 ?
DC_STATE_EN_DC9 : 0;
if (!dev_priv->params.disable_power_well)
max_dc = 0;
if (enable_dc >= 0 && enable_dc <= max_dc) {
requested_dc = enable_dc;
} else if (enable_dc == -1) {
requested_dc = max_dc;
} else if (enable_dc > max_dc && enable_dc <= 4) {
drm_dbg_kms(&dev_priv->drm,
"Adjusting requested max DC state (%d->%d)\n",
enable_dc, max_dc);
requested_dc = max_dc;
} else {
drm_err(&dev_priv->drm,
"Unexpected value for enable_dc (%d)\n", enable_dc);
requested_dc = max_dc;
}
switch (requested_dc) {
case 4:
mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
break;
case 3:
mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
break;
case 2:
mask |= DC_STATE_EN_UPTO_DC6;
break;
case 1:
mask |= DC_STATE_EN_UPTO_DC5;
break;
}
drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
return mask;
}
/**
* intel_power_domains_init - initializes the power domain structures
* @dev_priv: i915 device instance
*
* Initializes the power domain structures for @dev_priv depending upon the
* supported platform.
*/
int intel_power_domains_init(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
dev_priv->params.disable_power_well =
sanitize_disable_power_well_option(dev_priv,
dev_priv->params.disable_power_well);
dev_priv->dmc.allowed_dc_mask =
get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
dev_priv->dmc.target_dc_state =
sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
mutex_init(&power_domains->lock);
INIT_DELAYED_WORK(&power_domains->async_put_work,
intel_display_power_put_async_work);
return intel_display_power_map_init(power_domains);
}
/**
* intel_power_domains_cleanup - clean up power domains resources
* @dev_priv: i915 device instance
*
* Release any resources acquired by intel_power_domains_init()
*/
void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
{
intel_display_power_map_cleanup(&dev_priv->power_domains);
}
static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
mutex_lock(&power_domains->lock);
for_each_power_well(dev_priv, power_well)
intel_power_well_sync_hw(dev_priv, power_well);
mutex_unlock(&power_domains->lock);
}
static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
enum dbuf_slice slice, bool enable)
{
i915_reg_t reg = DBUF_CTL_S(slice);
bool state;
intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
enable ? DBUF_POWER_REQUEST : 0);
intel_de_posting_read(dev_priv, reg);
udelay(10);
state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
drm_WARN(&dev_priv->drm, enable != state,
"DBuf slice %d power %s timeout!\n",
slice, str_enable_disable(enable));
}
void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
u8 req_slices)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
u8 slice_mask = INTEL_INFO(dev_priv)->dbuf.slice_mask;
enum dbuf_slice slice;
drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
"Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
req_slices, slice_mask);
drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
req_slices);
/*
* Might be running this in parallel to gen9_dc_off_power_well_enable
* being called from intel_dp_detect for instance,
* which causes assertion triggered by race condition,
* as gen9_assert_dbuf_enabled might preempt this when registers
* were already updated, while dev_priv was not.
*/
mutex_lock(&power_domains->lock);
for_each_dbuf_slice(dev_priv, slice)
gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
dev_priv->dbuf.enabled_slices = req_slices;
mutex_unlock(&power_domains->lock);
}
static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
{
dev_priv->dbuf.enabled_slices =
intel_enabled_dbuf_slices_mask(dev_priv);
/*
* Just power up at least 1 slice, we will
* figure out later which slices we have and what we need.
*/
gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) |
dev_priv->dbuf.enabled_slices);
}
static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
{
gen9_dbuf_slices_update(dev_priv, 0);
}
static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
{
enum dbuf_slice slice;
if (IS_ALDERLAKE_P(dev_priv))
return;
for_each_dbuf_slice(dev_priv, slice)
intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
DBUF_TRACKER_STATE_SERVICE_MASK,
DBUF_TRACKER_STATE_SERVICE(8));
}
static void icl_mbus_init(struct drm_i915_private *dev_priv)
{
unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask;
u32 mask, val, i;
if (IS_ALDERLAKE_P(dev_priv))
return;
mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
MBUS_ABOX_BT_CREDIT_POOL2_MASK |
MBUS_ABOX_B_CREDIT_MASK |
MBUS_ABOX_BW_CREDIT_MASK;
val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
MBUS_ABOX_BT_CREDIT_POOL2(16) |
MBUS_ABOX_B_CREDIT(1) |
MBUS_ABOX_BW_CREDIT(1);
/*
* gen12 platforms that use abox1 and abox2 for pixel data reads still
* expect us to program the abox_ctl0 register as well, even though
* we don't have to program other instance-0 registers like BW_BUDDY.
