OpenCloudOS-Kernel/drivers/gpu/drm/i915/display/intel_crtc.c

707 lines
20 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/kernel.h>
#include <linux/pm_qos.h>
#include <linux/slab.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_plane.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_vblank_work.h>
#include "i915_irq.h"
#include "i915_vgpu.h"
#include "i9xx_plane.h"
#include "icl_dsi.h"
#include "intel_atomic.h"
#include "intel_atomic_plane.h"
#include "intel_color.h"
#include "intel_crtc.h"
#include "intel_cursor.h"
#include "intel_display_debugfs.h"
#include "intel_display_trace.h"
#include "intel_display_types.h"
#include "intel_drrs.h"
#include "intel_dsi.h"
#include "intel_pipe_crc.h"
#include "intel_psr.h"
#include "intel_sprite.h"
#include "intel_vrr.h"
#include "skl_universal_plane.h"
static void assert_vblank_disabled(struct drm_crtc *crtc)
{
if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
drm_crtc_vblank_put(crtc);
}
struct intel_crtc *intel_first_crtc(struct drm_i915_private *i915)
{
return to_intel_crtc(drm_crtc_from_index(&i915->drm, 0));
}
struct intel_crtc *intel_crtc_for_pipe(struct drm_i915_private *i915,
enum pipe pipe)
{
struct intel_crtc *crtc;
for_each_intel_crtc(&i915->drm, crtc) {
if (crtc->pipe == pipe)
return crtc;
}
return NULL;
}
void intel_crtc_wait_for_next_vblank(struct intel_crtc *crtc)
{
drm_crtc_wait_one_vblank(&crtc->base);
}
void intel_wait_for_vblank_if_active(struct drm_i915_private *i915,
enum pipe pipe)
{
struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe);
if (crtc->active)
intel_crtc_wait_for_next_vblank(crtc);
}
u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
if (!crtc->active)
return 0;
if (!vblank->max_vblank_count)
return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
return crtc->base.funcs->get_vblank_counter(&crtc->base);
}
u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
/*
* From Gen 11, In case of dsi cmd mode, frame counter wouldnt
* have updated at the beginning of TE, if we want to use
* the hw counter, then we would find it updated in only
* the next TE, hence switching to sw counter.
*/
if (crtc_state->mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 |
I915_MODE_FLAG_DSI_USE_TE1))
return 0;
/*
* On i965gm the hardware frame counter reads
* zero when the TV encoder is enabled :(
*/
if (IS_I965GM(dev_priv) &&
(crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
return 0;
if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
return 0xffffffff; /* full 32 bit counter */
else if (DISPLAY_VER(dev_priv) >= 3)
return 0xffffff; /* only 24 bits of frame count */
else
return 0; /* Gen2 doesn't have a hardware frame counter */
}
void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
assert_vblank_disabled(&crtc->base);
drm_crtc_set_max_vblank_count(&crtc->base,
intel_crtc_max_vblank_count(crtc_state));
drm_crtc_vblank_on(&crtc->base);
/*
* Should really happen exactly when we enable the pipe
* but we want the frame counters in the trace, and that
* requires vblank support on some platforms/outputs.
*/
trace_intel_pipe_enable(crtc);
}
void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
/*
* Should really happen exactly when we disable the pipe
* but we want the frame counters in the trace, and that
* requires vblank support on some platforms/outputs.
