OpenCloudOS-Kernel/net/sctp/socket.c

8812 lines
238 KiB
C

/* SCTP kernel implementation
* (C) Copyright IBM Corp. 2001, 2004
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001-2003 Intel Corp.
* Copyright (c) 2001-2002 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
*
* This file is part of the SCTP kernel implementation
*
* These functions interface with the sockets layer to implement the
* SCTP Extensions for the Sockets API.
*
* Note that the descriptions from the specification are USER level
* functions--this file is the functions which populate the struct proto
* for SCTP which is the BOTTOM of the sockets interface.
*
* This SCTP implementation is free software;
* you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This SCTP implementation is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* ************************
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU CC; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <linux-sctp@vger.kernel.org>
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Narasimha Budihal <narsi@refcode.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Jon Grimm <jgrimm@us.ibm.com>
* Xingang Guo <xingang.guo@intel.com>
* Daisy Chang <daisyc@us.ibm.com>
* Sridhar Samudrala <samudrala@us.ibm.com>
* Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
* Ardelle Fan <ardelle.fan@intel.com>
* Ryan Layer <rmlayer@us.ibm.com>
* Anup Pemmaiah <pemmaiah@cc.usu.edu>
* Kevin Gao <kevin.gao@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/hash.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/wait.h>
#include <linux/time.h>
#include <linux/sched/signal.h>
#include <linux/ip.h>
#include <linux/capability.h>
#include <linux/fcntl.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/compat.h>
#include <net/ip.h>
#include <net/icmp.h>
#include <net/route.h>
#include <net/ipv6.h>
#include <net/inet_common.h>
#include <net/busy_poll.h>
#include <linux/socket.h> /* for sa_family_t */
#include <linux/export.h>
#include <net/sock.h>
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
#include <net/sctp/stream_sched.h>
/* Forward declarations for internal helper functions. */
static int sctp_writeable(struct sock *sk);
static void sctp_wfree(struct sk_buff *skb);
static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
size_t msg_len);
static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
static int sctp_wait_for_accept(struct sock *sk, long timeo);
static void sctp_wait_for_close(struct sock *sk, long timeo);
static void sctp_destruct_sock(struct sock *sk);
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
union sctp_addr *addr, int len);
static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf(struct sctp_association *asoc,
struct sctp_chunk *chunk);
static int sctp_do_bind(struct sock *, union sctp_addr *, int);
static int sctp_autobind(struct sock *sk);
static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
struct sctp_association *assoc,
enum sctp_socket_type type);
static unsigned long sctp_memory_pressure;
static atomic_long_t sctp_memory_allocated;
struct percpu_counter sctp_sockets_allocated;
static void sctp_enter_memory_pressure(struct sock *sk)
{
sctp_memory_pressure = 1;
}
/* Get the sndbuf space available at the time on the association. */
static inline int sctp_wspace(struct sctp_association *asoc)
{
int amt;
if (asoc->ep->sndbuf_policy)
amt = asoc->sndbuf_used;
else
amt = sk_wmem_alloc_get(asoc->base.sk);
if (amt >= asoc->base.sk->sk_sndbuf) {
if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
amt = 0;
else {
amt = sk_stream_wspace(asoc->base.sk);
if (amt < 0)
amt = 0;
}
} else {
amt = asoc->base.sk->sk_sndbuf - amt;
}
return amt;
}
/* Increment the used sndbuf space count of the corresponding association by
* the size of the outgoing data chunk.
* Also, set the skb destructor for sndbuf accounting later.
*
* Since it is always 1-1 between chunk and skb, and also a new skb is always
* allocated for chunk bundling in sctp_packet_transmit(), we can use the
* destructor in the data chunk skb for the purpose of the sndbuf space
* tracking.
*/
static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
{
struct sctp_association *asoc = chunk->asoc;
struct sock *sk = asoc->base.sk;
/* The sndbuf space is tracked per association. */
sctp_association_hold(asoc);
if (chunk->shkey)
sctp_auth_shkey_hold(chunk->shkey);
skb_set_owner_w(chunk->skb, sk);
chunk->skb->destructor = sctp_wfree;
/* Save the chunk pointer in skb for sctp_wfree to use later. */
skb_shinfo(chunk->skb)->destructor_arg = chunk;
asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
sizeof(struct sk_buff) +
sizeof(struct sctp_chunk);
refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
sk->sk_wmem_queued += chunk->skb->truesize;
sk_mem_charge(sk, chunk->skb->truesize);
}
static void sctp_clear_owner_w(struct sctp_chunk *chunk)
{
skb_orphan(chunk->skb);
}
static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
void (*cb)(struct sctp_chunk *))
{
struct sctp_outq *q = &asoc->outqueue;
struct sctp_transport *t;
struct sctp_chunk *chunk;
list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
list_for_each_entry(chunk, &t->transmitted, transmitted_list)
cb(chunk);
list_for_each_entry(chunk, &q->retransmit, transmitted_list)
cb(chunk);
list_for_each_entry(chunk, &q->sacked, transmitted_list)
cb(chunk);
list_for_each_entry(chunk, &q->abandoned, transmitted_list)
cb(chunk);
list_for_each_entry(chunk, &q->out_chunk_list, list)
cb(chunk);
}
static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
void (*cb)(struct sk_buff *, struct sock *))
{
struct sk_buff *skb, *tmp;
sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
cb(skb, sk);
sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
cb(skb, sk);
sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
cb(skb, sk);
}
/* Verify that this is a valid address. */
static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
int len)
{
struct sctp_af *af;
/* Verify basic sockaddr. */
af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
if (!af)
return -EINVAL;
/* Is this a valid SCTP address? */
if (!af->addr_valid(addr, sctp_sk(sk), NULL))
return -EINVAL;
if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
return -EINVAL;
return 0;
}
/* Look up the association by its id. If this is not a UDP-style
* socket, the ID field is always ignored.
*/
struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
{
struct sctp_association *asoc = NULL;
/* If this is not a UDP-style socket, assoc id should be ignored. */
if (!sctp_style(sk, UDP)) {
/* Return NULL if the socket state is not ESTABLISHED. It
* could be a TCP-style listening socket or a socket which
* hasn't yet called connect() to establish an association.
*/
if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
return NULL;
/* Get the first and the only association from the list. */
if (!list_empty(&sctp_sk(sk)->ep->asocs))
asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
struct sctp_association, asocs);
return asoc;
}
/* Otherwise this is a UDP-style socket. */
if (!id || (id == (sctp_assoc_t)-1))
return NULL;
spin_lock_bh(&sctp_assocs_id_lock);
asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
spin_unlock_bh(&sctp_assocs_id_lock);
if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
return NULL;
return asoc;
}
/* Look up the transport from an address and an assoc id. If both address and
* id are specified, the associations matching the address and the id should be
* the same.
*/
static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
struct sockaddr_storage *addr,
sctp_assoc_t id)
{
struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
union sctp_addr *laddr = (union sctp_addr *)addr;
struct sctp_transport *transport;
if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
return NULL;
addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
laddr,
&transport);
if (!addr_asoc)
return NULL;
id_asoc = sctp_id2assoc(sk, id);
if (id_asoc && (id_asoc != addr_asoc))
return NULL;
sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
(union sctp_addr *)addr);
return transport;
}
/* API 3.1.2 bind() - UDP Style Syntax
* The syntax of bind() is,
*
* ret = bind(int sd, struct sockaddr *addr, int addrlen);
*
* sd - the socket descriptor returned by socket().
* addr - the address structure (struct sockaddr_in or struct
* sockaddr_in6 [RFC 2553]),
* addr_len - the size of the address structure.
*/
static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
{
int retval = 0;
lock_sock(sk);
pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
addr, addr_len);
/* Disallow binding twice. */
if (!sctp_sk(sk)->ep->base.bind_addr.port)
retval = sctp_do_bind(sk, (union sctp_addr *)addr,
addr_len);
else
retval = -EINVAL;
release_sock(sk);
return retval;
}
static long sctp_get_port_local(struct sock *, union sctp_addr *);
/* Verify this is a valid sockaddr. */
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
union sctp_addr *addr, int len)
{
struct sctp_af *af;
/* Check minimum size. */
if (len < sizeof (struct sockaddr))
return NULL;
if (!opt->pf->af_supported(addr->sa.sa_family, opt))
return NULL;
if (addr->sa.sa_family == AF_INET6) {
if (len < SIN6_LEN_RFC2133)
return NULL;
/* V4 mapped address are really of AF_INET family */
if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
!opt->pf->af_supported(AF_INET, opt))
return NULL;
}
/* If we get this far, af is valid. */
af = sctp_get_af_specific(addr->sa.sa_family);
if (len < af->sockaddr_len)
return NULL;
return af;
}
/* Bind a local address either to an endpoint or to an association. */
static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
{
struct net *net = sock_net(sk);
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
struct sctp_bind_addr *bp = &ep->base.bind_addr;
struct sctp_af *af;
unsigned short snum;
int ret = 0;
/* Common sockaddr verification. */
af = sctp_sockaddr_af(sp, addr, len);
if (!af) {
pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
__func__, sk, addr, len);
return -EINVAL;
}
snum = ntohs(addr->v4.sin_port);
pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
__func__, sk, &addr->sa, bp->port, snum, len);
/* PF specific bind() address verification. */
if (!sp->pf->bind_verify(sp, addr))
return -EADDRNOTAVAIL;
/* We must either be unbound, or bind to the same port.
* It's OK to allow 0 ports if we are already bound.
* We'll just inhert an already bound port in this case
*/
if (bp->port) {
if (!snum)
snum = bp->port;
else if (snum != bp->port) {
pr_debug("%s: new port %d doesn't match existing port "
"%d\n", __func__, snum, bp->port);
return -EINVAL;
}
}
if (snum && snum < inet_prot_sock(net) &&
!ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
return -EACCES;
/* See if the address matches any of the addresses we may have
* already bound before checking against other endpoints.
*/
if (sctp_bind_addr_match(bp, addr, sp))
return -EINVAL;
/* Make sure we are allowed to bind here.
* The function sctp_get_port_local() does duplicate address
* detection.
*/
addr->v4.sin_port = htons(snum);
if ((ret = sctp_get_port_local(sk, addr))) {
return -EADDRINUSE;
}
/* Refresh ephemeral port. */
if (!bp->port)
bp->port = inet_sk(sk)->inet_num;
/* Add the address to the bind address list.
* Use GFP_ATOMIC since BHs will be disabled.
*/
ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
SCTP_ADDR_SRC, GFP_ATOMIC);
/* Copy back into socket for getsockname() use. */
if (!ret) {
inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
sp->pf->to_sk_saddr(addr, sk);
}
return ret;
}
/* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
*
* R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
* at any one time. If a sender, after sending an ASCONF chunk, decides
* it needs to transfer another ASCONF Chunk, it MUST wait until the
* ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
* subsequent ASCONF. Note this restriction binds each side, so at any
* time two ASCONF may be in-transit on any given association (one sent
* from each endpoint).
*/
static int sctp_send_asconf(struct sctp_association *asoc,
struct sctp_chunk *chunk)
{
struct net *net = sock_net(asoc->base.sk);
int retval = 0;
/* If there is an outstanding ASCONF chunk, queue it for later
* transmission.
*/
if (asoc->addip_last_asconf) {
list_add_tail(&chunk->list, &asoc->addip_chunk_list);
goto out;
}
/* Hold the chunk until an ASCONF_ACK is received. */
sctp_chunk_hold(chunk);
retval = sctp_primitive_ASCONF(net, asoc, chunk);
if (retval)
sctp_chunk_free(chunk);
else
asoc->addip_last_asconf = chunk;
out:
return retval;
}
/* Add a list of addresses as bind addresses to local endpoint or
* association.
*
* Basically run through each address specified in the addrs/addrcnt
* array/length pair, determine if it is IPv6 or IPv4 and call
* sctp_do_bind() on it.
*
* If any of them fails, then the operation will be reversed and the
* ones that were added will be removed.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
{
int cnt;
int retval = 0;
void *addr_buf;
struct sockaddr *sa_addr;
struct sctp_af *af;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
addrs, addrcnt);
addr_buf = addrs;
for (cnt = 0; cnt < addrcnt; cnt++) {
/* The list may contain either IPv4 or IPv6 address;
* determine the address length for walking thru the list.
*/
sa_addr = addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
if (!af) {
retval = -EINVAL;
goto err_bindx_add;
}
retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
af->sockaddr_len);
addr_buf += af->sockaddr_len;
err_bindx_add:
if (retval < 0) {
/* Failed. Cleanup the ones that have been added */
if (cnt > 0)
sctp_bindx_rem(sk, addrs, cnt);
return retval;
}
}
return retval;
}
/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
* associations that are part of the endpoint indicating that a list of local
* addresses are added to the endpoint.
*
* If any of the addresses is already in the bind address list of the
* association, we do not send the chunk for that association. But it will not
* affect other associations.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_send_asconf_add_ip(struct sock *sk,
struct sockaddr *addrs,
int addrcnt)
{
struct net *net = sock_net(sk);
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct sctp_bind_addr *bp;
struct sctp_chunk *chunk;
struct sctp_sockaddr_entry *laddr;
union sctp_addr *addr;
union sctp_addr saveaddr;
void *addr_buf;
struct sctp_af *af;
struct list_head *p;
int i;
int retval = 0;
if (!net->sctp.addip_enable)
return retval;
sp = sctp_sk(sk);
ep = sp->ep;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
__func__, sk, addrs, addrcnt);
list_for_each_entry(asoc, &ep->asocs, asocs) {
if (!asoc->peer.asconf_capable)
continue;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
continue;
if (!sctp_state(asoc, ESTABLISHED))
continue;
/* Check if any address in the packed array of addresses is
* in the bind address list of the association. If so,
* do not send the asconf chunk to its peer, but continue with
* other associations.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
addr = addr_buf;
af = sctp_get_af_specific(addr->v4.sin_family);
if (!af) {
retval = -EINVAL;
goto out;
}
if (sctp_assoc_lookup_laddr(asoc, addr))
break;
addr_buf += af->sockaddr_len;
}
if (i < addrcnt)
continue;
/* Use the first valid address in bind addr list of
* association as Address Parameter of ASCONF CHUNK.
*/
bp = &asoc->base.bind_addr;
p = bp->address_list.next;
laddr = list_entry(p, struct sctp_sockaddr_entry, list);
chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
addrcnt, SCTP_PARAM_ADD_IP);
if (!chunk) {
retval = -ENOMEM;
goto out;
}
/* Add the new addresses to the bind address list with
* use_as_src set to 0.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
addr = addr_buf;
af = sctp_get_af_specific(addr->v4.sin_family);
memcpy(&saveaddr, addr, af->sockaddr_len);
retval = sctp_add_bind_addr(bp, &saveaddr,
sizeof(saveaddr),
SCTP_ADDR_NEW, GFP_ATOMIC);
addr_buf += af->sockaddr_len;
}
if (asoc->src_out_of_asoc_ok) {
struct sctp_transport *trans;
list_for_each_entry(trans,
&asoc->peer.transport_addr_list, transports) {
trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
2*asoc->pathmtu, 4380));
trans->ssthresh = asoc->peer.i.a_rwnd;
trans->rto = asoc->rto_initial;
sctp_max_rto(asoc, trans);
trans->rtt = trans->srtt = trans->rttvar = 0;
/* Clear the source and route cache */
sctp_transport_route(trans, NULL,
sctp_sk(asoc->base.sk));
}
}
retval = sctp_send_asconf(asoc, chunk);
}
out:
return retval;
}
/* Remove a list of addresses from bind addresses list. Do not remove the
* last address.
*
* Basically run through each address specified in the addrs/addrcnt
* array/length pair, determine if it is IPv6 or IPv4 and call
* sctp_del_bind() on it.
*
* If any of them fails, then the operation will be reversed and the
* ones that were removed will be added back.
*
* At least one address has to be left; if only one address is
* available, the operation will return -EBUSY.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
int cnt;
struct sctp_bind_addr *bp = &ep->base.bind_addr;
int retval = 0;
void *addr_buf;
union sctp_addr *sa_addr;
struct sctp_af *af;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
__func__, sk, addrs, addrcnt);
addr_buf = addrs;
for (cnt = 0; cnt < addrcnt; cnt++) {
/* If the bind address list is empty or if there is only one
* bind address, there is nothing more to be removed (we need
* at least one address here).
*/
if (list_empty(&bp->address_list) ||
(sctp_list_single_entry(&bp->address_list))) {
retval = -EBUSY;
goto err_bindx_rem;
}
sa_addr = addr_buf;
af = sctp_get_af_specific(sa_addr->sa.sa_family);
if (!af) {
retval = -EINVAL;
goto err_bindx_rem;
}
if (!af->addr_valid(sa_addr, sp, NULL)) {
retval = -EADDRNOTAVAIL;
goto err_bindx_rem;
}
if (sa_addr->v4.sin_port &&
sa_addr->v4.sin_port != htons(bp->port)) {
retval = -EINVAL;
goto err_bindx_rem;
}
if (!sa_addr->v4.sin_port)
sa_addr->v4.sin_port = htons(bp->port);
/* FIXME - There is probably a need to check if sk->sk_saddr and
* sk->sk_rcv_addr are currently set to one of the addresses to
* be removed. This is something which needs to be looked into
* when we are fixing the outstanding issues with multi-homing
* socket routing and failover schemes. Refer to comments in
* sctp_do_bind(). -daisy
*/
retval = sctp_del_bind_addr(bp, sa_addr);
addr_buf += af->sockaddr_len;
err_bindx_rem:
if (retval < 0) {
/* Failed. Add the ones that has been removed back */
if (cnt > 0)
sctp_bindx_add(sk, addrs, cnt);
return retval;
}
}
return retval;
}
/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
* the associations that are part of the endpoint indicating that a list of
* local addresses are removed from the endpoint.
*
* If any of the addresses is already in the bind address list of the
* association, we do not send the chunk for that association. But it will not
* affect other associations.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_send_asconf_del_ip(struct sock *sk,
struct sockaddr *addrs,
int addrcnt)
{
struct net *net = sock_net(sk);
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct sctp_transport *transport;
struct sctp_bind_addr *bp;
struct sctp_chunk *chunk;
union sctp_addr *laddr;
void *addr_buf;
struct sctp_af *af;
struct sctp_sockaddr_entry *saddr;
int i;
int retval = 0;
int stored = 0;
chunk = NULL;
if (!net->sctp.addip_enable)
return retval;
sp = sctp_sk(sk);
ep = sp->ep;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
__func__, sk, addrs, addrcnt);
list_for_each_entry(asoc, &ep->asocs, asocs) {
if (!asoc->peer.asconf_capable)
continue;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
continue;
if (!sctp_state(asoc, ESTABLISHED))
continue;
/* Check if any address in the packed array of addresses is
* not present in the bind address list of the association.
* If so, do not send the asconf chunk to its peer, but
* continue with other associations.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
laddr = addr_buf;
af = sctp_get_af_specific(laddr->v4.sin_family);
if (!af) {
retval = -EINVAL;
goto out;
}
if (!sctp_assoc_lookup_laddr(asoc, laddr))
break;
addr_buf += af->sockaddr_len;
}
if (i < addrcnt)
continue;
/* Find one address in the association's bind address list
* that is not in the packed array of addresses. This is to
* make sure that we do not delete all the addresses in the
* association.
*/
bp = &asoc->base.bind_addr;
laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
addrcnt, sp);
if ((laddr == NULL) && (addrcnt == 1)) {
if (asoc->asconf_addr_del_pending)
continue;
asoc->asconf_addr_del_pending =
kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
if (asoc->asconf_addr_del_pending == NULL) {
retval = -ENOMEM;
goto out;
}
asoc->asconf_addr_del_pending->sa.sa_family =
addrs->sa_family;
asoc->asconf_addr_del_pending->v4.sin_port =
htons(bp->port);
if (addrs->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)addrs;
asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
} else if (addrs->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)addrs;
asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
}
pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
__func__, asoc, &asoc->asconf_addr_del_pending->sa,
asoc->asconf_addr_del_pending);
asoc->src_out_of_asoc_ok = 1;
stored = 1;
goto skip_mkasconf;
}
if (laddr == NULL)
return -EINVAL;
/* We do not need RCU protection throughout this loop
* because this is done under a socket lock from the
* setsockopt call.
*/
chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
SCTP_PARAM_DEL_IP);
if (!chunk) {
retval = -ENOMEM;
goto out;
}
skip_mkasconf:
/* Reset use_as_src flag for the addresses in the bind address
* list that are to be deleted.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
laddr = addr_buf;
af = sctp_get_af_specific(laddr->v4.sin_family);
list_for_each_entry(saddr, &bp->address_list, list) {
if (sctp_cmp_addr_exact(&saddr->a, laddr))
saddr->state = SCTP_ADDR_DEL;
}
addr_buf += af->sockaddr_len;
}
/* Update the route and saddr entries for all the transports
* as some of the addresses in the bind address list are
* about to be deleted and cannot be used as source addresses.
*/
list_for_each_entry(transport, &asoc->peer.transport_addr_list,
transports) {
sctp_transport_route(transport, NULL,
sctp_sk(asoc->base.sk));
}
if (stored)
/* We don't need to transmit ASCONF */
continue;
retval = sctp_send_asconf(asoc, chunk);
}
out:
return retval;
}
/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
{
struct sock *sk = sctp_opt2sk(sp);
union sctp_addr *addr;
struct sctp_af *af;
/* It is safe to write port space in caller. */
addr = &addrw->a;
addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
af = sctp_get_af_specific(addr->sa.sa_family);
if (!af)
return -EINVAL;
if (sctp_verify_addr(sk, addr, af->sockaddr_len))
return -EINVAL;
if (addrw->state == SCTP_ADDR_NEW)
return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
else
return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
}
/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
*
* API 8.1
* int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
* int flags);
*
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
* or IPv6 addresses.
*
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
* Section 3.1.2 for this usage.
*
* addrs is a pointer to an array of one or more socket addresses. Each
* address is contained in its appropriate structure (i.e. struct
* sockaddr_in or struct sockaddr_in6) the family of the address type
* must be used to distinguish the address length (note that this
* representation is termed a "packed array" of addresses). The caller
* specifies the number of addresses in the array with addrcnt.
*
* On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
* -1, and sets errno to the appropriate error code.
*
* For SCTP, the port given in each socket address must be the same, or
* sctp_bindx() will fail, setting errno to EINVAL.