*/
if (DISPLAY_VER(dev_priv) == 12)
abox_regs |= BIT(0);
for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
}
static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
{
u32 val = intel_de_read(dev_priv, LCPLL_CTL);
/*
* The LCPLL register should be turned on by the BIOS. For now
* let's just check its state and print errors in case
* something is wrong. Don't even try to turn it on.
*/
if (val & LCPLL_CD_SOURCE_FCLK)
drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
if (val & LCPLL_PLL_DISABLE)
drm_err(&dev_priv->drm, "LCPLL is disabled\n");
if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
}
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct intel_crtc *crtc;
for_each_intel_crtc(dev, crtc)
I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
pipe_name(crtc->pipe));
I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
"Display power well on\n");
I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
"SPLL enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
"WRPLL1 enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
"WRPLL2 enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
"Panel power on\n");
I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
"CPU PWM1 enabled\n");
if (IS_HASWELL(dev_priv))
I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
"CPU PWM2 enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
"PCH PWM1 enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
"Utility pin enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
"PCH GTC enabled\n");
/*
* In theory we can still leave IRQs enabled, as long as only the HPD
* interrupts remain enabled. We used to check for that, but since it's
* gen-specific and since we only disable LCPLL after we fully disable
* the interrupts, the check below should be enough.
*/
I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
}
static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
{
if (IS_HASWELL(dev_priv))
return intel_de_read(dev_priv, D_COMP_HSW);
else
return intel_de_read(dev_priv, D_COMP_BDW);
}
static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
{
if (IS_HASWELL(dev_priv)) {
if (snb_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
drm_dbg_kms(&dev_priv->drm,
"Failed to write to D_COMP\n");
} else {
intel_de_write(dev_priv, D_COMP_BDW, val);
intel_de_posting_read(dev_priv, D_COMP_BDW);
}
}
/*
* This function implements pieces of two sequences from BSpec:
* - Sequence for display software to disable LCPLL
* - Sequence for display software to allow package C8+
* The steps implemented here are just the steps that actually touch the LCPLL
* register. Callers should take care of disabling all the display engine
* functions, doing the mode unset, fixing interrupts, etc.
*/
static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
bool switch_to_fclk, bool allow_power_down)
{
u32 val;
assert_can_disable_lcpll(dev_priv);
val = intel_de_read(dev_priv, LCPLL_CTL);
if (switch_to_fclk) {
val |= LCPLL_CD_SOURCE_FCLK;
intel_de_write(dev_priv, LCPLL_CTL, val);
if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE, 1))
drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
val = intel_de_read(dev_priv, LCPLL_CTL);
}
val |= LCPLL_PLL_DISABLE;
intel_de_write(dev_priv, LCPLL_CTL, val);
intel_de_posting_read(dev_priv, LCPLL_CTL);
if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
drm_err(&dev_priv->drm, "LCPLL still locked\n");
val = hsw_read_dcomp(dev_priv);
val |= D_COMP_COMP_DISABLE;
hsw_write_dcomp(dev_priv, val);
ndelay(100);
if (wait_for((hsw_read_dcomp(dev_priv) &
D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
if (allow_power_down) {
val = intel_de_read(dev_priv, LCPLL_CTL);
val |= LCPLL_POWER_DOWN_ALLOW;
intel_de_write(dev_priv, LCPLL_CTL, val);
intel_de_posting_read(dev_priv, LCPLL_CTL);
}
}
/*
* Fully restores LCPLL, disallowing power down and switching back to LCPLL
* source.
*/
static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
{
u32 val;
val = intel_de_read(dev_priv, LCPLL_CTL);
if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
return;
/*
* Make sure we're not on PC8 state before disabling PC8, otherwise
* we'll hang the machine. To prevent PC8 state, just enable force_wake.
*/
intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
if (val & LCPLL_POWER_DOWN_ALLOW) {
val &= ~LCPLL_POWER_DOWN_ALLOW;
intel_de_write(dev_priv, LCPLL_CTL, val);
intel_de_posting_read(dev_priv, LCPLL_CTL);
}
val = hsw_read_dcomp(dev_priv);
val |= D_COMP_COMP_FORCE;
val &= ~D_COMP_COMP_DISABLE;
hsw_write_dcomp(dev_priv, val);
val = intel_de_read(dev_priv, LCPLL_CTL);
val &= ~LCPLL_PLL_DISABLE;
intel_de_write(dev_priv, LCPLL_CTL, val);
if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
if (val & LCPLL_CD_SOURCE_FCLK) {
val = intel_de_read(dev_priv, LCPLL_CTL);
val &= ~LCPLL_CD_SOURCE_FCLK;
intel_de_write(dev_priv, LCPLL_CTL, val);
if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
drm_err(&dev_priv->drm,
"Switching back to LCPLL failed\n");
}
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
intel_update_cdclk(dev_priv);
intel_cdclk_dump_config(dev_priv, &dev_priv->cdclk.hw, "Current CDCLK");
}
/*
* Package states C8 and deeper are really deep PC states that can only be
* reached when all the devices on the system allow it, so even if the graphics
* device allows PC8+, it doesn't mean the system will actually get to these
* states. Our driver only allows PC8+ when going into runtime PM.