*/
trace_intel_pipe_disable(crtc);
drm_crtc_vblank_off(&crtc->base);
assert_vblank_disabled(&crtc->base);
}
struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state;
crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
if (crtc_state)
intel_crtc_state_reset(crtc_state, crtc);
return crtc_state;
}
void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
struct intel_crtc *crtc)
{
memset(crtc_state, 0, sizeof(*crtc_state));
__drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
crtc_state->cpu_transcoder = INVALID_TRANSCODER;
crtc_state->master_transcoder = INVALID_TRANSCODER;
crtc_state->hsw_workaround_pipe = INVALID_PIPE;
crtc_state->scaler_state.scaler_id = -1;
crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
}
static struct intel_crtc *intel_crtc_alloc(void)
{
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
if (!crtc)
return ERR_PTR(-ENOMEM);
crtc_state = intel_crtc_state_alloc(crtc);
if (!crtc_state) {
kfree(crtc);
return ERR_PTR(-ENOMEM);
}
crtc->base.state = &crtc_state->uapi;
crtc->config = crtc_state;
return crtc;
}
static void intel_crtc_free(struct intel_crtc *crtc)
{
intel_crtc_destroy_state(&crtc->base, crtc->base.state);
kfree(crtc);
}
static void intel_crtc_destroy(struct drm_crtc *_crtc)
{
struct intel_crtc *crtc = to_intel_crtc(_crtc);
cpu_latency_qos_remove_request(&crtc->vblank_pm_qos);
drm_crtc_cleanup(&crtc->base);
kfree(crtc);
}
static int intel_crtc_late_register(struct drm_crtc *crtc)
{
intel_crtc_debugfs_add(crtc);
return 0;
}
#define INTEL_CRTC_FUNCS \
.set_config = drm_atomic_helper_set_config, \
.destroy = intel_crtc_destroy, \
.page_flip = drm_atomic_helper_page_flip, \
.atomic_duplicate_state = intel_crtc_duplicate_state, \
.atomic_destroy_state = intel_crtc_destroy_state, \
.set_crc_source = intel_crtc_set_crc_source, \
.verify_crc_source = intel_crtc_verify_crc_source, \
.get_crc_sources = intel_crtc_get_crc_sources, \
.late_register = intel_crtc_late_register
static const struct drm_crtc_funcs bdw_crtc_funcs = {
INTEL_CRTC_FUNCS,
.get_vblank_counter = g4x_get_vblank_counter,
.enable_vblank = bdw_enable_vblank,
.disable_vblank = bdw_disable_vblank,
.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
};
static const struct drm_crtc_funcs ilk_crtc_funcs = {
INTEL_CRTC_FUNCS,
.get_vblank_counter = g4x_get_vblank_counter,
.enable_vblank = ilk_enable_vblank,
.disable_vblank = ilk_disable_vblank,
.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
};
static const struct drm_crtc_funcs g4x_crtc_funcs = {
INTEL_CRTC_FUNCS,
.get_vblank_counter = g4x_get_vblank_counter,
.enable_vblank = i965_enable_vblank,
.disable_vblank = i965_disable_vblank,
.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
};
static const struct drm_crtc_funcs i965_crtc_funcs = {
INTEL_CRTC_FUNCS,
.get_vblank_counter = i915_get_vblank_counter,
.enable_vblank = i965_enable_vblank,
.disable_vblank = i965_disable_vblank,
.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
};
static const struct drm_crtc_funcs i915gm_crtc_funcs = {
INTEL_CRTC_FUNCS,
.get_vblank_counter = i915_get_vblank_counter,
.enable_vblank = i915gm_enable_vblank,
.disable_vblank = i915gm_disable_vblank,
.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
};
static const struct drm_crtc_funcs i915_crtc_funcs = {
INTEL_CRTC_FUNCS,
.get_vblank_counter = i915_get_vblank_counter,
.enable_vblank = i8xx_enable_vblank,
.disable_vblank = i8xx_disable_vblank,
.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
};
static const struct drm_crtc_funcs i8xx_crtc_funcs = {
INTEL_CRTC_FUNCS,
/* no hw vblank counter */
.enable_vblank = i8xx_enable_vblank,
.disable_vblank = i8xx_disable_vblank,
.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
};
int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_plane *primary, *cursor;
const struct drm_crtc_funcs *funcs;
struct intel_crtc *crtc;
int sprite, ret;
crtc = intel_crtc_alloc();
if (IS_ERR(crtc))
return PTR_ERR(crtc);
crtc->pipe = pipe;
crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
if (DISPLAY_VER(dev_priv) >= 9)
primary = skl_universal_plane_create(dev_priv, pipe,