*
* The flags parameter is formed from the bitwise OR of zero or more of
* the following currently defined flags:
*
* SCTP_BINDX_ADD_ADDR
*
* SCTP_BINDX_REM_ADDR
*
* SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
* association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
* addresses from the association. The two flags are mutually exclusive;
* if both are given, sctp_bindx() will fail with EINVAL. A caller may
* not remove all addresses from an association; sctp_bindx() will
* reject such an attempt with EINVAL.
*
* An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
* additional addresses with an endpoint after calling bind(). Or use
* sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
* socket is associated with so that no new association accepted will be
* associated with those addresses. If the endpoint supports dynamic
* address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
* endpoint to send the appropriate message to the peer to change the
* peers address lists.
*
* Adding and removing addresses from a connected association is
* optional functionality. Implementations that do not support this
* functionality should return EOPNOTSUPP.
*
* Basically do nothing but copying the addresses from user to kernel
* land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
* This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
* from userspace.
*
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
* it.
*
* sk The sk of the socket
* addrs The pointer to the addresses in user land
* addrssize Size of the addrs buffer
* op Operation to perform (add or remove, see the flags of
* sctp_bindx)
*
* Returns 0 if ok, <0 errno code on error.
*/
static int sctp_setsockopt_bindx(struct sock *sk,
struct sockaddr __user *addrs,
int addrs_size, int op)
{
struct sockaddr *kaddrs;
int err;
int addrcnt = 0;
int walk_size = 0;
struct sockaddr *sa_addr;
void *addr_buf;
struct sctp_af *af;
pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
__func__, sk, addrs, addrs_size, op);
if (unlikely(addrs_size <= 0))
return -EINVAL;
kaddrs = vmemdup_user(addrs, addrs_size);
if (unlikely(IS_ERR(kaddrs)))
return PTR_ERR(kaddrs);
/* Walk through the addrs buffer and count the number of addresses. */
addr_buf = kaddrs;
while (walk_size < addrs_size) {
if (walk_size + sizeof(sa_family_t) > addrs_size) {
kvfree(kaddrs);
return -EINVAL;
}
sa_addr = addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
/* If the address family is not supported or if this address
* causes the address buffer to overflow return EINVAL.
*/
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
kvfree(kaddrs);
return -EINVAL;
}
addrcnt++;
addr_buf += af->sockaddr_len;
walk_size += af->sockaddr_len;
}
/* Do the work. */
switch (op) {
case SCTP_BINDX_ADD_ADDR:
/* Allow security module to validate bindx addresses. */
err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
(struct sockaddr *)kaddrs,
addrs_size);
if (err)
goto out;
err = sctp_bindx_add(sk, kaddrs, addrcnt);
if (err)
goto out;
err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
break;
case SCTP_BINDX_REM_ADDR:
err = sctp_bindx_rem(sk, kaddrs, addrcnt);
if (err)
goto out;
err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
break;
default:
err = -EINVAL;
break;
}
out:
kvfree(kaddrs);
return err;
}
/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
*
* Common routine for handling connect() and sctp_connectx().
* Connect will come in with just a single address.
*/
static int __sctp_connect(struct sock *sk,
struct sockaddr *kaddrs,
int addrs_size, int flags,
sctp_assoc_t *assoc_id)
{
struct net *net = sock_net(sk);
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc = NULL;
struct sctp_association *asoc2;
struct sctp_transport *transport;
union sctp_addr to;
enum sctp_scope scope;
long timeo;
int err = 0;
int addrcnt = 0;
int walk_size = 0;
union sctp_addr *sa_addr = NULL;
void *addr_buf;
unsigned short port;
sp = sctp_sk(sk);
ep = sp->ep;
/* connect() cannot be done on a socket that is already in ESTABLISHED
* state - UDP-style peeled off socket or a TCP-style socket that
* is already connected.
* It cannot be done even on a TCP-style listening socket.
*/
if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
(sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
err = -EISCONN;
goto out_free;
}
/* Walk through the addrs buffer and count the number of addresses. */
addr_buf = kaddrs;
while (walk_size < addrs_size) {
struct sctp_af *af;
if (walk_size + sizeof(sa_family_t) > addrs_size) {
err = -EINVAL;
goto out_free;
}
sa_addr = addr_buf;
af = sctp_get_af_specific(sa_addr->sa.sa_family);
/* If the address family is not supported or if this address
* causes the address buffer to overflow return EINVAL.
*/
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
err = -EINVAL;
goto out_free;
}
port = ntohs(sa_addr->v4.sin_port);
/* Save current address so we can work with it */
memcpy(&to, sa_addr, af->sockaddr_len);
err = sctp_verify_addr(sk, &to, af->sockaddr_len);
if (err)
goto out_free;
/* Make sure the destination port is correctly set
* in all addresses.
*/
if (asoc && asoc->peer.port && asoc->peer.port != port) {
err = -EINVAL;
goto out_free;
}
/* Check if there already is a matching association on the
* endpoint (other than the one created here).
*/
asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
if (asoc2 && asoc2 != asoc) {
if (asoc2->state >= SCTP_STATE_ESTABLISHED)
err = -EISCONN;
else
err = -EALREADY;
goto out_free;
}
/* If we could not find a matching association on the endpoint,
* make sure that there is no peeled-off association matching
* the peer address even on another socket.
*/
if (sctp_endpoint_is_peeled_off(ep, &to)) {
err = -EADDRNOTAVAIL;
goto out_free;
}
if (!asoc) {
/* If a bind() or sctp_bindx() is not called prior to
* an sctp_connectx() call, the system picks an
* ephemeral port and will choose an address set
* equivalent to binding with a wildcard address.
*/
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk)) {
err = -EAGAIN;
goto out_free;
}
} else {
/*
* If an unprivileged user inherits a 1-many
* style socket with open associations on a
* privileged port, it MAY be permitted to
* accept new associations, but it SHOULD NOT
* be permitted to open new associations.
*/
if (ep->base.bind_addr.port <
inet_prot_sock(net) &&
!ns_capable(net->user_ns,
CAP_NET_BIND_SERVICE)) {
err = -EACCES;
goto out_free;
}
}
scope = sctp_scope(&to);
asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
if (!asoc) {
err = -ENOMEM;
goto out_free;
}
err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
GFP_KERNEL);
if (err < 0) {
goto out_free;
}
}
/* Prime the peer's transport structures. */
transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
SCTP_UNKNOWN);
if (!transport) {
err = -ENOMEM;
goto out_free;
}
addrcnt++;
addr_buf += af->sockaddr_len;
walk_size += af->sockaddr_len;
}
/* In case the user of sctp_connectx() wants an association
* id back, assign one now.
*/
if (assoc_id) {
err = sctp_assoc_set_id(asoc, GFP_KERNEL);
if (err < 0)
goto out_free;
}
err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
if (err < 0) {
goto out_free;
}
/* Initialize sk's dport and daddr for getpeername() */
inet_sk(sk)->inet_dport = htons(asoc->peer.port);
sp->pf->to_sk_daddr(sa_addr, sk);
sk->sk_err = 0;
timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
if (assoc_id)
*assoc_id = asoc->assoc_id;
err = sctp_wait_for_connect(asoc, &timeo);
/* Note: the asoc may be freed after the return of
* sctp_wait_for_connect.
*/
/* Don't free association on exit. */
asoc = NULL;
out_free:
pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
__func__, asoc, kaddrs, err);
if (asoc) {
/* sctp_primitive_ASSOCIATE may have added this association
* To the hash table, try to unhash it, just in case, its a noop
* if it wasn't hashed so we're safe
*/
sctp_association_free(asoc);
}
return err;
}
/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
*
* API 8.9
* int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
* sctp_assoc_t *asoc);
*
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
* or IPv6 addresses.
*
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
* Section 3.1.2 for this usage.
*
* addrs is a pointer to an array of one or more socket addresses. Each
* address is contained in its appropriate structure (i.e. struct
* sockaddr_in or struct sockaddr_in6) the family of the address type
* must be used to distengish the address length (note that this
* representation is termed a "packed array" of addresses). The caller
* specifies the number of addresses in the array with addrcnt.
*
* On success, sctp_connectx() returns 0. It also sets the assoc_id to
* the association id of the new association. On failure, sctp_connectx()
* returns -1, and sets errno to the appropriate error code. The assoc_id
* is not touched by the kernel.
*
* For SCTP, the port given in each socket address must be the same, or
* sctp_connectx() will fail, setting errno to EINVAL.
*
* An application can use sctp_connectx to initiate an association with
* an endpoint that is multi-homed. Much like sctp_bindx() this call
* allows a caller to specify multiple addresses at which a peer can be
* reached. The way the SCTP stack uses the list of addresses to set up
* the association is implementation dependent. This function only
* specifies that the stack will try to make use of all the addresses in
* the list when needed.
*
* Note that the list of addresses passed in is only used for setting up
* the association. It does not necessarily equal the set of addresses
* the peer uses for the resulting association. If the caller wants to
* find out the set of peer addresses, it must use sctp_getpaddrs() to
* retrieve them after the association has been set up.
*
* Basically do nothing but copying the addresses from user to kernel
* land and invoking either sctp_connectx(). This is used for tunneling
* the sctp_connectx() request through sctp_setsockopt() from userspace.
*
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
* it.
*
* sk The sk of the socket
* addrs The pointer to the addresses in user land
* addrssize Size of the addrs buffer
*
* Returns >=0 if ok, <0 errno code on error.
*/
static int __sctp_setsockopt_connectx(struct sock *sk,
struct sockaddr __user *addrs,
int addrs_size,
sctp_assoc_t *assoc_id)
{
struct sockaddr *kaddrs;
int err = 0, flags = 0;
pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
__func__, sk, addrs, addrs_size);
if (unlikely(addrs_size <= 0))
return -EINVAL;
kaddrs = vmemdup_user(addrs, addrs_size);
if (unlikely(IS_ERR(kaddrs)))
return PTR_ERR(kaddrs);
/* Allow security module to validate connectx addresses. */
err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
(struct sockaddr *)kaddrs,
addrs_size);
if (err)
goto out_free;
/* in-kernel sockets don't generally have a file allocated to them
* if all they do is call sock_create_kern().
*/
if (sk->sk_socket->file)
flags = sk->sk_socket->file->f_flags;
err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
out_free:
kvfree(kaddrs);
return err;
}
/*
* This is an older interface. It's kept for backward compatibility
* to the option that doesn't provide association id.
*/
static int sctp_setsockopt_connectx_old(struct sock *sk,
struct sockaddr __user *addrs,
int addrs_size)
{
return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
}
/*
* New interface for the API. The since the API is done with a socket
* option, to make it simple we feed back the association id is as a return
* indication to the call. Error is always negative and association id is
* always positive.
*/
static int sctp_setsockopt_connectx(struct sock *sk,
struct sockaddr __user *addrs,
int addrs_size)
{
sctp_assoc_t assoc_id = 0;
int err = 0;
err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
if (err)
return err;
else
return assoc_id;
}
/*
* New (hopefully final) interface for the API.
* We use the sctp_getaddrs_old structure so that use-space library
* can avoid any unnecessary allocations. The only different part
* is that we store the actual length of the address buffer into the
* addrs_num structure member. That way we can re-use the existing
* code.
*/
#ifdef CONFIG_COMPAT
struct compat_sctp_getaddrs_old {
sctp_assoc_t assoc_id;
s32 addr_num;
compat_uptr_t addrs; /* struct sockaddr * */
};
#endif
static int sctp_getsockopt_connectx3(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_getaddrs_old param;
sctp_assoc_t assoc_id = 0;
int err = 0;
#ifdef CONFIG_COMPAT
if (in_compat_syscall()) {
struct compat_sctp_getaddrs_old param32;
if (len < sizeof(param32))
return -EINVAL;
if (copy_from_user(&param32, optval, sizeof(param32)))
return -EFAULT;
param.assoc_id = param32.assoc_id;
param.addr_num = param32.addr_num;
param.addrs = compat_ptr(param32.addrs);
} else
#endif
{
if (len < sizeof(param))
return -EINVAL;
if (copy_from_user(&param, optval, sizeof(param)))
return -EFAULT;
}
err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
param.addrs, param.addr_num,
&assoc_id);
if (err == 0 || err == -EINPROGRESS) {
if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
return -EFAULT;
if (put_user(sizeof(assoc_id), optlen))
return -EFAULT;
}
return err;
}
/* API 3.1.4 close() - UDP Style Syntax
* Applications use close() to perform graceful shutdown (as described in
* Section 10.1 of [SCTP]) on ALL the associations currently represented
* by a UDP-style socket.
*
* The syntax is
*
* ret = close(int sd);
*
* sd - the socket descriptor of the associations to be closed.
*
* To gracefully shutdown a specific association represented by the
* UDP-style socket, an application should use the sendmsg() call,
* passing no user data, but including the appropriate flag in the
* ancillary data (see Section xxxx).
*
* If sd in the close() call is a branched-off socket representing only
* one association, the shutdown is performed on that association only.
*
* 4.1.6 close() - TCP Style Syntax
*
* Applications use close() to gracefully close down an association.
*
* The syntax is:
*
* int close(int sd);
*
* sd - the socket descriptor of the association to be closed.
*
* After an application calls close() on a socket descriptor, no further
* socket operations will succeed on that descriptor.
*
* API 7.1.4 SO_LINGER
*
* An application using the TCP-style socket can use this option to
* perform the SCTP ABORT primitive. The linger option structure is:
*
* struct linger {
* int l_onoff; // option on/off
* int l_linger; // linger time
* };
*
* To enable the option, set l_onoff to 1. If the l_linger value is set
* to 0, calling close() is the same as the ABORT primitive. If the
* value is set to a negative value, the setsockopt() call will return
* an error. If the value is set to a positive value linger_time, the
* close() can be blocked for at most linger_time ms. If the graceful
* shutdown phase does not finish during this period, close() will
* return but the graceful shutdown phase continues in the system.
*/
static void sctp_close(struct sock *sk, long timeout)
{
struct net *net = sock_net(sk);
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct list_head *pos, *temp;
unsigned int data_was_unread;
pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
sk->sk_shutdown = SHUTDOWN_MASK;
inet_sk_set_state(sk, SCTP_SS_CLOSING);
ep = sctp_sk(sk)->ep;
/* Clean up any skbs sitting on the receive queue. */
data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
/* Walk all associations on an endpoint. */
list_for_each_safe(pos, temp, &ep->asocs) {
asoc = list_entry(pos, struct sctp_association, asocs);
if (sctp_style(sk, TCP)) {
/* A closed association can still be in the list if
* it belongs to a TCP-style listening socket that is
* not yet accepted. If so, free it. If not, send an
* ABORT or SHUTDOWN based on the linger options.
*/
if (sctp_state(asoc, CLOSED)) {
sctp_association_free(asoc);
continue;
}
}
if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
!skb_queue_empty(&asoc->ulpq.reasm) ||
!skb_queue_empty(&asoc->ulpq.reasm_uo) ||
(sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
struct sctp_chunk *chunk;
chunk = sctp_make_abort_user(asoc, NULL, 0);
sctp_primitive_ABORT(net, asoc, chunk);
} else
sctp_primitive_SHUTDOWN(net, asoc, NULL);
}
/* On a TCP-style socket, block for at most linger_time if set. */
if (sctp_style(sk, TCP) && timeout)
sctp_wait_for_close(sk, timeout);
/* This will run the backlog queue. */
release_sock(sk);
/* Supposedly, no process has access to the socket, but
* the net layers still may.
* Also, sctp_destroy_sock() needs to be called with addr_wq_lock
* held and that should be grabbed before socket lock.
*/
spin_lock_bh(&net->sctp.addr_wq_lock);
bh_lock_sock_nested(sk);
/* Hold the sock, since sk_common_release() will put sock_put()
* and we have just a little more cleanup.
*/
sock_hold(sk);
sk_common_release(sk);
bh_unlock_sock(sk);
spin_unlock_bh(&net->sctp.addr_wq_lock);
sock_put(sk);
SCTP_DBG_OBJCNT_DEC(sock);
}
/* Handle EPIPE error. */
static int sctp_error(struct sock *sk, int flags, int err)
{
if (err == -EPIPE)
err = sock_error(sk) ? : -EPIPE;
if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
send_sig(SIGPIPE, current, 0);
return err;
}
/* API 3.1.3 sendmsg() - UDP Style Syntax
*
* An application uses sendmsg() and recvmsg() calls to transmit data to
* and receive data from its peer.
*
* ssize_t sendmsg(int socket, const struct msghdr *message,
* int flags);
*
* socket - the socket descriptor of the endpoint.
* message - pointer to the msghdr structure which contains a single
* user message and possibly some ancillary data.
*
* See Section 5 for complete description of the data
* structures.
*
* flags - flags sent or received with the user message, see Section
* 5 for complete description of the flags.
*
* Note: This function could use a rewrite especially when explicit
* connect support comes in.
*/
/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
static int sctp_msghdr_parse(const struct msghdr *msg,
struct sctp_cmsgs *cmsgs);
static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
struct sctp_sndrcvinfo *srinfo,
const struct msghdr *msg, size_t msg_len)
{
__u16 sflags;
int err;
if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
return -EPIPE;
if (msg_len > sk->sk_sndbuf)
return -EMSGSIZE;
memset(cmsgs, 0, sizeof(*cmsgs));
err = sctp_msghdr_parse(msg, cmsgs);
if (err) {
pr_debug("%s: msghdr parse err:%x\n", __func__, err);
return err;
}
memset(srinfo, 0, sizeof(*srinfo));
if (cmsgs->srinfo) {
srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
}
if (cmsgs->sinfo) {
srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
srinfo->sinfo_context = cmsgs->sinfo->snd_context;
srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
}
if (cmsgs->prinfo) {
srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
cmsgs->prinfo->pr_policy);
}
sflags = srinfo->sinfo_flags;
if (!sflags && msg_len)
return 0;
if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
return -EINVAL;
if (((sflags & SCTP_EOF) && msg_len > 0) ||
(!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
return -EINVAL;
if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
return -EINVAL;
return 0;
}
static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
struct sctp_cmsgs *cmsgs,
union sctp_addr *daddr,
struct sctp_transport **tp)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct net *net = sock_net(sk);
struct sctp_association *asoc;
enum sctp_scope scope;
struct cmsghdr *cmsg;
struct sctp_af *af;
int err;
*tp = NULL;
if (sflags & (SCTP_EOF | SCTP_ABORT))
return -EINVAL;
if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
sctp_sstate(sk, CLOSING)))
return -EADDRNOTAVAIL;
if (sctp_endpoint_is_peeled_off(ep, daddr))
return -EADDRNOTAVAIL;
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk))
return -EAGAIN;
} else {
if (ep->base.bind_addr.port < inet_prot_sock(net) &&
!ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
return -EACCES;
}
scope = sctp_scope(daddr);
/* Label connection socket for first association 1-to-many
* style for client sequence socket()->sendmsg(). This
* needs to be done before sctp_assoc_add_peer() as that will
* set up the initial packet that needs to account for any
* security ip options (CIPSO/CALIPSO) added to the packet.
*/
af = sctp_get_af_specific(daddr->sa.sa_family);
if (!af)
return -EINVAL;
err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
(struct sockaddr *)daddr,
af->sockaddr_len);
if (err < 0)
return err;
asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
if (!asoc)
return -ENOMEM;
if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
err = -ENOMEM;
goto free;
}
if (cmsgs->init) {
struct sctp_initmsg *init = cmsgs->init;
if (init->sinit_num_ostreams) {
__u16 outcnt = init->sinit_num_ostreams;
asoc->c.sinit_num_ostreams = outcnt;
/* outcnt has been changed, need to re-init stream */
err = sctp_stream_init(&asoc->stream, outcnt, 0,
GFP_KERNEL);
if (err)
goto free;
}
if (init->sinit_max_instreams)
asoc->c.sinit_max_instreams = init->sinit_max_instreams;
if (init->sinit_max_attempts)
asoc->max_init_attempts = init->sinit_max_attempts;
if (init->sinit_max_init_timeo)
asoc->max_init_timeo =
msecs_to_jiffies(init->sinit_max_init_timeo);
}
*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
if (!*tp) {
err = -ENOMEM;
goto free;
}
if (!cmsgs->addrs_msg)
return 0;
/* sendv addr list parse */
for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
struct sctp_transport *transport;
struct sctp_association *old;
union sctp_addr _daddr;
int dlen;
if (cmsg->cmsg_level != IPPROTO_SCTP ||
(cmsg->cmsg_type != SCTP_DSTADDRV4 &&
cmsg->cmsg_type != SCTP_DSTADDRV6))
continue;
daddr = &_daddr;
memset(daddr, 0, sizeof(*daddr));
dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
if (dlen < sizeof(struct in_addr)) {
err = -EINVAL;
goto free;
}
dlen = sizeof(struct in_addr);
daddr->v4.sin_family = AF_INET;
daddr->v4.sin_port = htons(asoc->peer.port);
memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
} else {
if (dlen < sizeof(struct in6_addr)) {
err = -EINVAL;
goto free;
}
dlen = sizeof(struct in6_addr);
daddr->v6.sin6_family = AF_INET6;
daddr->v6.sin6_port = htons(asoc->peer.port);
memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
}
err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
if (err)
goto free;
old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
if (old && old != asoc) {
if (old->state >= SCTP_STATE_ESTABLISHED)
err = -EISCONN;
else
err = -EALREADY;
goto free;
}
if (sctp_endpoint_is_peeled_off(ep, daddr)) {
err = -EADDRNOTAVAIL;
goto free;
}
transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
SCTP_UNKNOWN);
if (!transport) {
err = -ENOMEM;
goto free;
}
}
return 0;
free:
sctp_association_free(asoc);
return err;
}
static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
__u16 sflags, struct msghdr *msg,
size_t msg_len)
{
struct sock *sk = asoc->base.sk;
struct net *net = sock_net(sk);
if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
return -EPIPE;
if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
!sctp_state(asoc, ESTABLISHED))
return 0;
if (sflags & SCTP_EOF) {
pr_debug("%s: shutting down association:%p\n", __func__, asoc);
sctp_primitive_SHUTDOWN(net, asoc, NULL);
return 0;
}
if (sflags & SCTP_ABORT) {
struct sctp_chunk *chunk;
chunk = sctp_make_abort_user(asoc, msg, msg_len);
if (!chunk)
return -ENOMEM;
pr_debug("%s: aborting association:%p\n", __func__, asoc);
sctp_primitive_ABORT(net, asoc, chunk);
return 0;
}
return 1;
}
static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
struct msghdr *msg, size_t msg_len,
struct sctp_transport *transport,
struct sctp_sndrcvinfo *sinfo)
{
struct sock *sk = asoc->base.sk;
struct sctp_sock *sp = sctp_sk(sk);
struct net *net = sock_net(sk);
struct sctp_datamsg *datamsg;
bool wait_connect = false;
struct sctp_chunk *chunk;
long timeo;
int err;
if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
err = -EINVAL;
goto err;
}
if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) {
err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
if (err)
goto err;
}
if (sp->disable_fragments && msg_len > asoc->frag_point) {
err = -EMSGSIZE;
goto err;
}
if (asoc->pmtu_pending) {
if (sp->param_flags & SPP_PMTUD_ENABLE)
sctp_assoc_sync_pmtu(asoc);
asoc->pmtu_pending = 0;
}
if (sctp_wspace(asoc) < msg_len)
sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
if (!sctp_wspace(asoc)) {
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
if (err)
goto err;
}
if (sctp_state(asoc, CLOSED)) {
err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
if (err)
goto err;
if (sp->strm_interleave) {
timeo = sock_sndtimeo(sk, 0);
err = sctp_wait_for_connect(asoc, &timeo);
if (err)
goto err;
} else {
wait_connect = true;
}
pr_debug("%s: we associated primitively\n", __func__);
}
datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
if (IS_ERR(datamsg)) {
err = PTR_ERR(datamsg);
goto err;
}
asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
sctp_chunk_hold(chunk);
sctp_set_owner_w(chunk);
chunk->transport = transport;
}
err = sctp_primitive_SEND(net, asoc, datamsg);
if (err) {
sctp_datamsg_free(datamsg);
goto err;
}
pr_debug("%s: we sent primitively\n", __func__);
sctp_datamsg_put(datamsg);
if (unlikely(wait_connect)) {
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
sctp_wait_for_connect(asoc, &timeo);
}
err = msg_len;
err:
return err;
}
static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
const struct msghdr *msg,
struct sctp_cmsgs *cmsgs)
{
union sctp_addr *daddr = NULL;
int err;
if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
int len = msg->msg_namelen;
if (len > sizeof(*daddr))
len = sizeof(*daddr);
daddr = (union sctp_addr *)msg->msg_name;
err = sctp_verify_addr(sk, daddr, len);
if (err)
return ERR_PTR(err);
}
return daddr;
}
static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
struct sctp_sndrcvinfo *sinfo,
struct sctp_cmsgs *cmsgs)
{
if (!cmsgs->srinfo && !cmsgs->sinfo) {
sinfo->sinfo_stream = asoc->default_stream;
sinfo->sinfo_ppid = asoc->default_ppid;
sinfo->sinfo_context = asoc->default_context;
sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
if (!cmsgs->prinfo)
sinfo->sinfo_flags = asoc->default_flags;
}
if (!cmsgs->srinfo && !cmsgs->prinfo)
sinfo->sinfo_timetolive = asoc->default_timetolive;
if (cmsgs->authinfo) {
/* Reuse sinfo_tsn to indicate that authinfo was set and
* sinfo_ssn to save the keyid on tx path.