*
* The requirements for PC8+ are that all the outputs are disabled, the power
* well is disabled and most interrupts are disabled, and these are also
* requirements for runtime PM. When these conditions are met, we manually do
* the other conditions: disable the interrupts, clocks and switch LCPLL refclk
* to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
* hang the machine.
*
* When we really reach PC8 or deeper states (not just when we allow it) we lose
* the state of some registers, so when we come back from PC8+ we need to
* restore this state. We don't get into PC8+ if we're not in RC6, so we don't
* need to take care of the registers kept by RC6. Notice that this happens even
* if we don't put the device in PCI D3 state (which is what currently happens
* because of the runtime PM support).
*
* For more, read "Display Sequences for Package C8" on the hardware
* documentation.
*/
static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
{
u32 val;
drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
if (HAS_PCH_LPT_LP(dev_priv)) {
val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
}
lpt_disable_clkout_dp(dev_priv);
hsw_disable_lcpll(dev_priv, true, true);
}
static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
{
u32 val;
drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
hsw_restore_lcpll(dev_priv);
intel_init_pch_refclk(dev_priv);
if (HAS_PCH_LPT_LP(dev_priv)) {
val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
val |= PCH_LP_PARTITION_LEVEL_DISABLE;
intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
}
}
static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
bool enable)
{
i915_reg_t reg;
u32 reset_bits, val;
if (IS_IVYBRIDGE(dev_priv)) {
reg = GEN7_MSG_CTL;
reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
} else {
reg = HSW_NDE_RSTWRN_OPT;
reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
}
val = intel_de_read(dev_priv, reg);
if (enable)
val |= reset_bits;
else
val &= ~reset_bits;
intel_de_write(dev_priv, reg, val);
}
static void skl_display_core_init(struct drm_i915_private *dev_priv,
bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/* enable PCH reset handshake */
intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
if (!HAS_DISPLAY(dev_priv))
return;
/* enable PG1 and Misc I/O */
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
intel_power_well_enable(dev_priv, well);
mutex_unlock(&power_domains->lock);
intel_cdclk_init_hw(dev_priv);
gen9_dbuf_enable(dev_priv);
if (resume)
intel_dmc_load_program(dev_priv);
}
static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
if (!HAS_DISPLAY(dev_priv))
return;
gen9_disable_dc_states(dev_priv);
gen9_dbuf_disable(dev_priv);
intel_cdclk_uninit_hw(dev_priv);
/* The spec doesn't call for removing the reset handshake flag */
/* disable PG1 and Misc I/O */
mutex_lock(&power_domains->lock);
/*
* BSpec says to keep the MISC IO power well enabled here, only
* remove our request for power well 1.
* Note that even though the driver's request is removed power well 1
* may stay enabled after this due to DMC's own request on it.
*/
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
mutex_unlock(&power_domains->lock);
usleep_range(10, 30); /* 10 us delay per Bspec */
}
static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/*
* NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
* or else the reset will hang because there is no PCH to respond.
* Move the handshake programming to initialization sequence.
* Previously was left up to BIOS.
*/
intel_pch_reset_handshake(dev_priv, false);
if (!HAS_DISPLAY(dev_priv))
return;
/* Enable PG1 */
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
mutex_unlock(&power_domains->lock);
intel_cdclk_init_hw(dev_priv);
gen9_dbuf_enable(dev_priv);
if (resume)
intel_dmc_load_program(dev_priv);
}
static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
if (!HAS_DISPLAY(dev_priv))
return;
gen9_disable_dc_states(dev_priv);
gen9_dbuf_disable(dev_priv);
intel_cdclk_uninit_hw(dev_priv);
/* The spec doesn't call for removing the reset handshake flag */
/*
* Disable PW1 (PG1).