PLANE_PRIMARY);
else
primary = intel_primary_plane_create(dev_priv, pipe);
if (IS_ERR(primary)) {
ret = PTR_ERR(primary);
goto fail;
}
crtc->plane_ids_mask |= BIT(primary->id);
for_each_sprite(dev_priv, pipe, sprite) {
struct intel_plane *plane;
if (DISPLAY_VER(dev_priv) >= 9)
plane = skl_universal_plane_create(dev_priv, pipe,
PLANE_SPRITE0 + sprite);
else
plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
if (IS_ERR(plane)) {
ret = PTR_ERR(plane);
goto fail;
}
crtc->plane_ids_mask |= BIT(plane->id);
}
cursor = intel_cursor_plane_create(dev_priv, pipe);
if (IS_ERR(cursor)) {
ret = PTR_ERR(cursor);
goto fail;
}
crtc->plane_ids_mask |= BIT(cursor->id);
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv) ||
IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
funcs = &g4x_crtc_funcs;
else if (DISPLAY_VER(dev_priv) == 4)
funcs = &i965_crtc_funcs;
else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
funcs = &i915gm_crtc_funcs;
else if (DISPLAY_VER(dev_priv) == 3)
funcs = &i915_crtc_funcs;
else
funcs = &i8xx_crtc_funcs;
} else {
if (DISPLAY_VER(dev_priv) >= 8)
funcs = &bdw_crtc_funcs;
else
funcs = &ilk_crtc_funcs;
}
ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
&primary->base, &cursor->base,
funcs, "pipe %c", pipe_name(pipe));
if (ret)
goto fail;
if (DISPLAY_VER(dev_priv) >= 11)
drm_crtc_create_scaling_filter_property(&crtc->base,
BIT(DRM_SCALING_FILTER_DEFAULT) |
BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR));
intel_color_init(crtc);
intel_crtc_drrs_init(crtc);
intel_crtc_crc_init(crtc);
cpu_latency_qos_add_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE);
drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
return 0;
fail:
intel_crtc_free(crtc);
return ret;
}
static bool intel_crtc_needs_vblank_work(const struct intel_crtc_state *crtc_state)
{
return crtc_state->hw.active &&
!intel_crtc_needs_modeset(crtc_state) &&
!crtc_state->preload_luts &&
(crtc_state->uapi.color_mgmt_changed ||
crtc_state->update_pipe);
}
static void intel_crtc_vblank_work(struct kthread_work *base)
{
struct drm_vblank_work *work = to_drm_vblank_work(base);
struct intel_crtc_state *crtc_state =
container_of(work, typeof(*crtc_state), vblank_work);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
trace_intel_crtc_vblank_work_start(crtc);
intel_color_load_luts(crtc_state);
if (crtc_state->uapi.event) {
spin_lock_irq(&crtc->base.dev->event_lock);
drm_crtc_send_vblank_event(&crtc->base, crtc_state->uapi.event);
crtc_state->uapi.event = NULL;
spin_unlock_irq(&crtc->base.dev->event_lock);
}
trace_intel_crtc_vblank_work_end(crtc);
}
static void intel_crtc_vblank_work_init(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
drm_vblank_work_init(&crtc_state->vblank_work, &crtc->base,
intel_crtc_vblank_work);
/*
* Interrupt latency is critical for getting the vblank
* work executed as early as possible during the vblank.
*/
cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 0);
}
void intel_wait_for_vblank_workers(struct intel_atomic_state *state)
{
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
if (!intel_crtc_needs_vblank_work(crtc_state))
continue;
drm_vblank_work_flush(&crtc_state->vblank_work);
cpu_latency_qos_update_request(&crtc->vblank_pm_qos,
PM_QOS_DEFAULT_VALUE);
}
}
int intel_usecs_to_scanlines(const struct drm_display_mode *adjusted_mode,
int usecs)
{
/* paranoia */
if (!adjusted_mode->crtc_htotal)
return 1;
return DIV_ROUND_UP(usecs * adjusted_mode->crtc_clock,
1000 * adjusted_mode->crtc_htotal);
}
static int intel_mode_vblank_start(const struct drm_display_mode *mode)
{
int vblank_start = mode->crtc_vblank_start;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vblank_start = DIV_ROUND_UP(vblank_start, 2);
return vblank_start;
}
/**
* intel_pipe_update_start() - start update of a set of display registers
* @new_crtc_state: the new crtc state
*
* Mark the start of an update to pipe registers that should be updated
* atomically regarding vblank. If the next vblank will happens within
* the next 100 us, this function waits until the vblank passes.