*/
sinfo->sinfo_tsn = 1;
sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
}
}
static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_transport *transport = NULL;
struct sctp_sndrcvinfo _sinfo, *sinfo;
struct sctp_association *asoc;
struct sctp_cmsgs cmsgs;
union sctp_addr *daddr;
bool new = false;
__u16 sflags;
int err;
/* Parse and get snd_info */
err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
if (err)
goto out;
sinfo = &_sinfo;
sflags = sinfo->sinfo_flags;
/* Get daddr from msg */
daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
if (IS_ERR(daddr)) {
err = PTR_ERR(daddr);
goto out;
}
lock_sock(sk);
/* SCTP_SENDALL process */
if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
list_for_each_entry(asoc, &ep->asocs, asocs) {
err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
msg_len);
if (err == 0)
continue;
if (err < 0)
goto out_unlock;
sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
NULL, sinfo);
if (err < 0)
goto out_unlock;
iov_iter_revert(&msg->msg_iter, err);
}
goto out_unlock;
}
/* Get and check or create asoc */
if (daddr) {
asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
if (asoc) {
err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
msg_len);
if (err <= 0)
goto out_unlock;
} else {
err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
&transport);
if (err)
goto out_unlock;
asoc = transport->asoc;
new = true;
}
if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
transport = NULL;
} else {
asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
if (!asoc) {
err = -EPIPE;
goto out_unlock;
}
err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
if (err <= 0)
goto out_unlock;
}
/* Update snd_info with the asoc */
sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
/* Send msg to the asoc */
err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
if (err < 0 && err != -ESRCH && new)
sctp_association_free(asoc);
out_unlock:
release_sock(sk);
out:
return sctp_error(sk, msg->msg_flags, err);
}
/* This is an extended version of skb_pull() that removes the data from the
* start of a skb even when data is spread across the list of skb's in the
* frag_list. len specifies the total amount of data that needs to be removed.
* when 'len' bytes could be removed from the skb, it returns 0.
* If 'len' exceeds the total skb length, it returns the no. of bytes that
* could not be removed.
*/
static int sctp_skb_pull(struct sk_buff *skb, int len)
{
struct sk_buff *list;
int skb_len = skb_headlen(skb);
int rlen;
if (len <= skb_len) {
__skb_pull(skb, len);
return 0;
}
len -= skb_len;
__skb_pull(skb, skb_len);
skb_walk_frags(skb, list) {
rlen = sctp_skb_pull(list, len);
skb->len -= (len-rlen);
skb->data_len -= (len-rlen);
if (!rlen)
return 0;
len = rlen;
}
return len;
}
/* API 3.1.3 recvmsg() - UDP Style Syntax
*
* ssize_t recvmsg(int socket, struct msghdr *message,
* int flags);
*
* socket - the socket descriptor of the endpoint.
* message - pointer to the msghdr structure which contains a single
* user message and possibly some ancillary data.
*
* See Section 5 for complete description of the data
* structures.
*
* flags - flags sent or received with the user message, see Section
* 5 for complete description of the flags.
*/
static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int noblock, int flags, int *addr_len)
{
struct sctp_ulpevent *event = NULL;
struct sctp_sock *sp = sctp_sk(sk);
struct sk_buff *skb, *head_skb;
int copied;
int err = 0;
int skb_len;
pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
"addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
addr_len);
lock_sock(sk);
if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
!sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
err = -ENOTCONN;
goto out;
}
skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
if (!skb)
goto out;
/* Get the total length of the skb including any skb's in the
* frag_list.
*/
skb_len = skb->len;
copied = skb_len;
if (copied > len)
copied = len;
err = skb_copy_datagram_msg(skb, 0, msg, copied);
event = sctp_skb2event(skb);
if (err)
goto out_free;
if (event->chunk && event->chunk->head_skb)
head_skb = event->chunk->head_skb;
else
head_skb = skb;
sock_recv_ts_and_drops(msg, sk, head_skb);
if (sctp_ulpevent_is_notification(event)) {
msg->msg_flags |= MSG_NOTIFICATION;
sp->pf->event_msgname(event, msg->msg_name, addr_len);
} else {
sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
}
/* Check if we allow SCTP_NXTINFO. */
if (sp->recvnxtinfo)
sctp_ulpevent_read_nxtinfo(event, msg, sk);
/* Check if we allow SCTP_RCVINFO. */
if (sp->recvrcvinfo)
sctp_ulpevent_read_rcvinfo(event, msg);
/* Check if we allow SCTP_SNDRCVINFO. */
if (sp->subscribe.sctp_data_io_event)
sctp_ulpevent_read_sndrcvinfo(event, msg);
err = copied;
/* If skb's length exceeds the user's buffer, update the skb and
* push it back to the receive_queue so that the next call to
* recvmsg() will return the remaining data. Don't set MSG_EOR.
*/
if (skb_len > copied) {
msg->msg_flags &= ~MSG_EOR;
if (flags & MSG_PEEK)
goto out_free;
sctp_skb_pull(skb, copied);
skb_queue_head(&sk->sk_receive_queue, skb);
/* When only partial message is copied to the user, increase
* rwnd by that amount. If all the data in the skb is read,
* rwnd is updated when the event is freed.
*/
if (!sctp_ulpevent_is_notification(event))
sctp_assoc_rwnd_increase(event->asoc, copied);
goto out;
} else if ((event->msg_flags & MSG_NOTIFICATION) ||
(event->msg_flags & MSG_EOR))
msg->msg_flags |= MSG_EOR;
else
msg->msg_flags &= ~MSG_EOR;
out_free:
if (flags & MSG_PEEK) {
/* Release the skb reference acquired after peeking the skb in
* sctp_skb_recv_datagram().
*/
kfree_skb(skb);
} else {
/* Free the event which includes releasing the reference to
* the owner of the skb, freeing the skb and updating the
* rwnd.
*/
sctp_ulpevent_free(event);
}
out:
release_sock(sk);
return err;
}
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
*
* This option is a on/off flag. If enabled no SCTP message
* fragmentation will be performed. Instead if a message being sent
* exceeds the current PMTU size, the message will NOT be sent and
* instead a error will be indicated to the user.
*/
static int sctp_setsockopt_disable_fragments(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
return 0;
}
static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
unsigned int optlen)
{
struct sctp_association *asoc;
struct sctp_ulpevent *event;
if (optlen > sizeof(struct sctp_event_subscribe))
return -EINVAL;
if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
return -EFAULT;
/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
* if there is no data to be sent or retransmit, the stack will
* immediately send up this notification.
*/
if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
&sctp_sk(sk)->subscribe)) {
asoc = sctp_id2assoc(sk, 0);
if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
event = sctp_ulpevent_make_sender_dry_event(asoc,
GFP_USER | __GFP_NOWARN);
if (!event)
return -ENOMEM;
asoc->stream.si->enqueue_event(&asoc->ulpq, event);
}
}
return 0;
}
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
*
* This socket option is applicable to the UDP-style socket only. When
* set it will cause associations that are idle for more than the
* specified number of seconds to automatically close. An association
* being idle is defined an association that has NOT sent or received
* user data. The special value of '0' indicates that no automatic
* close of any associations should be performed. The option expects an
* integer defining the number of seconds of idle time before an
* association is closed.
*/
static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct net *net = sock_net(sk);
/* Applicable to UDP-style socket only */
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (optlen != sizeof(int))
return -EINVAL;
if (copy_from_user(&sp->autoclose, optval, optlen))
return -EFAULT;
if (sp->autoclose > net->sctp.max_autoclose)
sp->autoclose = net->sctp.max_autoclose;
return 0;
}
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
*
* Applications can enable or disable heartbeats for any peer address of
* an association, modify an address's heartbeat interval, force a
* heartbeat to be sent immediately, and adjust the address's maximum
* number of retransmissions sent before an address is considered
* unreachable. The following structure is used to access and modify an
* address's parameters:
*
* struct sctp_paddrparams {
* sctp_assoc_t spp_assoc_id;
* struct sockaddr_storage spp_address;
* uint32_t spp_hbinterval;
* uint16_t spp_pathmaxrxt;
* uint32_t spp_pathmtu;
* uint32_t spp_sackdelay;
* uint32_t spp_flags;
* };
*
* spp_assoc_id - (one-to-many style socket) This is filled in the
* application, and identifies the association for
* this query.
* spp_address - This specifies which address is of interest.
* spp_hbinterval - This contains the value of the heartbeat interval,
* in milliseconds. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmaxrxt - This contains the maximum number of
* retransmissions before this address shall be
* considered unreachable. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmtu - When Path MTU discovery is disabled the value
* specified here will be the "fixed" path mtu.
* Note that if the spp_address field is empty
* then all associations on this address will
* have this fixed path mtu set upon them.
*
* spp_sackdelay - When delayed sack is enabled, this value specifies
* the number of milliseconds that sacks will be delayed
* for. This value will apply to all addresses of an
* association if the spp_address field is empty. Note
* also, that if delayed sack is enabled and this
* value is set to 0, no change is made to the last
* recorded delayed sack timer value.
*
* spp_flags - These flags are used to control various features
* on an association. The flag field may contain
* zero or more of the following options.
*
* SPP_HB_ENABLE - Enable heartbeats on the
* specified address. Note that if the address
* field is empty all addresses for the association
* have heartbeats enabled upon them.
*
* SPP_HB_DISABLE - Disable heartbeats on the
* speicifed address. Note that if the address
* field is empty all addresses for the association
* will have their heartbeats disabled. Note also
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
* mutually exclusive, only one of these two should
* be specified. Enabling both fields will have
* undetermined results.
*
* SPP_HB_DEMAND - Request a user initiated heartbeat
* to be made immediately.
*
* SPP_HB_TIME_IS_ZERO - Specify's that the time for
* heartbeat delayis to be set to the value of 0
* milliseconds.
*
* SPP_PMTUD_ENABLE - This field will enable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected.
*
* SPP_PMTUD_DISABLE - This field will disable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected. Not also that
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
* exclusive. Enabling both will have undetermined
* results.
*
* SPP_SACKDELAY_ENABLE - Setting this flag turns
* on delayed sack. The time specified in spp_sackdelay
* is used to specify the sack delay for this address. Note
* that if spp_address is empty then all addresses will
* enable delayed sack and take on the sack delay
* value specified in spp_sackdelay.
* SPP_SACKDELAY_DISABLE - Setting this flag turns
* off delayed sack. If the spp_address field is blank then
* delayed sack is disabled for the entire association. Note
* also that this field is mutually exclusive to
* SPP_SACKDELAY_ENABLE, setting both will have undefined
* results.
*/
static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
struct sctp_transport *trans,
struct sctp_association *asoc,
struct sctp_sock *sp,
int hb_change,
int pmtud_change,
int sackdelay_change)
{
int error;
if (params->spp_flags & SPP_HB_DEMAND && trans) {
struct net *net = sock_net(trans->asoc->base.sk);
error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
if (error)
return error;
}
/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
* this field is ignored. Note also that a value of zero indicates
* the current setting should be left unchanged.
*/
if (params->spp_flags & SPP_HB_ENABLE) {
/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
* set. This lets us use 0 value when this flag
* is set.
*/
if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
params->spp_hbinterval = 0;
if (params->spp_hbinterval ||
(params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
if (trans) {
trans->hbinterval =
msecs_to_jiffies(params->spp_hbinterval);
} else if (asoc) {
asoc->hbinterval =
msecs_to_jiffies(params->spp_hbinterval);
} else {
sp->hbinterval = params->spp_hbinterval;
}
}
}
if (hb_change) {
if (trans) {
trans->param_flags =
(trans->param_flags & ~SPP_HB) | hb_change;
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_HB) | hb_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_HB) | hb_change;
}
}
/* When Path MTU discovery is disabled the value specified here will
* be the "fixed" path mtu (i.e. the value of the spp_flags field must
* include the flag SPP_PMTUD_DISABLE for this field to have any
* effect).
*/
if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
if (trans) {
trans->pathmtu = params->spp_pathmtu;
sctp_assoc_sync_pmtu(asoc);
} else if (asoc) {
sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
} else {
sp->pathmtu = params->spp_pathmtu;
}
}
if (pmtud_change) {
if (trans) {
int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
(params->spp_flags & SPP_PMTUD_ENABLE);
trans->param_flags =
(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
if (update) {
sctp_transport_pmtu(trans, sctp_opt2sk(sp));
sctp_assoc_sync_pmtu(asoc);
}
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
}
}
/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
* value of this field is ignored. Note also that a value of zero
* indicates the current setting should be left unchanged.
*/
if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
if (trans) {
trans->sackdelay =
msecs_to_jiffies(params->spp_sackdelay);
} else if (asoc) {
asoc->sackdelay =
msecs_to_jiffies(params->spp_sackdelay);
} else {
sp->sackdelay = params->spp_sackdelay;
}
}
if (sackdelay_change) {
if (trans) {
trans->param_flags =
(trans->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
}
}
/* Note that a value of zero indicates the current setting should be
left unchanged.
*/
if (params->spp_pathmaxrxt) {
if (trans) {
trans->pathmaxrxt = params->spp_pathmaxrxt;
} else if (asoc) {
asoc->pathmaxrxt = params->spp_pathmaxrxt;
} else {
sp->pathmaxrxt = params->spp_pathmaxrxt;
}
}
return 0;
}
static int sctp_setsockopt_peer_addr_params(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_paddrparams params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
int error;
int hb_change, pmtud_change, sackdelay_change;
if (optlen != sizeof(struct sctp_paddrparams))
return -EINVAL;
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
/* Validate flags and value parameters. */
hb_change = params.spp_flags & SPP_HB;
pmtud_change = params.spp_flags & SPP_PMTUD;
sackdelay_change = params.spp_flags & SPP_SACKDELAY;
if (hb_change == SPP_HB ||
pmtud_change == SPP_PMTUD ||
sackdelay_change == SPP_SACKDELAY ||
params.spp_sackdelay > 500 ||
(params.spp_pathmtu &&
params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
return -EINVAL;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
trans = sctp_addr_id2transport(sk, &params.spp_address,
params.spp_assoc_id);
if (!trans)
return -EINVAL;
}
/* Get association, if assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.spp_assoc_id);
if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Heartbeat demand can only be sent on a transport or
* association, but not a socket.
*/
if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
return -EINVAL;
/* Process parameters. */
error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
hb_change, pmtud_change,
sackdelay_change);
if (error)
return error;
/* If changes are for association, also apply parameters to each
* transport.
*/
if (!trans && asoc) {
list_for_each_entry(trans, &asoc->peer.transport_addr_list,
transports) {
sctp_apply_peer_addr_params(&params, trans, asoc, sp,
hb_change, pmtud_change,
sackdelay_change);
}
}
return 0;
}
static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
{
return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
}
static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
{
return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
}
/*
* 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
*
* This option will effect the way delayed acks are performed. This
* option allows you to get or set the delayed ack time, in
* milliseconds. It also allows changing the delayed ack frequency.
* Changing the frequency to 1 disables the delayed sack algorithm. If
* the assoc_id is 0, then this sets or gets the endpoints default
* values. If the assoc_id field is non-zero, then the set or get
* effects the specified association for the one to many model (the
* assoc_id field is ignored by the one to one model). Note that if
* sack_delay or sack_freq are 0 when setting this option, then the
* current values will remain unchanged.
*
* struct sctp_sack_info {
* sctp_assoc_t sack_assoc_id;
* uint32_t sack_delay;
* uint32_t sack_freq;
* };
*
* sack_assoc_id - This parameter, indicates which association the user
* is performing an action upon. Note that if this field's value is
* zero then the endpoints default value is changed (effecting future
* associations only).
*
* sack_delay - This parameter contains the number of milliseconds that
* the user is requesting the delayed ACK timer be set to. Note that
* this value is defined in the standard to be between 200 and 500
* milliseconds.
*
* sack_freq - This parameter contains the number of packets that must
* be received before a sack is sent without waiting for the delay
* timer to expire. The default value for this is 2, setting this
* value to 1 will disable the delayed sack algorithm.
*/
static int sctp_setsockopt_delayed_ack(struct sock *sk,
char __user *optval, unsigned int optlen)
{
struct sctp_sack_info params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen == sizeof(struct sctp_sack_info)) {
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
if (params.sack_delay == 0 && params.sack_freq == 0)
return 0;
} else if (optlen == sizeof(struct sctp_assoc_value)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n",
current->comm, task_pid_nr(current));
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
if (params.sack_delay == 0)
params.sack_freq = 1;
else
params.sack_freq = 0;
} else
return -EINVAL;
/* Validate value parameter. */
if (params.sack_delay > 500)
return -EINVAL;
/* Get association, if sack_assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.sack_assoc_id);
if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (params.sack_delay) {
if (asoc) {
asoc->sackdelay =
msecs_to_jiffies(params.sack_delay);
asoc->param_flags =
sctp_spp_sackdelay_enable(asoc->param_flags);
} else {
sp->sackdelay = params.sack_delay;
sp->param_flags =
sctp_spp_sackdelay_enable(sp->param_flags);
}
}
if (params.sack_freq == 1) {
if (asoc) {
asoc->param_flags =
sctp_spp_sackdelay_disable(asoc->param_flags);
} else {
sp->param_flags =
sctp_spp_sackdelay_disable(sp->param_flags);
}
} else if (params.sack_freq > 1) {
if (asoc) {
asoc->sackfreq = params.sack_freq;
asoc->param_flags =
sctp_spp_sackdelay_enable(asoc->param_flags);
} else {
sp->sackfreq = params.sack_freq;
sp->param_flags =
sctp_spp_sackdelay_enable(sp->param_flags);
}
}
/* If change is for association, also apply to each transport. */
if (asoc) {
list_for_each_entry(trans, &asoc->peer.transport_addr_list,
transports) {
if (params.sack_delay) {
trans->sackdelay =
msecs_to_jiffies(params.sack_delay);
trans->param_flags =
sctp_spp_sackdelay_enable(trans->param_flags);
}
if (params.sack_freq == 1) {
trans->param_flags =
sctp_spp_sackdelay_disable(trans->param_flags);
} else if (params.sack_freq > 1) {
trans->sackfreq = params.sack_freq;
trans->param_flags =
sctp_spp_sackdelay_enable(trans->param_flags);
}
}
}
return 0;
}
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
*
* Applications can specify protocol parameters for the default association
* initialization. The option name argument to setsockopt() and getsockopt()
* is SCTP_INITMSG.
*
* Setting initialization parameters is effective only on an unconnected
* socket (for UDP-style sockets only future associations are effected
* by the change). With TCP-style sockets, this option is inherited by
* sockets derived from a listener socket.
*/
static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
{
struct sctp_initmsg sinit;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof(struct sctp_initmsg))
return -EINVAL;
if (copy_from_user(&sinit, optval, optlen))
return -EFAULT;
if (sinit.sinit_num_ostreams)
sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
if (sinit.sinit_max_instreams)
sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
if (sinit.sinit_max_attempts)
sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
if (sinit.sinit_max_init_timeo)
sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
return 0;
}
/*
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
*
* Applications that wish to use the sendto() system call may wish to
* specify a default set of parameters that would normally be supplied
* through the inclusion of ancillary data. This socket option allows
* such an application to set the default sctp_sndrcvinfo structure.