* Note that even though the driver's request is removed power well 1
* may stay enabled after this due to DMC's own request on it.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
mutex_unlock(&power_domains->lock);
usleep_range(10, 30); /* 10 us delay per Bspec */
}
struct buddy_page_mask {
u32 page_mask;
u8 type;
u8 num_channels;
};
static const struct buddy_page_mask tgl_buddy_page_masks[] = {
{ .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0xF },
{ .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0xF },
{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
{ .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x1F },
{ .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x1E },
{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
{}
};
static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
{ .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0x1 },
{ .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0x1 },
{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
{ .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x3 },
{ .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x3 },
{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
{}
};
static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
{
enum intel_dram_type type = dev_priv->dram_info.type;
u8 num_channels = dev_priv->dram_info.num_channels;
const struct buddy_page_mask *table;
unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask;
int config, i;
/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
return;
if (IS_ALDERLAKE_S(dev_priv) ||
IS_DG1_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
/* Wa_1409767108:tgl,dg1,adl-s */
table = wa_1409767108_buddy_page_masks;
else
table = tgl_buddy_page_masks;
for (config = 0; table[config].page_mask != 0; config++)
if (table[config].num_channels == num_channels &&
table[config].type == type)
break;
if (table[config].page_mask == 0) {
drm_dbg(&dev_priv->drm,
"Unknown memory configuration; disabling address buddy logic.\n");
for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
intel_de_write(dev_priv, BW_BUDDY_CTL(i),
BW_BUDDY_DISABLE);
} else {
for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
table[config].page_mask);
/* Wa_22010178259:tgl,dg1,rkl,adl-s */
if (DISPLAY_VER(dev_priv) == 12)
intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
BW_BUDDY_TLB_REQ_TIMER_MASK,
BW_BUDDY_TLB_REQ_TIMER(0x8));
}
}
}
static void icl_display_core_init(struct drm_i915_private *dev_priv,
bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
u32 val;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
if (INTEL_PCH_TYPE(dev_priv) >= PCH_JSP &&
INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
/* 1. Enable PCH reset handshake. */
intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
if (!HAS_DISPLAY(dev_priv))
return;
/* 2. Initialize all combo phys */
intel_combo_phy_init(dev_priv);
/*
* 3. Enable Power Well 1 (PG1).
* The AUX IO power wells will be enabled on demand.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
mutex_unlock(&power_domains->lock);
/* 4. Enable CDCLK. */
intel_cdclk_init_hw(dev_priv);
if (DISPLAY_VER(dev_priv) >= 12)
gen12_dbuf_slices_config(dev_priv);
/* 5. Enable DBUF. */
gen9_dbuf_enable(dev_priv);
/* 6. Setup MBUS. */
icl_mbus_init(dev_priv);
/* 7. Program arbiter BW_BUDDY registers */
if (DISPLAY_VER(dev_priv) >= 12)
tgl_bw_buddy_init(dev_priv);
/* 8. Ensure PHYs have completed calibration and adaptation */
if (IS_DG2(dev_priv))
intel_snps_phy_wait_for_calibration(dev_priv);
if (resume)
intel_dmc_load_program(dev_priv);
/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
if (DISPLAY_VER(dev_priv) >= 12) {
val = DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR;
intel_uncore_rmw(&dev_priv->uncore, GEN11_CHICKEN_DCPR_2, 0, val);
}
/* Wa_14011503030:xelpd */
if (DISPLAY_VER(dev_priv) >= 13)
intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
}
static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
if (!HAS_DISPLAY(dev_priv))
return;
gen9_disable_dc_states(dev_priv);
/* 1. Disable all display engine functions -> aready done */
/* 2. Disable DBUF */
gen9_dbuf_disable(dev_priv);
/* 3. Disable CD clock */
intel_cdclk_uninit_hw(dev_priv);
/*
* 4. Disable Power Well 1 (PG1).
* The AUX IO power wells are toggled on demand, so they are already
* disabled at this point.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
mutex_unlock(&power_domains->lock);
/* 5. */
intel_combo_phy_uninit(dev_priv);
}
static void chv_phy_control_init(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn_bc =
lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
struct i915_power_well *cmn_d =
lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
/*
* DISPLAY_PHY_CONTROL can get corrupted if read. As a
* workaround never ever read DISPLAY_PHY_CONTROL, and
* instead maintain a shadow copy ourselves. Use the actual
* power well state and lane status to reconstruct the
* expected initial value.
*/
dev_priv->chv_phy_control =
PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
/*
* If all lanes are disabled we leave the override disabled
* with all power down bits cleared to match the state we
* would use after disabling the port. Otherwise enable the
* override and set the lane powerdown bits accding to the
* current lane status.