*
* After a successful call to this function, interrupts will be disabled
* until a subsequent call to intel_pipe_update_end(). That is done to
* avoid random delays.
*/
void intel_pipe_update_start(struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_display_mode *adjusted_mode = &new_crtc_state->hw.adjusted_mode;
long timeout = msecs_to_jiffies_timeout(1);
int scanline, min, max, vblank_start;
wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base);
bool need_vlv_dsi_wa = (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI);
DEFINE_WAIT(wait);
intel_psr_lock(new_crtc_state);
if (new_crtc_state->do_async_flip)
return;
if (intel_crtc_needs_vblank_work(new_crtc_state))
intel_crtc_vblank_work_init(new_crtc_state);
if (new_crtc_state->vrr.enable) {
if (intel_vrr_is_push_sent(new_crtc_state))
vblank_start = intel_vrr_vmin_vblank_start(new_crtc_state);
else
vblank_start = intel_vrr_vmax_vblank_start(new_crtc_state);
} else {
vblank_start = intel_mode_vblank_start(adjusted_mode);
}
/* FIXME needs to be calibrated sensibly */
min = vblank_start - intel_usecs_to_scanlines(adjusted_mode,
VBLANK_EVASION_TIME_US);
max = vblank_start - 1;
if (min <= 0 || max <= 0)
goto irq_disable;
if (drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base)))
goto irq_disable;
/*
* Wait for psr to idle out after enabling the VBL interrupts
* VBL interrupts will start the PSR exit and prevent a PSR
* re-entry as well.
*/
intel_psr_wait_for_idle_locked(new_crtc_state);
local_irq_disable();
crtc->debug.min_vbl = min;
crtc->debug.max_vbl = max;
trace_intel_pipe_update_start(crtc);
for (;;) {
/*
* prepare_to_wait() has a memory barrier, which guarantees
* other CPUs can see the task state update by the time we
* read the scanline.
*/
prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
scanline = intel_get_crtc_scanline(crtc);
if (scanline < min || scanline > max)
break;
if (!timeout) {
drm_err(&dev_priv->drm,
"Potential atomic update failure on pipe %c\n",
pipe_name(crtc->pipe));
break;
}
local_irq_enable();
timeout = schedule_timeout(timeout);
local_irq_disable();
}
finish_wait(wq, &wait);
drm_crtc_vblank_put(&crtc->base);
/*
* On VLV/CHV DSI the scanline counter would appear to
* increment approx. 1/3 of a scanline before start of vblank.
* The registers still get latched at start of vblank however.
* This means we must not write any registers on the first
* line of vblank (since not the whole line is actually in
* vblank). And unfortunately we can't use the interrupt to
* wait here since it will fire too soon. We could use the
* frame start interrupt instead since it will fire after the
* critical scanline, but that would require more changes
* in the interrupt code. So for now we'll just do the nasty
* thing and poll for the bad scanline to pass us by.