* The application that wishes to use this socket option simply passes
* in to this call the sctp_sndrcvinfo structure defined in Section
* 5.2.2) The input parameters accepted by this call include
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
* to this call if the caller is using the UDP model.
*/
static int sctp_setsockopt_default_send_param(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_sndrcvinfo info;
if (optlen != sizeof(info))
return -EINVAL;
if (copy_from_user(&info, optval, optlen))
return -EFAULT;
if (info.sinfo_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_ABORT | SCTP_EOF))
return -EINVAL;
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
asoc->default_stream = info.sinfo_stream;
asoc->default_flags = info.sinfo_flags;
asoc->default_ppid = info.sinfo_ppid;
asoc->default_context = info.sinfo_context;
asoc->default_timetolive = info.sinfo_timetolive;
} else {
sp->default_stream = info.sinfo_stream;
sp->default_flags = info.sinfo_flags;
sp->default_ppid = info.sinfo_ppid;
sp->default_context = info.sinfo_context;
sp->default_timetolive = info.sinfo_timetolive;
}
return 0;
}
/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
* (SCTP_DEFAULT_SNDINFO)
*/
static int sctp_setsockopt_default_sndinfo(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_sndinfo info;
if (optlen != sizeof(info))
return -EINVAL;
if (copy_from_user(&info, optval, optlen))
return -EFAULT;
if (info.snd_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_ABORT | SCTP_EOF))
return -EINVAL;
asoc = sctp_id2assoc(sk, info.snd_assoc_id);
if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
asoc->default_stream = info.snd_sid;
asoc->default_flags = info.snd_flags;
asoc->default_ppid = info.snd_ppid;
asoc->default_context = info.snd_context;
} else {
sp->default_stream = info.snd_sid;
sp->default_flags = info.snd_flags;
sp->default_ppid = info.snd_ppid;
sp->default_context = info.snd_context;
}
return 0;
}
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
*
* Requests that the local SCTP stack use the enclosed peer address as
* the association primary. The enclosed address must be one of the
* association peer's addresses.
*/
static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
unsigned int optlen)
{
struct sctp_prim prim;
struct sctp_transport *trans;
struct sctp_af *af;
int err;
if (optlen != sizeof(struct sctp_prim))
return -EINVAL;
if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
return -EFAULT;
/* Allow security module to validate address but need address len. */
af = sctp_get_af_specific(prim.ssp_addr.ss_family);
if (!af)
return -EINVAL;
err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
(struct sockaddr *)&prim.ssp_addr,
af->sockaddr_len);
if (err)
return err;
trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
if (!trans)
return -EINVAL;
sctp_assoc_set_primary(trans->asoc, trans);
return 0;
}
/*
* 7.1.5 SCTP_NODELAY
*
* Turn on/off any Nagle-like algorithm. This means that packets are
* generally sent as soon as possible and no unnecessary delays are
* introduced, at the cost of more packets in the network. Expects an
* integer boolean flag.
*/
static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
unsigned int optlen)
{
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
return 0;
}
/*
*
* 7.1.1 SCTP_RTOINFO
*
* The protocol parameters used to initialize and bound retransmission
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
* and modify these parameters.
* All parameters are time values, in milliseconds. A value of 0, when
* modifying the parameters, indicates that the current value should not
* be changed.
*
*/
static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
{
struct sctp_rtoinfo rtoinfo;
struct sctp_association *asoc;
unsigned long rto_min, rto_max;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof (struct sctp_rtoinfo))
return -EINVAL;
if (copy_from_user(&rtoinfo, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
/* Set the values to the specific association */
if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
rto_max = rtoinfo.srto_max;
rto_min = rtoinfo.srto_min;
if (rto_max)
rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
else
rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
if (rto_min)
rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
else
rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
if (rto_min > rto_max)
return -EINVAL;
if (asoc) {
if (rtoinfo.srto_initial != 0)
asoc->rto_initial =
msecs_to_jiffies(rtoinfo.srto_initial);
asoc->rto_max = rto_max;
asoc->rto_min = rto_min;
} else {
/* If there is no association or the association-id = 0
* set the values to the endpoint.
*/
if (rtoinfo.srto_initial != 0)
sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
sp->rtoinfo.srto_max = rto_max;
sp->rtoinfo.srto_min = rto_min;
}
return 0;
}
/*
*
* 7.1.2 SCTP_ASSOCINFO
*
* This option is used to tune the maximum retransmission attempts
* of the association.
* Returns an error if the new association retransmission value is
* greater than the sum of the retransmission value of the peer.
* See [SCTP] for more information.
*
*/
static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
{
struct sctp_assocparams assocparams;
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_assocparams))
return -EINVAL;
if (copy_from_user(&assocparams, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Set the values to the specific association */
if (asoc) {
if (assocparams.sasoc_asocmaxrxt != 0) {
__u32 path_sum = 0;
int paths = 0;
struct sctp_transport *peer_addr;
list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
transports) {
path_sum += peer_addr->pathmaxrxt;
paths++;
}
/* Only validate asocmaxrxt if we have more than
* one path/transport. We do this because path
* retransmissions are only counted when we have more
* then one path.
*/
if (paths > 1 &&
assocparams.sasoc_asocmaxrxt > path_sum)
return -EINVAL;
asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
}
if (assocparams.sasoc_cookie_life != 0)
asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
} else {
/* Set the values to the endpoint */
struct sctp_sock *sp = sctp_sk(sk);
if (assocparams.sasoc_asocmaxrxt != 0)
sp->assocparams.sasoc_asocmaxrxt =
assocparams.sasoc_asocmaxrxt;
if (assocparams.sasoc_cookie_life != 0)
sp->assocparams.sasoc_cookie_life =
assocparams.sasoc_cookie_life;
}
return 0;
}
/*
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
*
* This socket option is a boolean flag which turns on or off mapped V4
* addresses. If this option is turned on and the socket is type
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
* If this option is turned off, then no mapping will be done of V4
* addresses and a user will receive both PF_INET6 and PF_INET type
* addresses on the socket.
*/
static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
{
int val;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
if (val)
sp->v4mapped = 1;
else
sp->v4mapped = 0;
return 0;
}
/*
* 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
* This option will get or set the maximum size to put in any outgoing
* SCTP DATA chunk. If a message is larger than this size it will be
* fragmented by SCTP into the specified size. Note that the underlying
* SCTP implementation may fragment into smaller sized chunks when the
* PMTU of the underlying association is smaller than the value set by
* the user. The default value for this option is '0' which indicates
* the user is NOT limiting fragmentation and only the PMTU will effect
* SCTP's choice of DATA chunk size. Note also that values set larger
* than the maximum size of an IP datagram will effectively let SCTP
* control fragmentation (i.e. the same as setting this option to 0).
*
* The following structure is used to access and modify this parameter:
*
* struct sctp_assoc_value {
* sctp_assoc_t assoc_id;
* uint32_t assoc_value;
* };
*
* assoc_id: This parameter is ignored for one-to-one style sockets.
* For one-to-many style sockets this parameter indicates which
* association the user is performing an action upon. Note that if
* this field's value is zero then the endpoints default value is
* changed (effecting future associations only).
* assoc_value: This parameter specifies the maximum size in bytes.
*/
static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_assoc_value params;
struct sctp_association *asoc;
int val;
if (optlen == sizeof(int)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of int in maxseg socket option.\n"
"Use struct sctp_assoc_value instead\n",
current->comm, task_pid_nr(current));
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
params.assoc_id = 0;
} else if (optlen == sizeof(struct sctp_assoc_value)) {
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
val = params.assoc_value;
} else {
return -EINVAL;
}
asoc = sctp_id2assoc(sk, params.assoc_id);
if (val) {
int min_len, max_len;
__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
sizeof(struct sctp_data_chunk);
min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT,
datasize);
max_len = SCTP_MAX_CHUNK_LEN - datasize;
if (val < min_len || val > max_len)
return -EINVAL;
}
if (asoc) {
asoc->user_frag = val;
sctp_assoc_update_frag_point(asoc);
} else {
if (params.assoc_id && sctp_style(sk, UDP))
return -EINVAL;
sp->user_frag = val;
}
return 0;
}
/*
* 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
*
* Requests that the peer mark the enclosed address as the association
* primary. The enclosed address must be one of the association's
* locally bound addresses. The following structure is used to make a
* set primary request:
*/
static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
unsigned int optlen)
{
struct net *net = sock_net(sk);
struct sctp_sock *sp;
struct sctp_association *asoc = NULL;
struct sctp_setpeerprim prim;
struct sctp_chunk *chunk;
struct sctp_af *af;
int err;
sp = sctp_sk(sk);
if (!net->sctp.addip_enable)
return -EPERM;
if (optlen != sizeof(struct sctp_setpeerprim))
return -EINVAL;
if (copy_from_user(&prim, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
if (!asoc)
return -EINVAL;
if (!asoc->peer.asconf_capable)
return -EPERM;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
return -EPERM;
if (!sctp_state(asoc, ESTABLISHED))
return -ENOTCONN;
af = sctp_get_af_specific(prim.sspp_addr.ss_family);
if (!af)
return -EINVAL;
if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
return -EADDRNOTAVAIL;
if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
return -EADDRNOTAVAIL;
/* Allow security module to validate address. */
err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
(struct sockaddr *)&prim.sspp_addr,
af->sockaddr_len);
if (err)
return err;
/* Create an ASCONF chunk with SET_PRIMARY parameter */
chunk = sctp_make_asconf_set_prim(asoc,
(union sctp_addr *)&prim.sspp_addr);
if (!chunk)
return -ENOMEM;
err = sctp_send_asconf(asoc, chunk);
pr_debug("%s: we set peer primary addr primitively\n", __func__);
return err;
}
static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
unsigned int optlen)
{
struct sctp_setadaptation adaptation;
if (optlen != sizeof(struct sctp_setadaptation))
return -EINVAL;
if (copy_from_user(&adaptation, optval, optlen))
return -EFAULT;
sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
return 0;
}
/*
* 7.1.29. Set or Get the default context (SCTP_CONTEXT)
*
* The context field in the sctp_sndrcvinfo structure is normally only
* used when a failed message is retrieved holding the value that was
* sent down on the actual send call. This option allows the setting of
* a default context on an association basis that will be received on
* reading messages from the peer. This is especially helpful in the
* one-2-many model for an application to keep some reference to an
* internal state machine that is processing messages on the
* association. Note that the setting of this value only effects
* received messages from the peer and does not effect the value that is
* saved with outbound messages.
*/
static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
unsigned int optlen)
{
struct sctp_assoc_value params;
struct sctp_sock *sp;
struct sctp_association *asoc;
if (optlen != sizeof(struct sctp_assoc_value))
return -EINVAL;
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
sp = sctp_sk(sk);
if (params.assoc_id != 0) {
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc)
return -EINVAL;
asoc->default_rcv_context = params.assoc_value;
} else {
sp->default_rcv_context = params.assoc_value;
}
return 0;
}
/*
* 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
*
* This options will at a minimum specify if the implementation is doing
* fragmented interleave. Fragmented interleave, for a one to many
* socket, is when subsequent calls to receive a message may return
* parts of messages from different associations. Some implementations
* may allow you to turn this value on or off. If so, when turned off,
* no fragment interleave will occur (which will cause a head of line
* blocking amongst multiple associations sharing the same one to many
* socket). When this option is turned on, then each receive call may
* come from a different association (thus the user must receive data
* with the extended calls (e.g. sctp_recvmsg) to keep track of which
* association each receive belongs to.
*
* This option takes a boolean value. A non-zero value indicates that
* fragmented interleave is on. A value of zero indicates that
* fragmented interleave is off.
*
* Note that it is important that an implementation that allows this
* option to be turned on, have it off by default. Otherwise an unaware
* application using the one to many model may become confused and act
* incorrectly.
*/
static int sctp_setsockopt_fragment_interleave(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
int val;
if (optlen != sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->frag_interleave = !!val;
if (!sctp_sk(sk)->frag_interleave)
sctp_sk(sk)->strm_interleave = 0;
return 0;
}
/*
* 8.1.21. Set or Get the SCTP Partial Delivery Point
* (SCTP_PARTIAL_DELIVERY_POINT)
*
* This option will set or get the SCTP partial delivery point. This
* point is the size of a message where the partial delivery API will be
* invoked to help free up rwnd space for the peer. Setting this to a
* lower value will cause partial deliveries to happen more often. The
* calls argument is an integer that sets or gets the partial delivery
* point. Note also that the call will fail if the user attempts to set
* this value larger than the socket receive buffer size.
*
* Note that any single message having a length smaller than or equal to
* the SCTP partial delivery point will be delivered in one single read
* call as long as the user provided buffer is large enough to hold the
* message.
*/
static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
u32 val;
if (optlen != sizeof(u32))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
/* Note: We double the receive buffer from what the user sets
* it to be, also initial rwnd is based on rcvbuf/2.
*/
if (val > (sk->sk_rcvbuf >> 1))
return -EINVAL;
sctp_sk(sk)->pd_point = val;
return 0; /* is this the right error code? */
}
/*
* 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
*
* This option will allow a user to change the maximum burst of packets
* that can be emitted by this association. Note that the default value
* is 4, and some implementations may restrict this setting so that it
* can only be lowered.
*
* NOTE: This text doesn't seem right. Do this on a socket basis with
* future associations inheriting the socket value.
*/
static int sctp_setsockopt_maxburst(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_assoc_value params;
struct sctp_sock *sp;
struct sctp_association *asoc;
int val;
int assoc_id = 0;
if (optlen == sizeof(int)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of int in max_burst socket option deprecated.\n"
"Use struct sctp_assoc_value instead\n",
current->comm, task_pid_nr(current));
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
} else if (optlen == sizeof(struct sctp_assoc_value)) {
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
val = params.assoc_value;
assoc_id = params.assoc_id;
} else
return -EINVAL;
sp = sctp_sk(sk);
if (assoc_id != 0) {
asoc = sctp_id2assoc(sk, assoc_id);
if (!asoc)
return -EINVAL;
asoc->max_burst = val;
} else
sp->max_burst = val;
return 0;
}
/*
* 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
*
* This set option adds a chunk type that the user is requesting to be
* received only in an authenticated way. Changes to the list of chunks
* will only effect future associations on the socket.
*/
static int sctp_setsockopt_auth_chunk(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_authchunk val;
if (!ep->auth_enable)
return -EACCES;
if (optlen != sizeof(struct sctp_authchunk))
return -EINVAL;
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
switch (val.sauth_chunk) {
case SCTP_CID_INIT:
case SCTP_CID_INIT_ACK:
case SCTP_CID_SHUTDOWN_COMPLETE:
case SCTP_CID_AUTH:
return -EINVAL;
}
/* add this chunk id to the endpoint */
return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
}
/*
* 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
*
* This option gets or sets the list of HMAC algorithms that the local
* endpoint requires the peer to use.
*/
static int sctp_setsockopt_hmac_ident(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_hmacalgo *hmacs;
u32 idents;
int err;
if (!ep->auth_enable)
return -EACCES;
if (optlen < sizeof(struct sctp_hmacalgo))
return -EINVAL;
optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
SCTP_AUTH_NUM_HMACS * sizeof(u16));
hmacs = memdup_user(optval, optlen);
if (IS_ERR(hmacs))
return PTR_ERR(hmacs);
idents = hmacs->shmac_num_idents;
if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
(idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
err = -EINVAL;
goto out;
}
err = sctp_auth_ep_set_hmacs(ep, hmacs);
out:
kfree(hmacs);
return err;
}
/*
* 7.1.20. Set a shared key (SCTP_AUTH_KEY)
*
* This option will set a shared secret key which is used to build an
* association shared key.
*/
static int sctp_setsockopt_auth_key(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_authkey *authkey;
struct sctp_association *asoc;
int ret;
if (!ep->auth_enable)
return -EACCES;
if (optlen <= sizeof(struct sctp_authkey))
return -EINVAL;
/* authkey->sca_keylength is u16, so optlen can't be bigger than
* this.
*/
optlen = min_t(unsigned int, optlen, USHRT_MAX +
sizeof(struct sctp_authkey));
authkey = memdup_user(optval, optlen);
if (IS_ERR(authkey))
return PTR_ERR(authkey);
if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
ret = -EINVAL;
goto out;
}
asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
ret = -EINVAL;
goto out;
}
ret = sctp_auth_set_key(ep, asoc, authkey);
out:
kzfree(authkey);
return ret;
}
/*
* 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
*
* This option will get or set the active shared key to be used to build
* the association shared key.
*/
static int sctp_setsockopt_active_key(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (!ep->auth_enable)
return -EACCES;
if (optlen != sizeof(struct sctp_authkeyid))
return -EINVAL;
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
}
/*
* 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
*
* This set option will delete a shared secret key from use.
*/
static int sctp_setsockopt_del_key(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (!ep->auth_enable)
return -EACCES;
if (optlen != sizeof(struct sctp_authkeyid))
return -EINVAL;
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
}
/*
* 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
*
* This set option will deactivate a shared secret key.
*/
static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
unsigned int optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (!ep->auth_enable)
return -EACCES;
if (optlen != sizeof(struct sctp_authkeyid))
return -EINVAL;
if (copy_from_user(&val, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
}
/*
* 8.1.23 SCTP_AUTO_ASCONF
*
* This option will enable or disable the use of the automatic generation of
* ASCONF chunks to add and delete addresses to an existing association. Note
* that this option has two caveats namely: a) it only affects sockets that
* are bound to all addresses available to the SCTP stack, and b) the system
* administrator may have an overriding control that turns the ASCONF feature
* off no matter what setting the socket option may have.
* This option expects an integer boolean flag, where a non-zero value turns on
* the option, and a zero value turns off the option.
* Note. In this implementation, socket operation overrides default parameter
* being set by sysctl as well as FreeBSD implementation
*/
static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
unsigned int optlen)
{
int val;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
if (!sctp_is_ep_boundall(sk) && val)
return -EINVAL;
if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
return 0;
spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
if (val == 0 && sp->do_auto_asconf) {
list_del(&sp->auto_asconf_list);
sp->do_auto_asconf = 0;
} else if (val && !sp->do_auto_asconf) {
list_add_tail(&sp->auto_asconf_list,
&sock_net(sk)->sctp.auto_asconf_splist);
sp->do_auto_asconf = 1;
}
spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
return 0;
}
/*
* SCTP_PEER_ADDR_THLDS
*
* This option allows us to alter the partially failed threshold for one or all
* transports in an association. See Section 6.1 of:
* http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
*/
static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_paddrthlds val;
struct sctp_transport *trans;
struct sctp_association *asoc;
if (optlen < sizeof(struct sctp_paddrthlds))
return -EINVAL;
if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
sizeof(struct sctp_paddrthlds)))
return -EFAULT;
if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
asoc = sctp_id2assoc(sk, val.spt_assoc_id);
if (!asoc)
return -ENOENT;
list_for_each_entry(trans, &asoc->peer.transport_addr_list,
transports) {
if (val.spt_pathmaxrxt)
trans->pathmaxrxt = val.spt_pathmaxrxt;
trans->pf_retrans = val.spt_pathpfthld;
}
if (val.spt_pathmaxrxt)
asoc->pathmaxrxt = val.spt_pathmaxrxt;
asoc->pf_retrans = val.spt_pathpfthld;
} else {
trans = sctp_addr_id2transport(sk, &val.spt_address,
val.spt_assoc_id);
if (!trans)
return -ENOENT;
if (val.spt_pathmaxrxt)
trans->pathmaxrxt = val.spt_pathmaxrxt;
trans->pf_retrans = val.spt_pathpfthld;
}
return 0;
}
static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *) optval))
return -EFAULT;
sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
return 0;
}
static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *) optval))
return -EFAULT;
sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
return 0;
}
static int sctp_setsockopt_pr_supported(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen != sizeof(params))
goto out;
if (copy_from_user(&params, optval, optlen)) {
retval = -EFAULT;
goto out;
}
asoc = sctp_id2assoc(sk, params.assoc_id);
if (asoc) {
asoc->prsctp_enable = !!params.assoc_value;
} else if (!params.assoc_id) {
struct sctp_sock *sp = sctp_sk(sk);
sp->ep->prsctp_enable = !!params.assoc_value;
} else {
goto out;
}
retval = 0;
out:
return retval;
}
static int sctp_setsockopt_default_prinfo(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_default_prinfo info;
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen != sizeof(info))
goto out;
if (copy_from_user(&info, optval, sizeof(info))) {
retval = -EFAULT;
goto out;
}
if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
goto out;
if (info.pr_policy == SCTP_PR_SCTP_NONE)
info.pr_value = 0;
asoc = sctp_id2assoc(sk, info.pr_assoc_id);
if (asoc) {
SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
asoc->default_timetolive = info.pr_value;
} else if (!info.pr_assoc_id) {
struct sctp_sock *sp = sctp_sk(sk);
SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
sp->default_timetolive = info.pr_value;
} else {
goto out;
}
retval = 0;
out:
return retval;
}
static int sctp_setsockopt_reconfig_supported(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen != sizeof(params))
goto out;
if (copy_from_user(&params, optval, optlen)) {
retval = -EFAULT;
goto out;
}
asoc = sctp_id2assoc(sk, params.assoc_id);
if (asoc) {
asoc->reconf_enable = !!params.assoc_value;
} else if (!params.assoc_id) {
struct sctp_sock *sp = sctp_sk(sk);
sp->ep->reconf_enable = !!params.assoc_value;
} else {
goto out;
}
retval = 0;
out:
return retval;
}
static int sctp_setsockopt_enable_strreset(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen != sizeof(params))
goto out;
if (copy_from_user(&params, optval, optlen)) {
retval = -EFAULT;
goto out;
}
if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (asoc) {
asoc->strreset_enable = params.assoc_value;
} else if (!params.assoc_id) {
struct sctp_sock *sp = sctp_sk(sk);
sp->ep->strreset_enable = params.assoc_value;
} else {
goto out;
}
retval = 0;
out:
return retval;
}
static int sctp_setsockopt_reset_streams(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_reset_streams *params;
struct sctp_association *asoc;
int retval = -EINVAL;
if (optlen < sizeof(*params))
return -EINVAL;
/* srs_number_streams is u16, so optlen can't be bigger than this. */
optlen = min_t(unsigned int, optlen, USHRT_MAX +
sizeof(__u16) * sizeof(*params));
params = memdup_user(optval, optlen);
if (IS_ERR(params))
return PTR_ERR(params);
if (params->srs_number_streams * sizeof(__u16) >
optlen - sizeof(*params))
goto out;
asoc = sctp_id2assoc(sk, params->srs_assoc_id);
if (!asoc)
goto out;
retval = sctp_send_reset_streams(asoc, params);
out:
kfree(params);
return retval;
}
static int sctp_setsockopt_reset_assoc(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_association *asoc;
sctp_assoc_t associd;
int retval = -EINVAL;
if (optlen != sizeof(associd))
goto out;
if (copy_from_user(&associd, optval, optlen)) {
retval = -EFAULT;
goto out;
}
asoc = sctp_id2assoc(sk, associd);
if (!asoc)
goto out;
retval = sctp_send_reset_assoc(asoc);
out:
return retval;
}
static int sctp_setsockopt_add_streams(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_association *asoc;
struct sctp_add_streams params;
int retval = -EINVAL;
if (optlen != sizeof(params))
goto out;
if (copy_from_user(&params, optval, optlen)) {
retval = -EFAULT;
goto out;
}
asoc = sctp_id2assoc(sk, params.sas_assoc_id);
if (!asoc)
goto out;
retval = sctp_send_add_streams(asoc, &params);
out:
return retval;
}
static int sctp_setsockopt_scheduler(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_association *asoc;
struct sctp_assoc_value params;
int retval = -EINVAL;
if (optlen < sizeof(params))
goto out;
optlen = sizeof(params);
if (copy_from_user(&params, optval, optlen)) {
retval = -EFAULT;
goto out;
}
if (params.assoc_value > SCTP_SS_MAX)
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc)
goto out;
retval = sctp_sched_set_sched(asoc, params.assoc_value);
out:
return retval;
}
static int sctp_setsockopt_scheduler_value(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_association *asoc;
struct sctp_stream_value params;
int retval = -EINVAL;
if (optlen < sizeof(params))
goto out;
optlen = sizeof(params);
if (copy_from_user(&params, optval, optlen)) {
retval = -EFAULT;
goto out;
}
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc)
goto out;
retval = sctp_sched_set_value(asoc, params.stream_id,
params.stream_value, GFP_KERNEL);
out:
return retval;
}
static int sctp_setsockopt_interleaving_supported(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct net *net = sock_net(sk);
struct sctp_assoc_value params;
int retval = -EINVAL;
if (optlen < sizeof(params))
goto out;
optlen = sizeof(params);
if (copy_from_user(&params, optval, optlen)) {
retval = -EFAULT;
goto out;
}
if (params.assoc_id)
goto out;
if (!net->sctp.intl_enable || !sp->frag_interleave) {
retval = -EPERM;
goto out;
}
sp->strm_interleave = !!params.assoc_value;
retval = 0;
out:
return retval;
}
/* API 6.2 setsockopt(), getsockopt()
*
* Applications use setsockopt() and getsockopt() to set or retrieve
* socket options. Socket options are used to change the default
* behavior of sockets calls. They are described in Section 7.