*/
if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
unsigned int mask;
mask = status & DPLL_PORTB_READY_MASK;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
mask = (status & DPLL_PORTC_READY_MASK) >> 4;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
dev_priv->chv_phy_assert[DPIO_PHY0] = false;
} else {
dev_priv->chv_phy_assert[DPIO_PHY0] = true;
}
if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
unsigned int mask;
mask = status & DPLL_PORTD_READY_MASK;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
dev_priv->chv_phy_assert[DPIO_PHY1] = false;
} else {
dev_priv->chv_phy_assert[DPIO_PHY1] = true;
}
drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
dev_priv->chv_phy_control);
/* Defer application of initial phy_control to enabling the powerwell */
}
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn =
lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
struct i915_power_well *disp2d =
lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
/* If the display might be already active skip this */
if (intel_power_well_is_enabled(dev_priv, cmn) &&
intel_power_well_is_enabled(dev_priv, disp2d) &&
intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
return;
drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
/* cmnlane needs DPLL registers */
intel_power_well_enable(dev_priv, disp2d);
/*
* From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
* Need to assert and de-assert PHY SB reset by gating the
* common lane power, then un-gating it.
* Simply ungating isn't enough to reset the PHY enough to get
* ports and lanes running.
*/
intel_power_well_disable(dev_priv, cmn);
}
static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
{
bool ret;
vlv_punit_get(dev_priv);
ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
vlv_punit_put(dev_priv);
return ret;
}
static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
{
drm_WARN(&dev_priv->drm,
!vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
"VED not power gated\n");
}
static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
{
static const struct pci_device_id isp_ids[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
{}
};
drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
!vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
"ISP not power gated\n");
}
static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
/**
* intel_power_domains_init_hw - initialize hardware power domain state
* @i915: i915 device instance
* @resume: Called from resume code paths or not
*
* This function initializes the hardware power domain state and enables all
* power wells belonging to the INIT power domain. Power wells in other
* domains (and not in the INIT domain) are referenced or disabled by
* intel_modeset_readout_hw_state(). After that the reference count of each
* power well must match its HW enabled state, see
* intel_power_domains_verify_state().
*
* It will return with power domains disabled (to be enabled later by
* intel_power_domains_enable()) and must be paired with
* intel_power_domains_driver_remove().
*/
void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
{
struct i915_power_domains *power_domains = &i915->power_domains;
power_domains->initializing = true;
if (DISPLAY_VER(i915) >= 11) {
icl_display_core_init(i915, resume);
} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
bxt_display_core_init(i915, resume);
} else if (DISPLAY_VER(i915) == 9) {
skl_display_core_init(i915, resume);
} else if (IS_CHERRYVIEW(i915)) {
mutex_lock(&power_domains->lock);
chv_phy_control_init(i915);
mutex_unlock(&power_domains->lock);
assert_isp_power_gated(i915);
} else if (IS_VALLEYVIEW(i915)) {
mutex_lock(&power_domains->lock);
vlv_cmnlane_wa(i915);
mutex_unlock(&power_domains->lock);
assert_ved_power_gated(i915);
assert_isp_power_gated(i915);
} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
hsw_assert_cdclk(i915);
intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
} else if (IS_IVYBRIDGE(i915)) {
intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
}
/*
* Keep all power wells enabled for any dependent HW access during
* initialization and to make sure we keep BIOS enabled display HW
* resources powered until display HW readout is complete. We drop
* this reference in intel_power_domains_enable().
*/
drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
power_domains->init_wakeref =
intel_display_power_get(i915, POWER_DOMAIN_INIT);
/* Disable power support if the user asked so. */
if (!i915->params.disable_power_well) {
drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
i915->power_domains.disable_wakeref = intel_display_power_get(i915,
POWER_DOMAIN_INIT);
}
intel_power_domains_sync_hw(i915);
power_domains->initializing = false;
}
/**
* intel_power_domains_driver_remove - deinitialize hw power domain state
* @i915: i915 device instance
*
* De-initializes the display power domain HW state. It also ensures that the
* device stays powered up so that the driver can be reloaded.
*
* It must be called with power domains already disabled (after a call to
* intel_power_domains_disable()) and must be paired with
* intel_power_domains_init_hw().
*/
void intel_power_domains_driver_remove(struct drm_i915_private *i915)
{
intel_wakeref_t wakeref __maybe_unused =
fetch_and_zero(&i915->power_domains.init_wakeref);
/* Remove the refcount we took to keep power well support disabled. */
if (!i915->params.disable_power_well)
intel_display_power_put(i915, POWER_DOMAIN_INIT,
fetch_and_zero(&i915->power_domains.disable_wakeref));
intel_display_power_flush_work_sync(i915);
intel_power_domains_verify_state(i915);
/* Keep the power well enabled, but cancel its rpm wakeref. */
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
}
/**
* intel_power_domains_sanitize_state - sanitize power domains state
* @i915: i915 device instance
*
* Sanitize the power domains state during driver loading and system resume.