*
* FIXME figure out if BXT+ DSI suffers from this as well
*/
while (need_vlv_dsi_wa && scanline == vblank_start)
scanline = intel_get_crtc_scanline(crtc);
crtc->debug.scanline_start = scanline;
crtc->debug.start_vbl_time = ktime_get();
crtc->debug.start_vbl_count = intel_crtc_get_vblank_counter(crtc);
trace_intel_pipe_update_vblank_evaded(crtc);
return;
irq_disable:
local_irq_disable();
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_VBLANK_EVADE)
static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end)
{
u64 delta = ktime_to_ns(ktime_sub(end, crtc->debug.start_vbl_time));
unsigned int h;
h = ilog2(delta >> 9);
if (h >= ARRAY_SIZE(crtc->debug.vbl.times))
h = ARRAY_SIZE(crtc->debug.vbl.times) - 1;
crtc->debug.vbl.times[h]++;
crtc->debug.vbl.sum += delta;
if (!crtc->debug.vbl.min || delta < crtc->debug.vbl.min)
crtc->debug.vbl.min = delta;
if (delta > crtc->debug.vbl.max)
crtc->debug.vbl.max = delta;
if (delta > 1000 * VBLANK_EVASION_TIME_US) {
drm_dbg_kms(crtc->base.dev,
"Atomic update on pipe (%c) took %lld us, max time under evasion is %u us\n",
pipe_name(crtc->pipe),
div_u64(delta, 1000),
VBLANK_EVASION_TIME_US);
crtc->debug.vbl.over++;
}
}
#else
static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) {}
#endif
/**
* intel_pipe_update_end() - end update of a set of display registers
* @new_crtc_state: the new crtc state
*
* Mark the end of an update started with intel_pipe_update_start(). This
* re-enables interrupts and verifies the update was actually completed
* before a vblank.
*/
void intel_pipe_update_end(struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
enum pipe pipe = crtc->pipe;
int scanline_end = intel_get_crtc_scanline(crtc);
u32 end_vbl_count = intel_crtc_get_vblank_counter(crtc);
ktime_t end_vbl_time = ktime_get();
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
intel_psr_unlock(new_crtc_state);
if (new_crtc_state->do_async_flip)
return;
trace_intel_pipe_update_end(crtc, end_vbl_count, scanline_end);
/*
* Incase of mipi dsi command mode, we need to set frame update
* request for every commit.
*/
if (DISPLAY_VER(dev_priv) >= 11 &&
intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
icl_dsi_frame_update(new_crtc_state);
/* We're still in the vblank-evade critical section, this can't race.
* Would be slightly nice to just grab the vblank count and arm the
* event outside of the critical section - the spinlock might spin for a
* while ... */
if (intel_crtc_needs_vblank_work(new_crtc_state)) {
drm_vblank_work_schedule(&new_crtc_state->vblank_work,
drm_crtc_accurate_vblank_count(&crtc->base) + 1,
false);
} else if (new_crtc_state->uapi.event) {
drm_WARN_ON(&dev_priv->drm,
drm_crtc_vblank_get(&crtc->base) != 0);
spin_lock(&crtc->base.dev->event_lock);
drm_crtc_arm_vblank_event(&crtc->base,
new_crtc_state->uapi.event);
spin_unlock(&crtc->base.dev->event_lock);
new_crtc_state->uapi.event = NULL;
}
/*
* Send VRR Push to terminate Vblank. If we are already in vblank
* this has to be done _after_ sampling the frame counter, as
* otherwise the push would immediately terminate the vblank and
* the sampled frame counter would correspond to the next frame
* instead of the current frame.
*
* There is a tiny race here (iff vblank evasion failed us) where
* we might sample the frame counter just before vmax vblank start
* but the push would be sent just after it. That would cause the
* push to affect the next frame instead of the current frame,
* which would cause the next frame to terminate already at vmin
* vblank start instead of vmax vblank start.
*/
intel_vrr_send_push(new_crtc_state);
local_irq_enable();
if (intel_vgpu_active(dev_priv))
return;
if (crtc->debug.start_vbl_count &&
crtc->debug.start_vbl_count != end_vbl_count) {
drm_err(&dev_priv->drm,
"Atomic update failure on pipe %c (start=%u end=%u) time %lld us, min %d, max %d, scanline start %d, end %d\n",
pipe_name(pipe), crtc->debug.start_vbl_count,
end_vbl_count,
ktime_us_delta(end_vbl_time,
crtc->debug.start_vbl_time),
crtc->debug.min_vbl, crtc->debug.max_vbl,
crtc->debug.scanline_start, scanline_end);
}
dbg_vblank_evade(crtc, end_vbl_time);
}