*
* The syntax is:
*
* ret = getsockopt(int sd, int level, int optname, void __user *optval,
* int __user *optlen);
* ret = setsockopt(int sd, int level, int optname, const void __user *optval,
* int optlen);
*
* sd - the socket descript.
* level - set to IPPROTO_SCTP for all SCTP options.
* optname - the option name.
* optval - the buffer to store the value of the option.
* optlen - the size of the buffer.
*/
static int sctp_setsockopt(struct sock *sk, int level, int optname,
char __user *optval, unsigned int optlen)
{
int retval = 0;
pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
/* I can hardly begin to describe how wrong this is. This is
* so broken as to be worse than useless. The API draft
* REALLY is NOT helpful here... I am not convinced that the
* semantics of setsockopt() with a level OTHER THAN SOL_SCTP
* are at all well-founded.
*/
if (level != SOL_SCTP) {
struct sctp_af *af = sctp_sk(sk)->pf->af;
retval = af->setsockopt(sk, level, optname, optval, optlen);
goto out_nounlock;
}
lock_sock(sk);
switch (optname) {
case SCTP_SOCKOPT_BINDX_ADD:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
optlen, SCTP_BINDX_ADD_ADDR);
break;
case SCTP_SOCKOPT_BINDX_REM:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
optlen, SCTP_BINDX_REM_ADDR);
break;
case SCTP_SOCKOPT_CONNECTX_OLD:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_connectx_old(sk,
(struct sockaddr __user *)optval,
optlen);
break;
case SCTP_SOCKOPT_CONNECTX:
/* 'optlen' is the size of the addresses buffer. */
retval = sctp_setsockopt_connectx(sk,
(struct sockaddr __user *)optval,
optlen);
break;
case SCTP_DISABLE_FRAGMENTS:
retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
break;
case SCTP_EVENTS:
retval = sctp_setsockopt_events(sk, optval, optlen);
break;
case SCTP_AUTOCLOSE:
retval = sctp_setsockopt_autoclose(sk, optval, optlen);
break;
case SCTP_PEER_ADDR_PARAMS:
retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
break;
case SCTP_DELAYED_SACK:
retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
break;
case SCTP_PARTIAL_DELIVERY_POINT:
retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
break;
case SCTP_INITMSG:
retval = sctp_setsockopt_initmsg(sk, optval, optlen);
break;
case SCTP_DEFAULT_SEND_PARAM:
retval = sctp_setsockopt_default_send_param(sk, optval,
optlen);
break;
case SCTP_DEFAULT_SNDINFO:
retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
break;
case SCTP_PRIMARY_ADDR:
retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
break;
case SCTP_SET_PEER_PRIMARY_ADDR:
retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
break;
case SCTP_NODELAY:
retval = sctp_setsockopt_nodelay(sk, optval, optlen);
break;
case SCTP_RTOINFO:
retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
break;
case SCTP_ASSOCINFO:
retval = sctp_setsockopt_associnfo(sk, optval, optlen);
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
break;
case SCTP_MAXSEG:
retval = sctp_setsockopt_maxseg(sk, optval, optlen);
break;
case SCTP_ADAPTATION_LAYER:
retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
break;
case SCTP_CONTEXT:
retval = sctp_setsockopt_context(sk, optval, optlen);
break;
case SCTP_FRAGMENT_INTERLEAVE:
retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
break;
case SCTP_MAX_BURST:
retval = sctp_setsockopt_maxburst(sk, optval, optlen);
break;
case SCTP_AUTH_CHUNK:
retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
break;
case SCTP_HMAC_IDENT:
retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
break;
case SCTP_AUTH_KEY:
retval = sctp_setsockopt_auth_key(sk, optval, optlen);
break;
case SCTP_AUTH_ACTIVE_KEY:
retval = sctp_setsockopt_active_key(sk, optval, optlen);
break;
case SCTP_AUTH_DELETE_KEY:
retval = sctp_setsockopt_del_key(sk, optval, optlen);
break;
case SCTP_AUTH_DEACTIVATE_KEY:
retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
break;
case SCTP_AUTO_ASCONF:
retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
break;
case SCTP_PEER_ADDR_THLDS:
retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
break;
case SCTP_RECVRCVINFO:
retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
break;
case SCTP_RECVNXTINFO:
retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
break;
case SCTP_PR_SUPPORTED:
retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
break;
case SCTP_DEFAULT_PRINFO:
retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
break;
case SCTP_RECONFIG_SUPPORTED:
retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
break;
case SCTP_ENABLE_STREAM_RESET:
retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
break;
case SCTP_RESET_STREAMS:
retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
break;
case SCTP_RESET_ASSOC:
retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
break;
case SCTP_ADD_STREAMS:
retval = sctp_setsockopt_add_streams(sk, optval, optlen);
break;
case SCTP_STREAM_SCHEDULER:
retval = sctp_setsockopt_scheduler(sk, optval, optlen);
break;
case SCTP_STREAM_SCHEDULER_VALUE:
retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
break;
case SCTP_INTERLEAVING_SUPPORTED:
retval = sctp_setsockopt_interleaving_supported(sk, optval,
optlen);
break;
default:
retval = -ENOPROTOOPT;
break;
}
release_sock(sk);
out_nounlock:
return retval;
}
/* API 3.1.6 connect() - UDP Style Syntax
*
* An application may use the connect() call in the UDP model to initiate an
* association without sending data.
*
* The syntax is:
*
* ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
*
* sd: the socket descriptor to have a new association added to.
*
* nam: the address structure (either struct sockaddr_in or struct
* sockaddr_in6 defined in RFC2553 [7]).
*
* len: the size of the address.
*/
static int sctp_connect(struct sock *sk, struct sockaddr *addr,
int addr_len, int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct sctp_af *af;
int err = 0;
lock_sock(sk);
pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
addr, addr_len);
/* We may need to bind the socket. */
if (!inet->inet_num) {
if (sk->sk_prot->get_port(sk, 0)) {
release_sock(sk);
return -EAGAIN;
}
inet->inet_sport = htons(inet->inet_num);
}
/* Validate addr_len before calling common connect/connectx routine. */
af = sctp_get_af_specific(addr->sa_family);
if (!af || addr_len < af->sockaddr_len) {
err = -EINVAL;
} else {
/* Pass correct addr len to common routine (so it knows there
* is only one address being passed.
*/
err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
}
release_sock(sk);
return err;
}
int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
if (addr_len < sizeof(uaddr->sa_family))
return -EINVAL;
if (uaddr->sa_family == AF_UNSPEC)
return -EOPNOTSUPP;
return sctp_connect(sock->sk, uaddr, addr_len, flags);
}
/* FIXME: Write comments. */
static int sctp_disconnect(struct sock *sk, int flags)
{
return -EOPNOTSUPP; /* STUB */
}
/* 4.1.4 accept() - TCP Style Syntax
*
* Applications use accept() call to remove an established SCTP
* association from the accept queue of the endpoint. A new socket
* descriptor will be returned from accept() to represent the newly
* formed association.
*/
static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sock *newsk = NULL;
struct sctp_association *asoc;
long timeo;
int error = 0;
lock_sock(sk);
sp = sctp_sk(sk);
ep = sp->ep;
if (!sctp_style(sk, TCP)) {
error = -EOPNOTSUPP;
goto out;
}
if (!sctp_sstate(sk, LISTENING)) {
error = -EINVAL;
goto out;
}
timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
error = sctp_wait_for_accept(sk, timeo);
if (error)
goto out;
/* We treat the list of associations on the endpoint as the accept
* queue and pick the first association on the list.
*/
asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
newsk = sp->pf->create_accept_sk(sk, asoc, kern);
if (!newsk) {
error = -ENOMEM;
goto out;
}
/* Populate the fields of the newsk from the oldsk and migrate the
* asoc to the newsk.
*/
sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
out:
release_sock(sk);
*err = error;
return newsk;
}
/* The SCTP ioctl handler. */
static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
{
int rc = -ENOTCONN;
lock_sock(sk);
/*
* SEQPACKET-style sockets in LISTENING state are valid, for
* SCTP, so only discard TCP-style sockets in LISTENING state.
*/
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
goto out;
switch (cmd) {
case SIOCINQ: {
struct sk_buff *skb;
unsigned int amount = 0;
skb = skb_peek(&sk->sk_receive_queue);
if (skb != NULL) {
/*
* We will only return the amount of this packet since
* that is all that will be read.
*/
amount = skb->len;
}
rc = put_user(amount, (int __user *)arg);
break;
}
default:
rc = -ENOIOCTLCMD;
break;
}
out:
release_sock(sk);
return rc;
}
/* This is the function which gets called during socket creation to
* initialized the SCTP-specific portion of the sock.
* The sock structure should already be zero-filled memory.
*/
static int sctp_init_sock(struct sock *sk)
{
struct net *net = sock_net(sk);
struct sctp_sock *sp;
pr_debug("%s: sk:%p\n", __func__, sk);
sp = sctp_sk(sk);
/* Initialize the SCTP per socket area. */
switch (sk->sk_type) {
case SOCK_SEQPACKET:
sp->type = SCTP_SOCKET_UDP;
break;
case SOCK_STREAM:
sp->type = SCTP_SOCKET_TCP;
break;
default:
return -ESOCKTNOSUPPORT;
}
sk->sk_gso_type = SKB_GSO_SCTP;
/* Initialize default send parameters. These parameters can be
* modified with the SCTP_DEFAULT_SEND_PARAM socket option.
*/
sp->default_stream = 0;
sp->default_ppid = 0;
sp->default_flags = 0;
sp->default_context = 0;
sp->default_timetolive = 0;
sp->default_rcv_context = 0;
sp->max_burst = net->sctp.max_burst;
sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
/* Initialize default setup parameters. These parameters
* can be modified with the SCTP_INITMSG socket option or
* overridden by the SCTP_INIT CMSG.
*/
sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
sp->initmsg.sinit_max_instreams = sctp_max_instreams;
sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
/* Initialize default RTO related parameters. These parameters can
* be modified for with the SCTP_RTOINFO socket option.
*/
sp->rtoinfo.srto_initial = net->sctp.rto_initial;
sp->rtoinfo.srto_max = net->sctp.rto_max;
sp->rtoinfo.srto_min = net->sctp.rto_min;
/* Initialize default association related parameters. These parameters
* can be modified with the SCTP_ASSOCINFO socket option.
*/
sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
sp->assocparams.sasoc_number_peer_destinations = 0;
sp->assocparams.sasoc_peer_rwnd = 0;
sp->assocparams.sasoc_local_rwnd = 0;
sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
/* Initialize default event subscriptions. By default, all the
* options are off.
*/
memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
/* Default Peer Address Parameters. These defaults can
* be modified via SCTP_PEER_ADDR_PARAMS
*/
sp->hbinterval = net->sctp.hb_interval;
sp->pathmaxrxt = net->sctp.max_retrans_path;
sp->pathmtu = 0; /* allow default discovery */
sp->sackdelay = net->sctp.sack_timeout;
sp->sackfreq = 2;
sp->param_flags = SPP_HB_ENABLE |
SPP_PMTUD_ENABLE |
SPP_SACKDELAY_ENABLE;
/* If enabled no SCTP message fragmentation will be performed.
* Configure through SCTP_DISABLE_FRAGMENTS socket option.
*/
sp->disable_fragments = 0;
/* Enable Nagle algorithm by default. */
sp->nodelay = 0;
sp->recvrcvinfo = 0;
sp->recvnxtinfo = 0;
/* Enable by default. */
sp->v4mapped = 1;
/* Auto-close idle associations after the configured
* number of seconds. A value of 0 disables this
* feature. Configure through the SCTP_AUTOCLOSE socket option,
* for UDP-style sockets only.
*/
sp->autoclose = 0;
/* User specified fragmentation limit. */
sp->user_frag = 0;
sp->adaptation_ind = 0;
sp->pf = sctp_get_pf_specific(sk->sk_family);
/* Control variables for partial data delivery. */
atomic_set(&sp->pd_mode, 0);
skb_queue_head_init(&sp->pd_lobby);
sp->frag_interleave = 0;
/* Create a per socket endpoint structure. Even if we
* change the data structure relationships, this may still
* be useful for storing pre-connect address information.
*/
sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
if (!sp->ep)
return -ENOMEM;
sp->hmac = NULL;
sk->sk_destruct = sctp_destruct_sock;
SCTP_DBG_OBJCNT_INC(sock);
local_bh_disable();
sk_sockets_allocated_inc(sk);
sock_prot_inuse_add(net, sk->sk_prot, 1);
/* Nothing can fail after this block, otherwise
* sctp_destroy_sock() will be called without addr_wq_lock held
*/
if (net->sctp.default_auto_asconf) {
spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
list_add_tail(&sp->auto_asconf_list,
&net->sctp.auto_asconf_splist);
sp->do_auto_asconf = 1;
spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
} else {
sp->do_auto_asconf = 0;
}
local_bh_enable();
return 0;
}
/* Cleanup any SCTP per socket resources. Must be called with
* sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
*/
static void sctp_destroy_sock(struct sock *sk)
{
struct sctp_sock *sp;
pr_debug("%s: sk:%p\n", __func__, sk);
/* Release our hold on the endpoint. */
sp = sctp_sk(sk);
/* This could happen during socket init, thus we bail out
* early, since the rest of the below is not setup either.
*/
if (sp->ep == NULL)
return;
if (sp->do_auto_asconf) {
sp->do_auto_asconf = 0;
list_del(&sp->auto_asconf_list);
}
sctp_endpoint_free(sp->ep);
local_bh_disable();
sk_sockets_allocated_dec(sk);
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
local_bh_enable();
}
/* Triggered when there are no references on the socket anymore */
static void sctp_destruct_sock(struct sock *sk)
{
struct sctp_sock *sp = sctp_sk(sk);
/* Free up the HMAC transform. */
crypto_free_shash(sp->hmac);
inet_sock_destruct(sk);
}
/* API 4.1.7 shutdown() - TCP Style Syntax
* int shutdown(int socket, int how);
*
* sd - the socket descriptor of the association to be closed.
* how - Specifies the type of shutdown. The values are
* as follows:
* SHUT_RD
* Disables further receive operations. No SCTP
* protocol action is taken.
* SHUT_WR
* Disables further send operations, and initiates
* the SCTP shutdown sequence.
* SHUT_RDWR
* Disables further send and receive operations
* and initiates the SCTP shutdown sequence.
*/
static void sctp_shutdown(struct sock *sk, int how)
{
struct net *net = sock_net(sk);
struct sctp_endpoint *ep;
if (!sctp_style(sk, TCP))
return;
ep = sctp_sk(sk)->ep;
if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
struct sctp_association *asoc;
inet_sk_set_state(sk, SCTP_SS_CLOSING);
asoc = list_entry(ep->asocs.next,
struct sctp_association, asocs);
sctp_primitive_SHUTDOWN(net, asoc, NULL);
}
}
int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
struct sctp_info *info)
{
struct sctp_transport *prim;
struct list_head *pos;
int mask;
memset(info, 0, sizeof(*info));
if (!asoc) {
struct sctp_sock *sp = sctp_sk(sk);
info->sctpi_s_autoclose = sp->autoclose;
info->sctpi_s_adaptation_ind = sp->adaptation_ind;
info->sctpi_s_pd_point = sp->pd_point;
info->sctpi_s_nodelay = sp->nodelay;
info->sctpi_s_disable_fragments = sp->disable_fragments;
info->sctpi_s_v4mapped = sp->v4mapped;
info->sctpi_s_frag_interleave = sp->frag_interleave;
info->sctpi_s_type = sp->type;
return 0;
}
info->sctpi_tag = asoc->c.my_vtag;
info->sctpi_state = asoc->state;
info->sctpi_rwnd = asoc->a_rwnd;
info->sctpi_unackdata = asoc->unack_data;
info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
info->sctpi_instrms = asoc->stream.incnt;
info->sctpi_outstrms = asoc->stream.outcnt;
list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
info->sctpi_inqueue++;
list_for_each(pos, &asoc->outqueue.out_chunk_list)
info->sctpi_outqueue++;
info->sctpi_overall_error = asoc->overall_error_count;
info->sctpi_max_burst = asoc->max_burst;
info->sctpi_maxseg = asoc->frag_point;
info->sctpi_peer_rwnd = asoc->peer.rwnd;
info->sctpi_peer_tag = asoc->c.peer_vtag;
mask = asoc->peer.ecn_capable << 1;
mask = (mask | asoc->peer.ipv4_address) << 1;
mask = (mask | asoc->peer.ipv6_address) << 1;
mask = (mask | asoc->peer.hostname_address) << 1;
mask = (mask | asoc->peer.asconf_capable) << 1;
mask = (mask | asoc->peer.prsctp_capable) << 1;
mask = (mask | asoc->peer.auth_capable);
info->sctpi_peer_capable = mask;
mask = asoc->peer.sack_needed << 1;
mask = (mask | asoc->peer.sack_generation) << 1;
mask = (mask | asoc->peer.zero_window_announced);
info->sctpi_peer_sack = mask;
info->sctpi_isacks = asoc->stats.isacks;
info->sctpi_osacks = asoc->stats.osacks;
info->sctpi_opackets = asoc->stats.opackets;
info->sctpi_ipackets = asoc->stats.ipackets;
info->sctpi_rtxchunks = asoc->stats.rtxchunks;
info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
info->sctpi_idupchunks = asoc->stats.idupchunks;
info->sctpi_gapcnt = asoc->stats.gapcnt;
info->sctpi_ouodchunks = asoc->stats.ouodchunks;
info->sctpi_iuodchunks = asoc->stats.iuodchunks;
info->sctpi_oodchunks = asoc->stats.oodchunks;
info->sctpi_iodchunks = asoc->stats.iodchunks;
info->sctpi_octrlchunks = asoc->stats.octrlchunks;
info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
prim = asoc->peer.primary_path;
memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
info->sctpi_p_state = prim->state;
info->sctpi_p_cwnd = prim->cwnd;
info->sctpi_p_srtt = prim->srtt;
info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
info->sctpi_p_hbinterval = prim->hbinterval;
info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
info->sctpi_p_ssthresh = prim->ssthresh;
info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
info->sctpi_p_flight_size = prim->flight_size;
info->sctpi_p_error = prim->error_count;
return 0;
}
EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
/* use callback to avoid exporting the core structure */
void sctp_transport_walk_start(struct rhashtable_iter *iter)
{
rhltable_walk_enter(&sctp_transport_hashtable, iter);
rhashtable_walk_start(iter);
}
void sctp_transport_walk_stop(struct rhashtable_iter *iter)
{
rhashtable_walk_stop(iter);
rhashtable_walk_exit(iter);
}
struct sctp_transport *sctp_transport_get_next(struct net *net,
struct rhashtable_iter *iter)
{
struct sctp_transport *t;
t = rhashtable_walk_next(iter);
for (; t; t = rhashtable_walk_next(iter)) {
if (IS_ERR(t)) {
if (PTR_ERR(t) == -EAGAIN)
continue;
break;
}
if (net_eq(sock_net(t->asoc->base.sk), net) &&
t->asoc->peer.primary_path == t)
break;
}
return t;
}
struct sctp_transport *sctp_transport_get_idx(struct net *net,
struct rhashtable_iter *iter,
int pos)
{
void *obj = SEQ_START_TOKEN;
while (pos && (obj = sctp_transport_get_next(net, iter)) &&
!IS_ERR(obj))
pos--;
return obj;
}
int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
void *p) {
int err = 0;
int hash = 0;
struct sctp_ep_common *epb;
struct sctp_hashbucket *head;
for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
hash++, head++) {
read_lock_bh(&head->lock);
sctp_for_each_hentry(epb, &head->chain) {
err = cb(sctp_ep(epb), p);
if (err)
break;
}
read_unlock_bh(&head->lock);
}
return err;
}
EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
struct net *net,
const union sctp_addr *laddr,
const union sctp_addr *paddr, void *p)
{
struct sctp_transport *transport;
int err;
rcu_read_lock();
transport = sctp_addrs_lookup_transport(net, laddr, paddr);
rcu_read_unlock();
if (!transport)
return -ENOENT;
err = cb(transport, p);
sctp_transport_put(transport);
return err;
}
EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
int (*cb_done)(struct sctp_transport *, void *),
struct net *net, int *pos, void *p) {
struct rhashtable_iter hti;
struct sctp_transport *tsp;
int ret;
again:
ret = 0;
sctp_transport_walk_start(&hti);
tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
if (!sctp_transport_hold(tsp))
continue;
ret = cb(tsp, p);
if (ret)
break;
(*pos)++;
sctp_transport_put(tsp);
}
sctp_transport_walk_stop(&hti);
if (ret) {
if (cb_done && !cb_done(tsp, p)) {
(*pos)++;
sctp_transport_put(tsp);
goto again;
}
sctp_transport_put(tsp);
}
return ret;
}
EXPORT_SYMBOL_GPL(sctp_for_each_transport);
/* 7.2.1 Association Status (SCTP_STATUS)
* Applications can retrieve current status information about an
* association, including association state, peer receiver window size,
* number of unacked data chunks, and number of data chunks pending
* receipt. This information is read-only.