* The function will disable all display power wells that BIOS has enabled
* without a user for it (any user for a power well has taken a reference
* on it by the time this function is called, after the state of all the
* pipe, encoder, etc. HW resources have been sanitized).
*/
void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct i915_power_well *power_well;
mutex_lock(&power_domains->lock);
for_each_power_well_reverse(i915, power_well) {
if (power_well->desc->always_on || power_well->count ||
!intel_power_well_is_enabled(i915, power_well))
continue;
drm_dbg_kms(&i915->drm,
"BIOS left unused %s power well enabled, disabling it\n",
intel_power_well_name(power_well));
intel_power_well_disable(i915, power_well);
}
mutex_unlock(&power_domains->lock);
}
/**
* intel_power_domains_enable - enable toggling of display power wells
* @i915: i915 device instance
*
* Enable the ondemand enabling/disabling of the display power wells. Note that
* power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
* only at specific points of the display modeset sequence, thus they are not
* affected by the intel_power_domains_enable()/disable() calls. The purpose
* of these function is to keep the rest of power wells enabled until the end
* of display HW readout (which will acquire the power references reflecting
* the current HW state).
*/
void intel_power_domains_enable(struct drm_i915_private *i915)
{
intel_wakeref_t wakeref __maybe_unused =
fetch_and_zero(&i915->power_domains.init_wakeref);
intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
intel_power_domains_verify_state(i915);
}
/**
* intel_power_domains_disable - disable toggling of display power wells
* @i915: i915 device instance
*
* Disable the ondemand enabling/disabling of the display power wells. See
* intel_power_domains_enable() for which power wells this call controls.
*/
void intel_power_domains_disable(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
power_domains->init_wakeref =
intel_display_power_get(i915, POWER_DOMAIN_INIT);
intel_power_domains_verify_state(i915);
}
/**
* intel_power_domains_suspend - suspend power domain state
* @i915: i915 device instance
* @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
*
* This function prepares the hardware power domain state before entering
* system suspend.
*
* It must be called with power domains already disabled (after a call to
* intel_power_domains_disable()) and paired with intel_power_domains_resume().
*/
void intel_power_domains_suspend(struct drm_i915_private *i915,
enum i915_drm_suspend_mode suspend_mode)
{
struct i915_power_domains *power_domains = &i915->power_domains;
intel_wakeref_t wakeref __maybe_unused =
fetch_and_zero(&power_domains->init_wakeref);
intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
/*
* In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
* support don't manually deinit the power domains. This also means the
* DMC firmware will stay active, it will power down any HW
* resources as required and also enable deeper system power states
* that would be blocked if the firmware was inactive.
*/
if (!(i915->dmc.allowed_dc_mask & DC_STATE_EN_DC9) &&
suspend_mode == I915_DRM_SUSPEND_IDLE &&
intel_dmc_has_payload(i915)) {
intel_display_power_flush_work(i915);
intel_power_domains_verify_state(i915);
return;
}
/*
* Even if power well support was disabled we still want to disable
* power wells if power domains must be deinitialized for suspend.
*/
if (!i915->params.disable_power_well)
intel_display_power_put(i915, POWER_DOMAIN_INIT,
fetch_and_zero(&i915->power_domains.disable_wakeref));
intel_display_power_flush_work(i915);
intel_power_domains_verify_state(i915);
if (DISPLAY_VER(i915) >= 11)
icl_display_core_uninit(i915);
else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
bxt_display_core_uninit(i915);
else if (DISPLAY_VER(i915) == 9)
skl_display_core_uninit(i915);
power_domains->display_core_suspended = true;
}
/**
* intel_power_domains_resume - resume power domain state
* @i915: i915 device instance
*
* This function resume the hardware power domain state during system resume.
*
* It will return with power domain support disabled (to be enabled later by
* intel_power_domains_enable()) and must be paired with
* intel_power_domains_suspend().