*/
static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_status status;
struct sctp_association *asoc = NULL;
struct sctp_transport *transport;
sctp_assoc_t associd;
int retval = 0;
if (len < sizeof(status)) {
retval = -EINVAL;
goto out;
}
len = sizeof(status);
if (copy_from_user(&status, optval, len)) {
retval = -EFAULT;
goto out;
}
associd = status.sstat_assoc_id;
asoc = sctp_id2assoc(sk, associd);
if (!asoc) {
retval = -EINVAL;
goto out;
}
transport = asoc->peer.primary_path;
status.sstat_assoc_id = sctp_assoc2id(asoc);
status.sstat_state = sctp_assoc_to_state(asoc);
status.sstat_rwnd = asoc->peer.rwnd;
status.sstat_unackdata = asoc->unack_data;
status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
status.sstat_instrms = asoc->stream.incnt;
status.sstat_outstrms = asoc->stream.outcnt;
status.sstat_fragmentation_point = asoc->frag_point;
status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
transport->af_specific->sockaddr_len);
/* Map ipv4 address into v4-mapped-on-v6 address. */
sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
(union sctp_addr *)&status.sstat_primary.spinfo_address);
status.sstat_primary.spinfo_state = transport->state;
status.sstat_primary.spinfo_cwnd = transport->cwnd;
status.sstat_primary.spinfo_srtt = transport->srtt;
status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
status.sstat_primary.spinfo_mtu = transport->pathmtu;
if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
status.sstat_primary.spinfo_state = SCTP_ACTIVE;
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
__func__, len, status.sstat_state, status.sstat_rwnd,
status.sstat_assoc_id);
if (copy_to_user(optval, &status, len)) {
retval = -EFAULT;
goto out;
}
out:
return retval;
}
/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
*
* Applications can retrieve information about a specific peer address
* of an association, including its reachability state, congestion
* window, and retransmission timer values. This information is
* read-only.
*/
static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_paddrinfo pinfo;
struct sctp_transport *transport;
int retval = 0;
if (len < sizeof(pinfo)) {
retval = -EINVAL;
goto out;
}
len = sizeof(pinfo);
if (copy_from_user(&pinfo, optval, len)) {
retval = -EFAULT;
goto out;
}
transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
pinfo.spinfo_assoc_id);
if (!transport)
return -EINVAL;
pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
pinfo.spinfo_state = transport->state;
pinfo.spinfo_cwnd = transport->cwnd;
pinfo.spinfo_srtt = transport->srtt;
pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
pinfo.spinfo_mtu = transport->pathmtu;
if (pinfo.spinfo_state == SCTP_UNKNOWN)
pinfo.spinfo_state = SCTP_ACTIVE;
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
if (copy_to_user(optval, &pinfo, len)) {
retval = -EFAULT;
goto out;
}
out:
return retval;
}
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
*
* This option is a on/off flag. If enabled no SCTP message
* fragmentation will be performed. Instead if a message being sent
* exceeds the current PMTU size, the message will NOT be sent and
* instead a error will be indicated to the user.
*/
static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = (sctp_sk(sk)->disable_fragments == 1);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
*
* This socket option is used to specify various notifications and
* ancillary data the user wishes to receive.
*/
static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
int __user *optlen)
{
if (len == 0)
return -EINVAL;
if (len > sizeof(struct sctp_event_subscribe))
len = sizeof(struct sctp_event_subscribe);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
return -EFAULT;
return 0;
}
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
*
* This socket option is applicable to the UDP-style socket only. When
* set it will cause associations that are idle for more than the
* specified number of seconds to automatically close. An association
* being idle is defined an association that has NOT sent or received
* user data. The special value of '0' indicates that no automatic
* close of any associations should be performed. The option expects an
* integer defining the number of seconds of idle time before an
* association is closed.
*/
static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
/* Applicable to UDP-style socket only */
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
if (put_user(len, optlen))
return -EFAULT;
if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
return -EFAULT;
return 0;
}
/* Helper routine to branch off an association to a new socket. */
int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
{
struct sctp_association *asoc = sctp_id2assoc(sk, id);
struct sctp_sock *sp = sctp_sk(sk);
struct socket *sock;
int err = 0;
/* Do not peel off from one netns to another one. */
if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
return -EINVAL;
if (!asoc)
return -EINVAL;
/* An association cannot be branched off from an already peeled-off
* socket, nor is this supported for tcp style sockets.
*/
if (!sctp_style(sk, UDP))
return -EINVAL;
/* Create a new socket. */
err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
if (err < 0)
return err;
sctp_copy_sock(sock->sk, sk, asoc);
/* Make peeled-off sockets more like 1-1 accepted sockets.
* Set the daddr and initialize id to something more random and also
* copy over any ip options.
*/
sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
sp->pf->copy_ip_options(sk, sock->sk);
/* Populate the fields of the newsk from the oldsk and migrate the
* asoc to the newsk.
*/
sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
*sockp = sock;
return err;
}
EXPORT_SYMBOL(sctp_do_peeloff);
static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
struct file **newfile, unsigned flags)
{
struct socket *newsock;
int retval;
retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
if (retval < 0)
goto out;
/* Map the socket to an unused fd that can be returned to the user. */
retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
if (retval < 0) {
sock_release(newsock);
goto out;
}
*newfile = sock_alloc_file(newsock, 0, NULL);
if (IS_ERR(*newfile)) {
put_unused_fd(retval);
retval = PTR_ERR(*newfile);
*newfile = NULL;
return retval;
}
pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
retval);
peeloff->sd = retval;
if (flags & SOCK_NONBLOCK)
(*newfile)->f_flags |= O_NONBLOCK;
out:
return retval;
}
static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
sctp_peeloff_arg_t peeloff;
struct file *newfile = NULL;
int retval = 0;
if (len < sizeof(sctp_peeloff_arg_t))
return -EINVAL;
len = sizeof(sctp_peeloff_arg_t);
if (copy_from_user(&peeloff, optval, len))
return -EFAULT;
retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
if (retval < 0)
goto out;
/* Return the fd mapped to the new socket. */
if (put_user(len, optlen)) {
fput(newfile);
put_unused_fd(retval);
return -EFAULT;
}
if (copy_to_user(optval, &peeloff, len)) {
fput(newfile);
put_unused_fd(retval);
return -EFAULT;
}
fd_install(retval, newfile);
out:
return retval;
}
static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
sctp_peeloff_flags_arg_t peeloff;
struct file *newfile = NULL;
int retval = 0;
if (len < sizeof(sctp_peeloff_flags_arg_t))
return -EINVAL;
len = sizeof(sctp_peeloff_flags_arg_t);
if (copy_from_user(&peeloff, optval, len))
return -EFAULT;
retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
&newfile, peeloff.flags);
if (retval < 0)
goto out;
/* Return the fd mapped to the new socket. */
if (put_user(len, optlen)) {
fput(newfile);
put_unused_fd(retval);
return -EFAULT;
}
if (copy_to_user(optval, &peeloff, len)) {
fput(newfile);
put_unused_fd(retval);
return -EFAULT;
}
fd_install(retval, newfile);
out:
return retval;
}
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
*
* Applications can enable or disable heartbeats for any peer address of
* an association, modify an address's heartbeat interval, force a
* heartbeat to be sent immediately, and adjust the address's maximum
* number of retransmissions sent before an address is considered
* unreachable. The following structure is used to access and modify an
* address's parameters:
*
* struct sctp_paddrparams {
* sctp_assoc_t spp_assoc_id;
* struct sockaddr_storage spp_address;
* uint32_t spp_hbinterval;
* uint16_t spp_pathmaxrxt;
* uint32_t spp_pathmtu;
* uint32_t spp_sackdelay;
* uint32_t spp_flags;
* };
*
* spp_assoc_id - (one-to-many style socket) This is filled in the
* application, and identifies the association for
* this query.
* spp_address - This specifies which address is of interest.
* spp_hbinterval - This contains the value of the heartbeat interval,
* in milliseconds. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmaxrxt - This contains the maximum number of
* retransmissions before this address shall be
* considered unreachable. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmtu - When Path MTU discovery is disabled the value
* specified here will be the "fixed" path mtu.
* Note that if the spp_address field is empty
* then all associations on this address will
* have this fixed path mtu set upon them.
*
* spp_sackdelay - When delayed sack is enabled, this value specifies
* the number of milliseconds that sacks will be delayed
* for. This value will apply to all addresses of an
* association if the spp_address field is empty. Note
* also, that if delayed sack is enabled and this
* value is set to 0, no change is made to the last
* recorded delayed sack timer value.
*
* spp_flags - These flags are used to control various features
* on an association. The flag field may contain
* zero or more of the following options.
*
* SPP_HB_ENABLE - Enable heartbeats on the
* specified address. Note that if the address
* field is empty all addresses for the association
* have heartbeats enabled upon them.
*
* SPP_HB_DISABLE - Disable heartbeats on the
* speicifed address. Note that if the address
* field is empty all addresses for the association
* will have their heartbeats disabled. Note also
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
* mutually exclusive, only one of these two should
* be specified. Enabling both fields will have
* undetermined results.
*
* SPP_HB_DEMAND - Request a user initiated heartbeat
* to be made immediately.
*
* SPP_PMTUD_ENABLE - This field will enable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected.
*
* SPP_PMTUD_DISABLE - This field will disable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected. Not also that
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
* exclusive. Enabling both will have undetermined
* results.
*
* SPP_SACKDELAY_ENABLE - Setting this flag turns
* on delayed sack. The time specified in spp_sackdelay
* is used to specify the sack delay for this address. Note
* that if spp_address is empty then all addresses will
* enable delayed sack and take on the sack delay
* value specified in spp_sackdelay.
* SPP_SACKDELAY_DISABLE - Setting this flag turns
* off delayed sack. If the spp_address field is blank then
* delayed sack is disabled for the entire association. Note
* also that this field is mutually exclusive to
* SPP_SACKDELAY_ENABLE, setting both will have undefined
* results.
*/
static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_paddrparams params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(struct sctp_paddrparams))
return -EINVAL;
len = sizeof(struct sctp_paddrparams);
if (copy_from_user(&params, optval, len))
return -EFAULT;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
trans = sctp_addr_id2transport(sk, &params.spp_address,
params.spp_assoc_id);
if (!trans) {
pr_debug("%s: failed no transport\n", __func__);
return -EINVAL;
}
}
/* Get association, if assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.spp_assoc_id);
if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
pr_debug("%s: failed no association\n", __func__);
return -EINVAL;
}
if (trans) {
/* Fetch transport values. */
params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
params.spp_pathmtu = trans->pathmtu;
params.spp_pathmaxrxt = trans->pathmaxrxt;
params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = trans->param_flags;
} else if (asoc) {
/* Fetch association values. */
params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
params.spp_pathmtu = asoc->pathmtu;
params.spp_pathmaxrxt = asoc->pathmaxrxt;
params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = asoc->param_flags;
} else {
/* Fetch socket values. */
params.spp_hbinterval = sp->hbinterval;
params.spp_pathmtu = sp->pathmtu;
params.spp_sackdelay = sp->sackdelay;
params.spp_pathmaxrxt = sp->pathmaxrxt;
/*draft-11 doesn't say what to return in spp_flags*/
params.spp_flags = sp->param_flags;
}
if (copy_to_user(optval, &params, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
/*
* 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
*
* This option will effect the way delayed acks are performed. This
* option allows you to get or set the delayed ack time, in
* milliseconds. It also allows changing the delayed ack frequency.
* Changing the frequency to 1 disables the delayed sack algorithm. If
* the assoc_id is 0, then this sets or gets the endpoints default
* values. If the assoc_id field is non-zero, then the set or get
* effects the specified association for the one to many model (the
* assoc_id field is ignored by the one to one model). Note that if
* sack_delay or sack_freq are 0 when setting this option, then the
* current values will remain unchanged.
*
* struct sctp_sack_info {
* sctp_assoc_t sack_assoc_id;
* uint32_t sack_delay;
* uint32_t sack_freq;
* };
*
* sack_assoc_id - This parameter, indicates which association the user
* is performing an action upon. Note that if this field's value is
* zero then the endpoints default value is changed (effecting future
* associations only).
*
* sack_delay - This parameter contains the number of milliseconds that
* the user is requesting the delayed ACK timer be set to. Note that
* this value is defined in the standard to be between 200 and 500
* milliseconds.
*
* sack_freq - This parameter contains the number of packets that must
* be received before a sack is sent without waiting for the delay
* timer to expire. The default value for this is 2, setting this
* value to 1 will disable the delayed sack algorithm.
*/
static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_sack_info params;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
if (len >= sizeof(struct sctp_sack_info)) {
len = sizeof(struct sctp_sack_info);
if (copy_from_user(&params, optval, len))
return -EFAULT;
} else if (len == sizeof(struct sctp_assoc_value)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n",
current->comm, task_pid_nr(current));
if (copy_from_user(&params, optval, len))
return -EFAULT;
} else
return -EINVAL;
/* Get association, if sack_assoc_id != 0 and the socket is a one
* to many style socket, and an association was not found, then
* the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.sack_assoc_id);
if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
/* Fetch association values. */
if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
params.sack_delay = jiffies_to_msecs(
asoc->sackdelay);
params.sack_freq = asoc->sackfreq;
} else {
params.sack_delay = 0;
params.sack_freq = 1;
}
} else {
/* Fetch socket values. */
if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
params.sack_delay = sp->sackdelay;
params.sack_freq = sp->sackfreq;
} else {
params.sack_delay = 0;
params.sack_freq = 1;
}
}
if (copy_to_user(optval, &params, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
*
* Applications can specify protocol parameters for the default association
* initialization. The option name argument to setsockopt() and getsockopt()
* is SCTP_INITMSG.
*
* Setting initialization parameters is effective only on an unconnected
* socket (for UDP-style sockets only future associations are effected
* by the change). With TCP-style sockets, this option is inherited by
* sockets derived from a listener socket.
*/
static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
{
if (len < sizeof(struct sctp_initmsg))
return -EINVAL;
len = sizeof(struct sctp_initmsg);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_association *asoc;
int cnt = 0;
struct sctp_getaddrs getaddrs;
struct sctp_transport *from;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
size_t space_left;
int bytes_copied;
if (len < sizeof(struct sctp_getaddrs))
return -EINVAL;
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
return -EFAULT;
/* For UDP-style sockets, id specifies the association to query. */
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
to = optval + offsetof(struct sctp_getaddrs, addrs);
space_left = len - offsetof(struct sctp_getaddrs, addrs);
list_for_each_entry(from, &asoc->peer.transport_addr_list,
transports) {
memcpy(&temp, &from->ipaddr, sizeof(temp));
addrlen = sctp_get_pf_specific(sk->sk_family)
->addr_to_user(sp, &temp);
if (space_left < addrlen)
return -ENOMEM;
if (copy_to_user(to, &temp, addrlen))
return -EFAULT;
to += addrlen;
cnt++;
space_left -= addrlen;
}
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
return -EFAULT;
bytes_copied = ((char __user *)to) - optval;
if (put_user(bytes_copied, optlen))
return -EFAULT;
return 0;
}
static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
size_t space_left, int *bytes_copied)
{
struct sctp_sockaddr_entry *addr;
union sctp_addr temp;
int cnt = 0;
int addrlen;
struct net *net = sock_net(sk);
rcu_read_lock();
list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
if (!addr->valid)
continue;
if ((PF_INET == sk->sk_family) &&
(AF_INET6 == addr->a.sa.sa_family))
continue;
if ((PF_INET6 == sk->sk_family) &&
inet_v6_ipv6only(sk) &&
(AF_INET == addr->a.sa.sa_family))
continue;
memcpy(&temp, &addr->a, sizeof(temp));
if (!temp.v4.sin_port)
temp.v4.sin_port = htons(port);
addrlen = sctp_get_pf_specific(sk->sk_family)
->addr_to_user(sctp_sk(sk), &temp);
if (space_left < addrlen) {
cnt = -ENOMEM;
break;
}
memcpy(to, &temp, addrlen);
to += addrlen;
cnt++;
space_left -= addrlen;
*bytes_copied += addrlen;
}
rcu_read_unlock();
return cnt;
}
static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_bind_addr *bp;
struct sctp_association *asoc;
int cnt = 0;
struct sctp_getaddrs getaddrs;
struct sctp_sockaddr_entry *addr;
void __user *to;
union sctp_addr temp;
struct sctp_sock *sp = sctp_sk(sk);
int addrlen;
int err = 0;
size_t space_left;
int bytes_copied = 0;
void *addrs;
void *buf;
if (len < sizeof(struct sctp_getaddrs))
return -EINVAL;
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
return -EFAULT;
/*
* For UDP-style sockets, id specifies the association to query.
* If the id field is set to the value '0' then the locally bound
* addresses are returned without regard to any particular
* association.
*/
if (0 == getaddrs.assoc_id) {
bp = &sctp_sk(sk)->ep->base.bind_addr;
} else {
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
if (!asoc)
return -EINVAL;
bp = &asoc->base.bind_addr;
}
to = optval + offsetof(struct sctp_getaddrs, addrs);
space_left = len - offsetof(struct sctp_getaddrs, addrs);
addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
if (!addrs)
return -ENOMEM;
/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
* addresses from the global local address list.
*/
if (sctp_list_single_entry(&bp->address_list)) {
addr = list_entry(bp->address_list.next,
struct sctp_sockaddr_entry, list);
if (sctp_is_any(sk, &addr->a)) {
cnt = sctp_copy_laddrs(sk, bp->port, addrs,
space_left, &bytes_copied);
if (cnt < 0) {
err = cnt;
goto out;
}
goto copy_getaddrs;
}
}
buf = addrs;
/* Protection on the bound address list is not needed since
* in the socket option context we hold a socket lock and
* thus the bound address list can't change.
*/
list_for_each_entry(addr, &bp->address_list, list) {
memcpy(&temp, &addr->a, sizeof(temp));
addrlen = sctp_get_pf_specific(sk->sk_family)
->addr_to_user(sp, &temp);
if (space_left < addrlen) {
err = -ENOMEM; /*fixme: right error?*/
goto out;
}
memcpy(buf, &temp, addrlen);
buf += addrlen;
bytes_copied += addrlen;
cnt++;
space_left -= addrlen;
}
copy_getaddrs:
if (copy_to_user(to, addrs, bytes_copied)) {
err = -EFAULT;
goto out;
}
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
err = -EFAULT;
goto out;
}
/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
* but we can't change it anymore.
*/
if (put_user(bytes_copied, optlen))
err = -EFAULT;
out:
kfree(addrs);
return err;
}
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
*
* Requests that the local SCTP stack use the enclosed peer address as
* the association primary. The enclosed address must be one of the
* association peer's addresses.
*/
static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_prim prim;
struct sctp_association *asoc;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(struct sctp_prim))
return -EINVAL;
len = sizeof(struct sctp_prim);
if (copy_from_user(&prim, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
if (!asoc)
return -EINVAL;
if (!asoc->peer.primary_path)
return -ENOTCONN;
memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
asoc->peer.primary_path->af_specific->sockaddr_len);
sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
(union sctp_addr *)&prim.ssp_addr);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &prim, len))
return -EFAULT;
return 0;
}
/*
* 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
*
* Requests that the local endpoint set the specified Adaptation Layer
* Indication parameter for all future INIT and INIT-ACK exchanges.
*/
static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_setadaptation adaptation;
if (len < sizeof(struct sctp_setadaptation))
return -EINVAL;
len = sizeof(struct sctp_setadaptation);
adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &adaptation, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
*
* Applications that wish to use the sendto() system call may wish to
* specify a default set of parameters that would normally be supplied
* through the inclusion of ancillary data. This socket option allows
* such an application to set the default sctp_sndrcvinfo structure.
* The application that wishes to use this socket option simply passes
* in to this call the sctp_sndrcvinfo structure defined in Section
* 5.2.2) The input parameters accepted by this call include
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
* to this call if the caller is using the UDP model.
*
* For getsockopt, it get the default sctp_sndrcvinfo structure.
*/
static int sctp_getsockopt_default_send_param(struct sock *sk,
int len, char __user *optval,
int __user *optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_sndrcvinfo info;
if (len < sizeof(info))
return -EINVAL;
len = sizeof(info);
if (copy_from_user(&info, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
info.sinfo_stream = asoc->default_stream;
info.sinfo_flags = asoc->default_flags;
info.sinfo_ppid = asoc->default_ppid;
info.sinfo_context = asoc->default_context;
info.sinfo_timetolive = asoc->default_timetolive;
} else {
info.sinfo_stream = sp->default_stream;
info.sinfo_flags = sp->default_flags;
info.sinfo_ppid = sp->default_ppid;
info.sinfo_context = sp->default_context;
info.sinfo_timetolive = sp->default_timetolive;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &info, len))
return -EFAULT;
return 0;
}
/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
* (SCTP_DEFAULT_SNDINFO)
*/
static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_sndinfo info;
if (len < sizeof(info))
return -EINVAL;
len = sizeof(info);
if (copy_from_user(&info, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, info.snd_assoc_id);
if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
info.snd_sid = asoc->default_stream;
info.snd_flags = asoc->default_flags;
info.snd_ppid = asoc->default_ppid;
info.snd_context = asoc->default_context;
} else {
info.snd_sid = sp->default_stream;
info.snd_flags = sp->default_flags;
info.snd_ppid = sp->default_ppid;
info.snd_context = sp->default_context;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &info, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.5 SCTP_NODELAY
*
* Turn on/off any Nagle-like algorithm. This means that packets are
* generally sent as soon as possible and no unnecessary delays are
* introduced, at the cost of more packets in the network. Expects an
* integer boolean flag.
*/
static int sctp_getsockopt_nodelay(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = (sctp_sk(sk)->nodelay == 1);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.1 SCTP_RTOINFO
*
* The protocol parameters used to initialize and bound retransmission
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
* and modify these parameters.
* All parameters are time values, in milliseconds. A value of 0, when
* modifying the parameters, indicates that the current value should not
* be changed.
*
*/
static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen) {
struct sctp_rtoinfo rtoinfo;
struct sctp_association *asoc;
if (len < sizeof (struct sctp_rtoinfo))
return -EINVAL;
len = sizeof(struct sctp_rtoinfo);
if (copy_from_user(&rtoinfo, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Values corresponding to the specific association. */
if (asoc) {
rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
} else {
/* Values corresponding to the endpoint. */
struct sctp_sock *sp = sctp_sk(sk);
rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
rtoinfo.srto_max = sp->rtoinfo.srto_max;
rtoinfo.srto_min = sp->rtoinfo.srto_min;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &rtoinfo, len))
return -EFAULT;
return 0;
}
/*
*
* 7.1.2 SCTP_ASSOCINFO
*
* This option is used to tune the maximum retransmission attempts
* of the association.
* Returns an error if the new association retransmission value is
* greater than the sum of the retransmission value of the peer.
* See [SCTP] for more information.
*
*/
static int sctp_getsockopt_associnfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assocparams assocparams;
struct sctp_association *asoc;
struct list_head *pos;
int cnt = 0;
if (len < sizeof (struct sctp_assocparams))
return -EINVAL;
len = sizeof(struct sctp_assocparams);
if (copy_from_user(&assocparams, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
/* Values correspoinding to the specific association */
if (asoc) {
assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
assocparams.sasoc_local_rwnd = asoc->a_rwnd;
assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
list_for_each(pos, &asoc->peer.transport_addr_list) {
cnt++;
}
assocparams.sasoc_number_peer_destinations = cnt;
} else {
/* Values corresponding to the endpoint */
struct sctp_sock *sp = sctp_sk(sk);
assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
assocparams.sasoc_cookie_life =
sp->assocparams.sasoc_cookie_life;
assocparams.sasoc_number_peer_destinations =
sp->assocparams.
sasoc_number_peer_destinations;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &assocparams, len))
return -EFAULT;
return 0;
}
/*
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
*
* This socket option is a boolean flag which turns on or off mapped V4
* addresses. If this option is turned on and the socket is type
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
* If this option is turned off, then no mapping will be done of V4
* addresses and a user will receive both PF_INET6 and PF_INET type
* addresses on the socket.
*/
static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
struct sctp_sock *sp = sctp_sk(sk);
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sp->v4mapped;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 7.1.29. Set or Get the default context (SCTP_CONTEXT)
* (chapter and verse is quoted at sctp_setsockopt_context())
*/
static int sctp_getsockopt_context(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_sock *sp;
struct sctp_association *asoc;
if (len < sizeof(struct sctp_assoc_value))
return -EINVAL;
len = sizeof(struct sctp_assoc_value);
if (copy_from_user(&params, optval, len))
return -EFAULT;
sp = sctp_sk(sk);
if (params.assoc_id != 0) {
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc)
return -EINVAL;
params.assoc_value = asoc->default_rcv_context;
} else {
params.assoc_value = sp->default_rcv_context;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &params, len))
return -EFAULT;
return 0;
}
/*
* 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
* This option will get or set the maximum size to put in any outgoing
* SCTP DATA chunk. If a message is larger than this size it will be
* fragmented by SCTP into the specified size. Note that the underlying
* SCTP implementation may fragment into smaller sized chunks when the
* PMTU of the underlying association is smaller than the value set by
* the user. The default value for this option is '0' which indicates
* the user is NOT limiting fragmentation and only the PMTU will effect
* SCTP's choice of DATA chunk size. Note also that values set larger
* than the maximum size of an IP datagram will effectively let SCTP
* control fragmentation (i.e. the same as setting this option to 0).
*
* The following structure is used to access and modify this parameter:
*
* struct sctp_assoc_value {
* sctp_assoc_t assoc_id;
* uint32_t assoc_value;
* };
*
* assoc_id: This parameter is ignored for one-to-one style sockets.
* For one-to-many style sockets this parameter indicates which
* association the user is performing an action upon. Note that if
* this field's value is zero then the endpoints default value is
* changed (effecting future associations only).
* assoc_value: This parameter specifies the maximum size in bytes.
*/
static int sctp_getsockopt_maxseg(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
if (len == sizeof(int)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of int in maxseg socket option.\n"
"Use struct sctp_assoc_value instead\n",
current->comm, task_pid_nr(current));
params.assoc_id = 0;
} else if (len >= sizeof(struct sctp_assoc_value)) {
len = sizeof(struct sctp_assoc_value);
if (copy_from_user(&params, optval, len))
return -EFAULT;
} else
return -EINVAL;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc && params.assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
params.assoc_value = asoc->frag_point;
else
params.assoc_value = sctp_sk(sk)->user_frag;
if (put_user(len, optlen))
return -EFAULT;
if (len == sizeof(int)) {
if (copy_to_user(optval, &params.assoc_value, len))
return -EFAULT;
} else {
if (copy_to_user(optval, &params, len))
return -EFAULT;
}
return 0;
}
/*
* 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
* (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
*/
static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
val = sctp_sk(sk)->frag_interleave;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 7.1.25. Set or Get the sctp partial delivery point
* (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
*/
static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
u32 val;
if (len < sizeof(u32))
return -EINVAL;
len = sizeof(u32);
val = sctp_sk(sk)->pd_point;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
* (chapter and verse is quoted at sctp_setsockopt_maxburst())
*/
static int sctp_getsockopt_maxburst(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_sock *sp;
struct sctp_association *asoc;
if (len == sizeof(int)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of int in max_burst socket option.\n"
"Use struct sctp_assoc_value instead\n",
current->comm, task_pid_nr(current));
params.assoc_id = 0;
} else if (len >= sizeof(struct sctp_assoc_value)) {
len = sizeof(struct sctp_assoc_value);
if (copy_from_user(&params, optval, len))
return -EFAULT;
} else
return -EINVAL;
sp = sctp_sk(sk);
if (params.assoc_id != 0) {
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc)
return -EINVAL;
params.assoc_value = asoc->max_burst;
} else
params.assoc_value = sp->max_burst;
if (len == sizeof(int)) {
if (copy_to_user(optval, &params.assoc_value, len))
return -EFAULT;
} else {
if (copy_to_user(optval, &params, len))
return -EFAULT;
}
return 0;
}
static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_hmacalgo __user *p = (void __user *)optval;
struct sctp_hmac_algo_param *hmacs;
__u16 data_len = 0;
u32 num_idents;
int i;
if (!ep->auth_enable)
return -EACCES;
hmacs = ep->auth_hmacs_list;
data_len = ntohs(hmacs->param_hdr.length) -
sizeof(struct sctp_paramhdr);
if (len < sizeof(struct sctp_hmacalgo) + data_len)
return -EINVAL;
len = sizeof(struct sctp_hmacalgo) + data_len;
num_idents = data_len / sizeof(u16);
if (put_user(len, optlen))
return -EFAULT;
if (put_user(num_idents, &p->shmac_num_idents))
return -EFAULT;
for (i = 0; i < num_idents; i++) {
__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
return -EFAULT;
}
return 0;
}
static int sctp_getsockopt_active_key(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_authkeyid val;
struct sctp_association *asoc;
if (!ep->auth_enable)
return -EACCES;
if (len < sizeof(struct sctp_authkeyid))
return -EINVAL;
len = sizeof(struct sctp_authkeyid);
if (copy_from_user(&val, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
val.scact_keynumber = asoc->active_key_id;
else
val.scact_keynumber = ep->active_key_id;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_authchunks __user *p = (void __user *)optval;
struct sctp_authchunks val;
struct sctp_association *asoc;
struct sctp_chunks_param *ch;
u32 num_chunks = 0;
char __user *to;
if (!ep->auth_enable)
return -EACCES;
if (len < sizeof(struct sctp_authchunks))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
to = p->gauth_chunks;
asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
if (!asoc)
return -EINVAL;
ch = asoc->peer.peer_chunks;
if (!ch)
goto num;
/* See if the user provided enough room for all the data */
num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
if (len < num_chunks)
return -EINVAL;
if (copy_to_user(to, ch->chunks, num_chunks))
return -EFAULT;
num:
len = sizeof(struct sctp_authchunks) + num_chunks;
if (put_user(len, optlen))
return -EFAULT;
if (put_user(num_chunks, &p->gauth_number_of_chunks))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_authchunks __user *p = (void __user *)optval;
struct sctp_authchunks val;
struct sctp_association *asoc;
struct sctp_chunks_param *ch;
u32 num_chunks = 0;
char __user *to;
if (!ep->auth_enable)
return -EACCES;
if (len < sizeof(struct sctp_authchunks))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
to = p->gauth_chunks;
asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
return -EINVAL;
if (asoc)
ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
else
ch = ep->auth_chunk_list;
if (!ch)
goto num;
num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
if (len < sizeof(struct sctp_authchunks) + num_chunks)
return -EINVAL;
if (copy_to_user(to, ch->chunks, num_chunks))
return -EFAULT;
num:
len = sizeof(struct sctp_authchunks) + num_chunks;
if (put_user(len, optlen))
return -EFAULT;
if (put_user(num_chunks, &p->gauth_number_of_chunks))
return -EFAULT;
return 0;
}
/*
* 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
* This option gets the current number of associations that are attached
* to a one-to-many style socket. The option value is an uint32_t.
*/
static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
u32 val = 0;
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (len < sizeof(u32))
return -EINVAL;
len = sizeof(u32);
list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
val++;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 8.1.23 SCTP_AUTO_ASCONF
* See the corresponding setsockopt entry as description
*/
static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
int val = 0;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
val = 1;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* 8.2.6. Get the Current Identifiers of Associations
* (SCTP_GET_ASSOC_ID_LIST)
*
* This option gets the current list of SCTP association identifiers of
* the SCTP associations handled by a one-to-many style socket.
*/
static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_assoc_ids *ids;
u32 num = 0;
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (len < sizeof(struct sctp_assoc_ids))
return -EINVAL;
list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
num++;
}
if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
return -EINVAL;
len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
if (unlikely(!ids))
return -ENOMEM;
ids->gaids_number_of_ids = num;
num = 0;
list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
ids->gaids_assoc_id[num++] = asoc->assoc_id;
}
if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
kfree(ids);
return -EFAULT;
}
kfree(ids);
return 0;
}
/*
* SCTP_PEER_ADDR_THLDS
*
* This option allows us to fetch the partially failed threshold for one or all
* transports in an association. See Section 6.1 of:
* http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
*/
static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
char __user *optval,
int len,
int __user *optlen)
{
struct sctp_paddrthlds val;
struct sctp_transport *trans;
struct sctp_association *asoc;
if (len < sizeof(struct sctp_paddrthlds))
return -EINVAL;
len = sizeof(struct sctp_paddrthlds);
if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
return -EFAULT;
if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
asoc = sctp_id2assoc(sk, val.spt_assoc_id);
if (!asoc)
return -ENOENT;
val.spt_pathpfthld = asoc->pf_retrans;
val.spt_pathmaxrxt = asoc->pathmaxrxt;
} else {
trans = sctp_addr_id2transport(sk, &val.spt_address,
val.spt_assoc_id);
if (!trans)
return -ENOENT;
val.spt_pathmaxrxt = trans->pathmaxrxt;
val.spt_pathpfthld = trans->pf_retrans;
}
if (put_user(len, optlen) || copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
/*
* SCTP_GET_ASSOC_STATS
*
* This option retrieves local per endpoint statistics. It is modeled
* after OpenSolaris' implementation
*/
static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_stats sas;
struct sctp_association *asoc = NULL;
/* User must provide at least the assoc id */
if (len < sizeof(sctp_assoc_t))
return -EINVAL;
/* Allow the struct to grow and fill in as much as possible */
len = min_t(size_t, len, sizeof(sas));
if (copy_from_user(&sas, optval, len))
return -EFAULT;
asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
if (!asoc)
return -EINVAL;
sas.sas_rtxchunks = asoc->stats.rtxchunks;
sas.sas_gapcnt = asoc->stats.gapcnt;
sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
sas.sas_osacks = asoc->stats.osacks;
sas.sas_isacks = asoc->stats.isacks;
sas.sas_octrlchunks = asoc->stats.octrlchunks;
sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
sas.sas_oodchunks = asoc->stats.oodchunks;
sas.sas_iodchunks = asoc->stats.iodchunks;
sas.sas_ouodchunks = asoc->stats.ouodchunks;
sas.sas_iuodchunks = asoc->stats.iuodchunks;
sas.sas_idupchunks = asoc->stats.idupchunks;
sas.sas_opackets = asoc->stats.opackets;
sas.sas_ipackets = asoc->stats.ipackets;
/* New high max rto observed, will return 0 if not a single
* RTO update took place. obs_rto_ipaddr will be bogus
* in such a case
*/
sas.sas_maxrto = asoc->stats.max_obs_rto;
memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
sizeof(struct sockaddr_storage));
/* Mark beginning of a new observation period */
asoc->stats.max_obs_rto = asoc->rto_min;
if (put_user(len, optlen))
return -EFAULT;
pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
if (copy_to_user(optval, &sas, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
int val = 0;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
if (sctp_sk(sk)->recvrcvinfo)
val = 1;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
int val = 0;
if (len < sizeof(int))
return -EINVAL;
len = sizeof(int);
if (sctp_sk(sk)->recvnxtinfo)
val = 1;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (asoc) {
params.assoc_value = asoc->prsctp_enable;
} else if (!params.assoc_id) {
struct sctp_sock *sp = sctp_sk(sk);
params.assoc_value = sp->ep->prsctp_enable;
} else {
retval = -EINVAL;
goto out;
}
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_default_prinfo info;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(info)) {
retval = -EINVAL;
goto out;
}
len = sizeof(info);
if (copy_from_user(&info, optval, len))
goto out;
asoc = sctp_id2assoc(sk, info.pr_assoc_id);
if (asoc) {
info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
info.pr_value = asoc->default_timetolive;
} else if (!info.pr_assoc_id) {
struct sctp_sock *sp = sctp_sk(sk);
info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
info.pr_value = sp->default_timetolive;
} else {
retval = -EINVAL;
goto out;
}
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &info, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_prstatus params;
struct sctp_association *asoc;
int policy;
int retval = -EINVAL;
if (len < sizeof(params))
goto out;
len = sizeof(params);
if (copy_from_user(&params, optval, len)) {
retval = -EFAULT;
goto out;
}
policy = params.sprstat_policy;
if (policy & ~SCTP_PR_SCTP_MASK)
goto out;
asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
if (!asoc)
goto out;
if (policy == SCTP_PR_SCTP_NONE) {
params.sprstat_abandoned_unsent = 0;
params.sprstat_abandoned_sent = 0;
for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
params.sprstat_abandoned_unsent +=
asoc->abandoned_unsent[policy];
params.sprstat_abandoned_sent +=
asoc->abandoned_sent[policy];
}
} else {
params.sprstat_abandoned_unsent =
asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
params.sprstat_abandoned_sent =
asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
}
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
if (copy_to_user(optval, &params, len)) {
retval = -EFAULT;
goto out;
}
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_stream_out_ext *streamoute;
struct sctp_association *asoc;
struct sctp_prstatus params;
int retval = -EINVAL;
int policy;
if (len < sizeof(params))
goto out;
len = sizeof(params);
if (copy_from_user(&params, optval, len)) {
retval = -EFAULT;
goto out;
}
policy = params.sprstat_policy;
if (policy & ~SCTP_PR_SCTP_MASK)
goto out;
asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
goto out;
streamoute = asoc->stream.out[params.sprstat_sid].ext;
if (!streamoute) {
/* Not allocated yet, means all stats are 0 */
params.sprstat_abandoned_unsent = 0;
params.sprstat_abandoned_sent = 0;
retval = 0;
goto out;
}
if (policy == SCTP_PR_SCTP_NONE) {
params.sprstat_abandoned_unsent = 0;
params.sprstat_abandoned_sent = 0;
for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
params.sprstat_abandoned_unsent +=
streamoute->abandoned_unsent[policy];
params.sprstat_abandoned_sent +=
streamoute->abandoned_sent[policy];
}
} else {
params.sprstat_abandoned_unsent =
streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
params.sprstat_abandoned_sent =
streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
}
if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
retval = -EFAULT;
goto out;
}
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (asoc) {
params.assoc_value = asoc->reconf_enable;
} else if (!params.assoc_id) {
struct sctp_sock *sp = sctp_sk(sk);
params.assoc_value = sp->ep->reconf_enable;
} else {
retval = -EINVAL;
goto out;
}
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (asoc) {
params.assoc_value = asoc->strreset_enable;
} else if (!params.assoc_id) {
struct sctp_sock *sp = sctp_sk(sk);
params.assoc_value = sp->ep->strreset_enable;
} else {
retval = -EINVAL;
goto out;
}
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_scheduler(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc) {
retval = -EINVAL;
goto out;
}
params.assoc_value = sctp_sched_get_sched(asoc);
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_stream_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (!asoc) {
retval = -EINVAL;
goto out;
}
retval = sctp_sched_get_value(asoc, params.stream_id,
&params.stream_value);
if (retval)
goto out;
if (put_user(len, optlen)) {
retval = -EFAULT;
goto out;
}
if (copy_to_user(optval, &params, len)) {
retval = -EFAULT;
goto out;
}
out:
return retval;
}
static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_assoc_value params;
struct sctp_association *asoc;
int retval = -EFAULT;
if (len < sizeof(params)) {
retval = -EINVAL;
goto out;
}
len = sizeof(params);
if (copy_from_user(&params, optval, len))
goto out;
asoc = sctp_id2assoc(sk, params.assoc_id);
if (asoc) {
params.assoc_value = asoc->intl_enable;
} else if (!params.assoc_id) {
struct sctp_sock *sp = sctp_sk(sk);
params.assoc_value = sp->strm_interleave;
} else {
retval = -EINVAL;
goto out;
}
if (put_user(len, optlen))
goto out;
if (copy_to_user(optval, &params, len))
goto out;
retval = 0;
out:
return retval;
}
static int sctp_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
int retval = 0;
int len;
pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
/* I can hardly begin to describe how wrong this is. This is
* so broken as to be worse than useless. The API draft
* REALLY is NOT helpful here... I am not convinced that the
* semantics of getsockopt() with a level OTHER THAN SOL_SCTP
* are at all well-founded.
*/
if (level != SOL_SCTP) {
struct sctp_af *af = sctp_sk(sk)->pf->af;
retval = af->getsockopt(sk, level, optname, optval, optlen);
return retval;
}
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
lock_sock(sk);
switch (optname) {
case SCTP_STATUS:
retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
break;
case SCTP_DISABLE_FRAGMENTS:
retval = sctp_getsockopt_disable_fragments(sk, len, optval,
optlen);
break;
case SCTP_EVENTS:
retval = sctp_getsockopt_events(sk, len, optval, optlen);
break;
case SCTP_AUTOCLOSE:
retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
break;
case SCTP_SOCKOPT_PEELOFF:
retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
break;
case SCTP_SOCKOPT_PEELOFF_FLAGS:
retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
break;
case SCTP_PEER_ADDR_PARAMS:
retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
optlen);
break;
case SCTP_DELAYED_SACK:
retval = sctp_getsockopt_delayed_ack(sk, len, optval,
optlen);
break;
case SCTP_INITMSG:
retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
break;
case SCTP_GET_PEER_ADDRS:
retval = sctp_getsockopt_peer_addrs(sk, len, optval,
optlen);
break;
case SCTP_GET_LOCAL_ADDRS:
retval = sctp_getsockopt_local_addrs(sk, len, optval,
optlen);
break;
case SCTP_SOCKOPT_CONNECTX3:
retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
break;
case SCTP_DEFAULT_SEND_PARAM:
retval = sctp_getsockopt_default_send_param(sk, len,
optval, optlen);
break;
case SCTP_DEFAULT_SNDINFO:
retval = sctp_getsockopt_default_sndinfo(sk, len,
optval, optlen);
break;
case SCTP_PRIMARY_ADDR:
retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
break;
case SCTP_NODELAY:
retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
break;
case SCTP_RTOINFO:
retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
break;
case SCTP_ASSOCINFO:
retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
break;
case SCTP_MAXSEG:
retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
break;
case SCTP_GET_PEER_ADDR_INFO:
retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
optlen);
break;
case SCTP_ADAPTATION_LAYER:
retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
optlen);
break;
case SCTP_CONTEXT:
retval = sctp_getsockopt_context(sk, len, optval, optlen);
break;
case SCTP_FRAGMENT_INTERLEAVE:
retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
optlen);
break;
case SCTP_PARTIAL_DELIVERY_POINT:
retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
optlen);
break;
case SCTP_MAX_BURST:
retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
break;
case SCTP_AUTH_KEY:
case SCTP_AUTH_CHUNK:
case SCTP_AUTH_DELETE_KEY:
case SCTP_AUTH_DEACTIVATE_KEY:
retval = -EOPNOTSUPP;
break;
case SCTP_HMAC_IDENT:
retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
break;
case SCTP_AUTH_ACTIVE_KEY:
retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
break;
case SCTP_PEER_AUTH_CHUNKS:
retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
optlen);
break;
case SCTP_LOCAL_AUTH_CHUNKS:
retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
optlen);
break;
case SCTP_GET_ASSOC_NUMBER:
retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
break;
case SCTP_GET_ASSOC_ID_LIST:
retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
break;
case SCTP_AUTO_ASCONF:
retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
break;
case SCTP_PEER_ADDR_THLDS:
retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
break;
case SCTP_GET_ASSOC_STATS:
retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
break;
case SCTP_RECVRCVINFO:
retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
break;
case SCTP_RECVNXTINFO:
retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
break;
case SCTP_PR_SUPPORTED:
retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
break;
case SCTP_DEFAULT_PRINFO:
retval = sctp_getsockopt_default_prinfo(sk, len, optval,
optlen);
break;
case SCTP_PR_ASSOC_STATUS:
retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
optlen);
break;
case SCTP_PR_STREAM_STATUS:
retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
optlen);
break;
case SCTP_RECONFIG_SUPPORTED:
retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
optlen);
break;
case SCTP_ENABLE_STREAM_RESET:
retval = sctp_getsockopt_enable_strreset(sk, len, optval,
optlen);
break;
case SCTP_STREAM_SCHEDULER:
retval = sctp_getsockopt_scheduler(sk, len, optval,
optlen);
break;
case SCTP_STREAM_SCHEDULER_VALUE:
retval = sctp_getsockopt_scheduler_value(sk, len, optval,
optlen);
break;
case SCTP_INTERLEAVING_SUPPORTED:
retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
optlen);
break;
default:
retval = -ENOPROTOOPT;
break;
}
release_sock(sk);
return retval;
}
static int sctp_hash(struct sock *sk)
{
/* STUB */
return 0;
}
static void sctp_unhash(struct sock *sk)
{
/* STUB */
}
/* Check if port is acceptable. Possibly find first available port.