*/
void intel_power_domains_resume(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
if (power_domains->display_core_suspended) {
intel_power_domains_init_hw(i915, true);
power_domains->display_core_suspended = false;
} else {
drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
power_domains->init_wakeref =
intel_display_power_get(i915, POWER_DOMAIN_INIT);
}
intel_power_domains_verify_state(i915);
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
static void intel_power_domains_dump_info(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct i915_power_well *power_well;
for_each_power_well(i915, power_well) {
enum intel_display_power_domain domain;
drm_dbg(&i915->drm, "%-25s %d\n",
intel_power_well_name(power_well), intel_power_well_refcount(power_well));
for_each_power_domain(domain, intel_power_well_domains(power_well))
drm_dbg(&i915->drm, " %-23s %d\n",
intel_display_power_domain_str(domain),
power_domains->domain_use_count[domain]);
}
}
/**
* intel_power_domains_verify_state - verify the HW/SW state for all power wells
* @i915: i915 device instance
*
* Verify if the reference count of each power well matches its HW enabled
* state and the total refcount of the domains it belongs to. This must be
* called after modeset HW state sanitization, which is responsible for
* acquiring reference counts for any power wells in use and disabling the
* ones left on by BIOS but not required by any active output.
*/
static void intel_power_domains_verify_state(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct i915_power_well *power_well;
bool dump_domain_info;
mutex_lock(&power_domains->lock);
verify_async_put_domains_state(power_domains);
dump_domain_info = false;
for_each_power_well(i915, power_well) {
enum intel_display_power_domain domain;
int domains_count;
bool enabled;
enabled = intel_power_well_is_enabled(i915, power_well);
if ((intel_power_well_refcount(power_well) ||
intel_power_well_is_always_on(power_well)) !=
enabled)
drm_err(&i915->drm,
"power well %s state mismatch (refcount %d/enabled %d)",
intel_power_well_name(power_well),
intel_power_well_refcount(power_well), enabled);
domains_count = 0;
for_each_power_domain(domain, intel_power_well_domains(power_well))
domains_count += power_domains->domain_use_count[domain];
if (intel_power_well_refcount(power_well) != domains_count) {
drm_err(&i915->drm,
"power well %s refcount/domain refcount mismatch "
"(refcount %d/domains refcount %d)\n",
intel_power_well_name(power_well),
intel_power_well_refcount(power_well),
domains_count);
dump_domain_info = true;
}
}
if (dump_domain_info) {
static bool dumped;
if (!dumped) {
intel_power_domains_dump_info(i915);
dumped = true;
}
}
mutex_unlock(&power_domains->lock);
}
#else
static void intel_power_domains_verify_state(struct drm_i915_private *i915)
{
}
#endif
void intel_display_power_suspend_late(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
IS_BROXTON(i915)) {
bxt_enable_dc9(i915);
} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
hsw_enable_pc8(i915);
}
/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
}
void intel_display_power_resume_early(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
IS_BROXTON(i915)) {
gen9_sanitize_dc_state(i915);
bxt_disable_dc9(i915);
} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
hsw_disable_pc8(i915);
}
/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
}
void intel_display_power_suspend(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 11) {
icl_display_core_uninit(i915);
bxt_enable_dc9(i915);
} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
bxt_display_core_uninit(i915);
bxt_enable_dc9(i915);
} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
hsw_enable_pc8(i915);
}
}
void intel_display_power_resume(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 11) {
bxt_disable_dc9(i915);
icl_display_core_init(i915, true);
if (intel_dmc_has_payload(i915)) {
if (i915->dmc.allowed_dc_mask &
DC_STATE_EN_UPTO_DC6)
skl_enable_dc6(i915);
else if (i915->dmc.allowed_dc_mask &
DC_STATE_EN_UPTO_DC5)
gen9_enable_dc5(i915);
}
} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
bxt_disable_dc9(i915);
bxt_display_core_init(i915, true);
if (intel_dmc_has_payload(i915) &&
(i915->dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
gen9_enable_dc5(i915);
} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
hsw_disable_pc8(i915);
}
}
void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
{
struct i915_power_domains *power_domains = &i915->power_domains;
int i;
mutex_lock(&power_domains->lock);
seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
for (i = 0; i < power_domains->power_well_count; i++) {
struct i915_power_well *power_well;
enum intel_display_power_domain power_domain;
power_well = &power_domains->power_wells[i];
seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
intel_power_well_refcount(power_well));
for_each_power_domain(power_domain, intel_power_well_domains(power_well))
seq_printf(m, " %-23s %d\n",
intel_display_power_domain_str(power_domain),
power_domains->domain_use_count[power_domain]);
}
mutex_unlock(&power_domains->lock);
}
struct intel_ddi_port_domains {
enum port port_start;
enum port port_end;
enum aux_ch aux_ch_start;
enum aux_ch aux_ch_end;
enum intel_display_power_domain ddi_lanes;
enum intel_display_power_domain ddi_io;
enum intel_display_power_domain aux_legacy_usbc;
enum intel_display_power_domain aux_tbt;
};
static const struct intel_ddi_port_domains
i9xx_port_domains[] = {
{
.port_start = PORT_A,
.port_end = PORT_F,
.aux_ch_start = AUX_CH_A,
.aux_ch_end = AUX_CH_F,
.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
.aux_tbt = POWER_DOMAIN_INVALID,
},
};
static const struct intel_ddi_port_domains
d11_port_domains[] = {
{
.port_start = PORT_A,
.port_end = PORT_B,
.aux_ch_start = AUX_CH_A,
.aux_ch_end = AUX_CH_B,
.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
.aux_tbt = POWER_DOMAIN_INVALID,
}, {
.port_start = PORT_C,
.port_end = PORT_F,
.aux_ch_start = AUX_CH_C,
.aux_ch_end = AUX_CH_F,
.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
.aux_tbt = POWER_DOMAIN_AUX_TBT1,
},
};
static const struct intel_ddi_port_domains
d12_port_domains[] = {
{
.port_start = PORT_A,
.port_end = PORT_C,
.aux_ch_start = AUX_CH_A,
.aux_ch_end = AUX_CH_C,
.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
.aux_tbt = POWER_DOMAIN_INVALID,
}, {
.port_start = PORT_TC1,
.port_end = PORT_TC6,
.aux_ch_start = AUX_CH_USBC1,
.aux_ch_end = AUX_CH_USBC6,
.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
.aux_tbt = POWER_DOMAIN_AUX_TBT1,
},
};
static const struct intel_ddi_port_domains
d13_port_domains[] = {
{
.port_start = PORT_A,
.port_end = PORT_C,
.aux_ch_start = AUX_CH_A,
.aux_ch_end = AUX_CH_C,
.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
.aux_tbt = POWER_DOMAIN_INVALID,
}, {
.port_start = PORT_TC1,
.port_end = PORT_TC4,
.aux_ch_start = AUX_CH_USBC1,
.aux_ch_end = AUX_CH_USBC4,
.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
.aux_tbt = POWER_DOMAIN_AUX_TBT1,
}, {
.port_start = PORT_D_XELPD,
.port_end = PORT_E_XELPD,
.aux_ch_start = AUX_CH_D_XELPD,
.aux_ch_end = AUX_CH_E_XELPD,
.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
.aux_tbt = POWER_DOMAIN_INVALID,
},
};
static void
intel_port_domains_for_platform(struct drm_i915_private *i915,
const struct intel_ddi_port_domains **domains,
int *domains_size)
{
if (DISPLAY_VER(i915) >= 13) {
*domains = d13_port_domains;
*domains_size = ARRAY_SIZE(d13_port_domains);
} else if (DISPLAY_VER(i915) >= 12) {
*domains = d12_port_domains;
*domains_size = ARRAY_SIZE(d12_port_domains);
} else if (DISPLAY_VER(i915) >= 11) {
*domains = d11_port_domains;
*domains_size = ARRAY_SIZE(d11_port_domains);
} else {
*domains = i9xx_port_domains;
*domains_size = ARRAY_SIZE(i9xx_port_domains);
}
}
static const struct intel_ddi_port_domains *
intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
{
const struct intel_ddi_port_domains *domains;
int domains_size;
int i;
intel_port_domains_for_platform(i915, &domains, &domains_size);
for (i = 0; i < domains_size; i++)
if (port >= domains[i].port_start && port <= domains[i].port_end)
return &domains[i];
return NULL;
}
enum intel_display_power_domain
intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
{
const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
if (drm_WARN_ON(&i915->drm, !domains) || domains->ddi_io == POWER_DOMAIN_INVALID)
return POWER_DOMAIN_PORT_DDI_IO_A;
return domains->ddi_io + (int)(port - domains->port_start);
}
enum intel_display_power_domain
intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
{
const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
if (drm_WARN_ON(&i915->drm, !domains) || domains->ddi_lanes == POWER_DOMAIN_INVALID)
return POWER_DOMAIN_PORT_DDI_LANES_A;
return domains->ddi_lanes + (int)(port - domains->port_start);
}
static const struct intel_ddi_port_domains *
intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
{
const struct intel_ddi_port_domains *domains;
int domains_size;
int i;
intel_port_domains_for_platform(i915, &domains, &domains_size);
for (i = 0; i < domains_size; i++)
if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
return &domains[i];
return NULL;
}
enum intel_display_power_domain
intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
{
const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
if (drm_WARN_ON(&i915->drm, !domains) || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID)
return POWER_DOMAIN_AUX_A;
return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
}
enum intel_display_power_domain
intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
{
const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
if (drm_WARN_ON(&i915->drm, !domains) || domains->aux_tbt == POWER_DOMAIN_INVALID)
return POWER_DOMAIN_AUX_TBT1;
return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
}