*
* The port hash table (contained in the 'global' SCTP protocol storage
* returned by struct sctp_protocol *sctp_get_protocol()). The hash
* table is an array of 4096 lists (sctp_bind_hashbucket). Each
* list (the list number is the port number hashed out, so as you
* would expect from a hash function, all the ports in a given list have
* such a number that hashes out to the same list number; you were
* expecting that, right?); so each list has a set of ports, with a
* link to the socket (struct sock) that uses it, the port number and
* a fastreuse flag (FIXME: NPI ipg).
*/
static struct sctp_bind_bucket *sctp_bucket_create(
struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
{
struct sctp_bind_hashbucket *head; /* hash list */
struct sctp_bind_bucket *pp;
unsigned short snum;
int ret;
snum = ntohs(addr->v4.sin_port);
pr_debug("%s: begins, snum:%d\n", __func__, snum);
local_bh_disable();
if (snum == 0) {
/* Search for an available port. */
int low, high, remaining, index;
unsigned int rover;
struct net *net = sock_net(sk);
inet_get_local_port_range(net, &low, &high);
remaining = (high - low) + 1;
rover = prandom_u32() % remaining + low;
do {
rover++;
if ((rover < low) || (rover > high))
rover = low;
if (inet_is_local_reserved_port(net, rover))
continue;
index = sctp_phashfn(sock_net(sk), rover);
head = &sctp_port_hashtable[index];
spin_lock(&head->lock);
sctp_for_each_hentry(pp, &head->chain)
if ((pp->port == rover) &&
net_eq(sock_net(sk), pp->net))
goto next;
break;
next:
spin_unlock(&head->lock);
} while (--remaining > 0);
/* Exhausted local port range during search? */
ret = 1;
if (remaining <= 0)
goto fail;
/* OK, here is the one we will use. HEAD (the port
* hash table list entry) is non-NULL and we hold it's
* mutex.
*/
snum = rover;
} else {
/* We are given an specific port number; we verify
* that it is not being used. If it is used, we will
* exahust the search in the hash list corresponding
* to the port number (snum) - we detect that with the
* port iterator, pp being NULL.
*/
head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
spin_lock(&head->lock);
sctp_for_each_hentry(pp, &head->chain) {
if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
goto pp_found;
}
}
pp = NULL;
goto pp_not_found;
pp_found:
if (!hlist_empty(&pp->owner)) {
/* We had a port hash table hit - there is an
* available port (pp != NULL) and it is being
* used by other socket (pp->owner not empty); that other
* socket is going to be sk2.
*/
int reuse = sk->sk_reuse;
struct sock *sk2;
pr_debug("%s: found a possible match\n", __func__);
if (pp->fastreuse && sk->sk_reuse &&
sk->sk_state != SCTP_SS_LISTENING)
goto success;
/* Run through the list of sockets bound to the port
* (pp->port) [via the pointers bind_next and
* bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
* we get the endpoint they describe and run through
* the endpoint's list of IP (v4 or v6) addresses,
* comparing each of the addresses with the address of
* the socket sk. If we find a match, then that means
* that this port/socket (sk) combination are already
* in an endpoint.
*/
sk_for_each_bound(sk2, &pp->owner) {
struct sctp_endpoint *ep2;
ep2 = sctp_sk(sk2)->ep;
if (sk == sk2 ||
(reuse && sk2->sk_reuse &&
sk2->sk_state != SCTP_SS_LISTENING))
continue;
if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
sctp_sk(sk2), sctp_sk(sk))) {
ret = (long)sk2;
goto fail_unlock;
}
}
pr_debug("%s: found a match\n", __func__);
}
pp_not_found:
/* If there was a hash table miss, create a new port. */
ret = 1;
if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
goto fail_unlock;
/* In either case (hit or miss), make sure fastreuse is 1 only
* if sk->sk_reuse is too (that is, if the caller requested
* SO_REUSEADDR on this socket -sk-).
*/
if (hlist_empty(&pp->owner)) {
if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
pp->fastreuse = 1;
else
pp->fastreuse = 0;
} else if (pp->fastreuse &&
(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
pp->fastreuse = 0;
/* We are set, so fill up all the data in the hash table
* entry, tie the socket list information with the rest of the
* sockets FIXME: Blurry, NPI (ipg).
*/
success:
if (!sctp_sk(sk)->bind_hash) {
inet_sk(sk)->inet_num = snum;
sk_add_bind_node(sk, &pp->owner);
sctp_sk(sk)->bind_hash = pp;
}
ret = 0;
fail_unlock:
spin_unlock(&head->lock);
fail:
local_bh_enable();
return ret;
}
/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
* port is requested.
*/
static int sctp_get_port(struct sock *sk, unsigned short snum)
{
union sctp_addr addr;
struct sctp_af *af = sctp_sk(sk)->pf->af;
/* Set up a dummy address struct from the sk. */
af->from_sk(&addr, sk);
addr.v4.sin_port = htons(snum);
/* Note: sk->sk_num gets filled in if ephemeral port request. */
return !!sctp_get_port_local(sk, &addr);
}
/*
* Move a socket to LISTENING state.
*/
static int sctp_listen_start(struct sock *sk, int backlog)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
struct crypto_shash *tfm = NULL;
char alg[32];
/* Allocate HMAC for generating cookie. */
if (!sp->hmac && sp->sctp_hmac_alg) {
sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
tfm = crypto_alloc_shash(alg, 0, 0);
if (IS_ERR(tfm)) {
net_info_ratelimited("failed to load transform for %s: %ld\n",
sp->sctp_hmac_alg, PTR_ERR(tfm));
return -ENOSYS;
}
sctp_sk(sk)->hmac = tfm;
}
/*
* If a bind() or sctp_bindx() is not called prior to a listen()
* call that allows new associations to be accepted, the system
* picks an ephemeral port and will choose an address set equivalent
* to binding with a wildcard address.
*
* This is not currently spelled out in the SCTP sockets
* extensions draft, but follows the practice as seen in TCP
* sockets.
*
*/
inet_sk_set_state(sk, SCTP_SS_LISTENING);
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk))
return -EAGAIN;
} else {
if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
inet_sk_set_state(sk, SCTP_SS_CLOSED);
return -EADDRINUSE;
}
}
sk->sk_max_ack_backlog = backlog;
sctp_hash_endpoint(ep);
return 0;
}
/*
* 4.1.3 / 5.1.3 listen()
*
* By default, new associations are not accepted for UDP style sockets.
* An application uses listen() to mark a socket as being able to
* accept new associations.
*
* On TCP style sockets, applications use listen() to ready the SCTP
* endpoint for accepting inbound associations.
*
* On both types of endpoints a backlog of '0' disables listening.
*
* Move a socket to LISTENING state.
*/
int sctp_inet_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
int err = -EINVAL;
if (unlikely(backlog < 0))
return err;
lock_sock(sk);
/* Peeled-off sockets are not allowed to listen(). */
if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
goto out;
if (sock->state != SS_UNCONNECTED)
goto out;
if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
goto out;
/* If backlog is zero, disable listening. */
if (!backlog) {
if (sctp_sstate(sk, CLOSED))
goto out;
err = 0;
sctp_unhash_endpoint(ep);
sk->sk_state = SCTP_SS_CLOSED;
if (sk->sk_reuse)
sctp_sk(sk)->bind_hash->fastreuse = 1;
goto out;
}
/* If we are already listening, just update the backlog */
if (sctp_sstate(sk, LISTENING))
sk->sk_max_ack_backlog = backlog;
else {
err = sctp_listen_start(sk, backlog);
if (err)
goto out;
}
err = 0;
out:
release_sock(sk);
return err;
}
/*
* This function is done by modeling the current datagram_poll() and the
* tcp_poll(). Note that, based on these implementations, we don't
* lock the socket in this function, even though it seems that,
* ideally, locking or some other mechanisms can be used to ensure
* the integrity of the counters (sndbuf and wmem_alloc) used
* in this place. We assume that we don't need locks either until proven
* otherwise.
*
* Another thing to note is that we include the Async I/O support
* here, again, by modeling the current TCP/UDP code. We don't have
* a good way to test with it yet.
*/
__poll_t sctp_poll_mask(struct socket *sock, __poll_t events)
{
struct sock *sk = sock->sk;
struct sctp_sock *sp = sctp_sk(sk);
__poll_t mask;
sock_rps_record_flow(sk);
/* A TCP-style listening socket becomes readable when the accept queue
* is not empty.
*/
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
return (!list_empty(&sp->ep->asocs)) ?
(EPOLLIN | EPOLLRDNORM) : 0;
mask = 0;
/* Is there any exceptional events? */
if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
mask |= EPOLLERR |
(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
if (sk->sk_shutdown == SHUTDOWN_MASK)
mask |= EPOLLHUP;
/* Is it readable? Reconsider this code with TCP-style support. */
if (!skb_queue_empty(&sk->sk_receive_queue))
mask |= EPOLLIN | EPOLLRDNORM;
/* The association is either gone or not ready. */
if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
return mask;
/* Is it writable? */
if (sctp_writeable(sk)) {
mask |= EPOLLOUT | EPOLLWRNORM;
} else {
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
/*
* Since the socket is not locked, the buffer
* might be made available after the writeable check and
* before the bit is set. This could cause a lost I/O
* signal. tcp_poll() has a race breaker for this race
* condition. Based on their implementation, we put
* in the following code to cover it as well.
*/
if (sctp_writeable(sk))
mask |= EPOLLOUT | EPOLLWRNORM;
}
return mask;
}
/********************************************************************
* 2nd Level Abstractions
********************************************************************/
static struct sctp_bind_bucket *sctp_bucket_create(
struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
{
struct sctp_bind_bucket *pp;
pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
if (pp) {
SCTP_DBG_OBJCNT_INC(bind_bucket);
pp->port = snum;
pp->fastreuse = 0;
INIT_HLIST_HEAD(&pp->owner);
pp->net = net;
hlist_add_head(&pp->node, &head->chain);
}
return pp;
}
/* Caller must hold hashbucket lock for this tb with local BH disabled */
static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
{
if (pp && hlist_empty(&pp->owner)) {
__hlist_del(&pp->node);
kmem_cache_free(sctp_bucket_cachep, pp);
SCTP_DBG_OBJCNT_DEC(bind_bucket);
}
}
/* Release this socket's reference to a local port. */
static inline void __sctp_put_port(struct sock *sk)
{
struct sctp_bind_hashbucket *head =
&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
inet_sk(sk)->inet_num)];
struct sctp_bind_bucket *pp;
spin_lock(&head->lock);
pp = sctp_sk(sk)->bind_hash;
__sk_del_bind_node(sk);
sctp_sk(sk)->bind_hash = NULL;
inet_sk(sk)->inet_num = 0;
sctp_bucket_destroy(pp);
spin_unlock(&head->lock);
}
void sctp_put_port(struct sock *sk)
{
local_bh_disable();
__sctp_put_port(sk);
local_bh_enable();
}
/*
* The system picks an ephemeral port and choose an address set equivalent
* to binding with a wildcard address.
* One of those addresses will be the primary address for the association.
* This automatically enables the multihoming capability of SCTP.
*/
static int sctp_autobind(struct sock *sk)
{
union sctp_addr autoaddr;
struct sctp_af *af;
__be16 port;
/* Initialize a local sockaddr structure to INADDR_ANY. */
af = sctp_sk(sk)->pf->af;
port = htons(inet_sk(sk)->inet_num);
af->inaddr_any(&autoaddr, port);
return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
}
/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
*
* From RFC 2292
* 4.2 The cmsghdr Structure *
*
* When ancillary data is sent or received, any number of ancillary data
* objects can be specified by the msg_control and msg_controllen members of
* the msghdr structure, because each object is preceded by
* a cmsghdr structure defining the object's length (the cmsg_len member).
* Historically Berkeley-derived implementations have passed only one object
* at a time, but this API allows multiple objects to be
* passed in a single call to sendmsg() or recvmsg(). The following example
* shows two ancillary data objects in a control buffer.
*
* |<--------------------------- msg_controllen -------------------------->|
* | |
*
* |<----- ancillary data object ----->|<----- ancillary data object ----->|
*
* |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
* | | |
*
* |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
*
* |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
* | | | | |
*
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
* |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
*
* |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
*
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
* ^
* |
*
* msg_control
* points here
*/
static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
{
struct msghdr *my_msg = (struct msghdr *)msg;
struct cmsghdr *cmsg;
for_each_cmsghdr(cmsg, my_msg) {
if (!CMSG_OK(my_msg, cmsg))
return -EINVAL;
/* Should we parse this header or ignore? */
if (cmsg->cmsg_level != IPPROTO_SCTP)
continue;
/* Strictly check lengths following example in SCM code. */
switch (cmsg->cmsg_type) {
case SCTP_INIT:
/* SCTP Socket API Extension
* 5.3.1 SCTP Initiation Structure (SCTP_INIT)
*
* This cmsghdr structure provides information for
* initializing new SCTP associations with sendmsg().
* The SCTP_INITMSG socket option uses this same data
* structure. This structure is not used for
* recvmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ----------------------
* IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
*/
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
return -EINVAL;
cmsgs->init = CMSG_DATA(cmsg);
break;
case SCTP_SNDRCV:
/* SCTP Socket API Extension
* 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
*
* This cmsghdr structure specifies SCTP options for
* sendmsg() and describes SCTP header information
* about a received message through recvmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ----------------------
* IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
*/
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
return -EINVAL;
cmsgs->srinfo = CMSG_DATA(cmsg);
if (cmsgs->srinfo->sinfo_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
return -EINVAL;
break;
case SCTP_SNDINFO:
/* SCTP Socket API Extension
* 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
*
* This cmsghdr structure specifies SCTP options for
* sendmsg(). This structure and SCTP_RCVINFO replaces
* SCTP_SNDRCV which has been deprecated.
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ---------------------
* IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
*/
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
return -EINVAL;
cmsgs->sinfo = CMSG_DATA(cmsg);
if (cmsgs->sinfo->snd_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
return -EINVAL;
break;
case SCTP_PRINFO:
/* SCTP Socket API Extension
* 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
*
* This cmsghdr structure specifies SCTP options for sendmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ---------------------
* IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
*/
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
return -EINVAL;
cmsgs->prinfo = CMSG_DATA(cmsg);
if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
return -EINVAL;
if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
cmsgs->prinfo->pr_value = 0;
break;
case SCTP_AUTHINFO:
/* SCTP Socket API Extension
* 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
*
* This cmsghdr structure specifies SCTP options for sendmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ---------------------
* IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
*/
if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
return -EINVAL;
cmsgs->authinfo = CMSG_DATA(cmsg);
break;
case SCTP_DSTADDRV4:
case SCTP_DSTADDRV6:
/* SCTP Socket API Extension
* 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
*
* This cmsghdr structure specifies SCTP options for sendmsg().
*
* cmsg_level cmsg_type cmsg_data[]
* ------------ ------------ ---------------------
* IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
* ------------ ------------ ---------------------
* IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
*/
cmsgs->addrs_msg = my_msg;
break;
default:
return -EINVAL;
}
}
return 0;
}
/*
* Wait for a packet..
* Note: This function is the same function as in core/datagram.c
* with a few modifications to make lksctp work.
*/
static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
{
int error;
DEFINE_WAIT(wait);
prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
/* Socket errors? */
error = sock_error(sk);
if (error)
goto out;
if (!skb_queue_empty(&sk->sk_receive_queue))
goto ready;
/* Socket shut down? */
if (sk->sk_shutdown & RCV_SHUTDOWN)
goto out;
/* Sequenced packets can come disconnected. If so we report the
* problem.
*/
error = -ENOTCONN;
/* Is there a good reason to think that we may receive some data? */
if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
goto out;
/* Handle signals. */
if (signal_pending(current))
goto interrupted;
/* Let another process have a go. Since we are going to sleep
* anyway. Note: This may cause odd behaviors if the message
* does not fit in the user's buffer, but this seems to be the
* only way to honor MSG_DONTWAIT realistically.
*/
release_sock(sk);
*timeo_p = schedule_timeout(*timeo_p);
lock_sock(sk);
ready:
finish_wait(sk_sleep(sk), &wait);
return 0;
interrupted:
error = sock_intr_errno(*timeo_p);
out:
finish_wait(sk_sleep(sk), &wait);
*err = error;
return error;
}
/* Receive a datagram.
* Note: This is pretty much the same routine as in core/datagram.c
* with a few changes to make lksctp work.
*/
struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
int noblock, int *err)
{
int error;
struct sk_buff *skb;
long timeo;
timeo = sock_rcvtimeo(sk, noblock);
pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
MAX_SCHEDULE_TIMEOUT);
do {
/* Again only user level code calls this function,
* so nothing interrupt level
* will suddenly eat the receive_queue.
*
* Look at current nfs client by the way...
* However, this function was correct in any case. 8)
*/
if (flags & MSG_PEEK) {
skb = skb_peek(&sk->sk_receive_queue);
if (skb)
refcount_inc(&skb->users);
} else {
skb = __skb_dequeue(&sk->sk_receive_queue);
}
if (skb)
return skb;
/* Caller is allowed not to check sk->sk_err before calling. */
error = sock_error(sk);
if (error)
goto no_packet;
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk_can_busy_loop(sk)) {
sk_busy_loop(sk, noblock);
if (!skb_queue_empty(&sk->sk_receive_queue))
continue;
}
/* User doesn't want to wait. */
error = -EAGAIN;
if (!timeo)
goto no_packet;
} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
return NULL;
no_packet:
*err = error;
return NULL;
}
/* If sndbuf has changed, wake up per association sndbuf waiters. */
static void __sctp_write_space(struct sctp_association *asoc)
{
struct sock *sk = asoc->base.sk;
if (sctp_wspace(asoc) <= 0)
return;
if (waitqueue_active(&asoc->wait))
wake_up_interruptible(&asoc->wait);
if (sctp_writeable(sk)) {
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (wq) {
if (waitqueue_active(&wq->wait))
wake_up_interruptible(&wq->wait);
/* Note that we try to include the Async I/O support
* here by modeling from the current TCP/UDP code.
* We have not tested with it yet.
*/
if (!(sk->sk_shutdown & SEND_SHUTDOWN))
sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
}
rcu_read_unlock();
}
}
static void sctp_wake_up_waiters(struct sock *sk,
struct sctp_association *asoc)
{
struct sctp_association *tmp = asoc;
/* We do accounting for the sndbuf space per association,
* so we only need to wake our own association.
*/
if (asoc->ep->sndbuf_policy)
return __sctp_write_space(asoc);
/* If association goes down and is just flushing its
* outq, then just normally notify others.
*/
if (asoc->base.dead)
return sctp_write_space(sk);
/* Accounting for the sndbuf space is per socket, so we
* need to wake up others, try to be fair and in case of
* other associations, let them have a go first instead
* of just doing a sctp_write_space() call.
*
* Note that we reach sctp_wake_up_waiters() only when
* associations free up queued chunks, thus we are under
* lock and the list of associations on a socket is
* guaranteed not to change.
*/
for (tmp = list_next_entry(tmp, asocs); 1;
tmp = list_next_entry(tmp, asocs)) {
/* Manually skip the head element. */
if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
continue;
/* Wake up association. */
__sctp_write_space(tmp);
/* We've reached the end. */
if (tmp == asoc)
break;
}
}
/* Do accounting for the sndbuf space.
* Decrement the used sndbuf space of the corresponding association by the
* data size which was just transmitted(freed).
*/
static void sctp_wfree(struct sk_buff *skb)
{
struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
struct sctp_association *asoc = chunk->asoc;
struct sock *sk = asoc->base.sk;
asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
sizeof(struct sk_buff) +
sizeof(struct sctp_chunk);
WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc));
/*
* This undoes what is done via sctp_set_owner_w and sk_mem_charge
*/
sk->sk_wmem_queued -= skb->truesize;
sk_mem_uncharge(sk, skb->truesize);
if (chunk->shkey) {
struct sctp_shared_key *shkey = chunk->shkey;
/* refcnt == 2 and !list_empty mean after this release, it's
* not being used anywhere, and it's time to notify userland
* that this shkey can be freed if it's been deactivated.
*/
if (shkey->deactivated && !list_empty(&shkey->key_list) &&
refcount_read(&shkey->refcnt) == 2) {
struct sctp_ulpevent *ev;
ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
SCTP_AUTH_FREE_KEY,
GFP_KERNEL);
if (ev)
asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
}
sctp_auth_shkey_release(chunk->shkey);
}
sock_wfree(skb);
sctp_wake_up_waiters(sk, asoc);
sctp_association_put(asoc);
}
/* Do accounting for the receive space on the socket.
* Accounting for the association is done in ulpevent.c
* We set this as a destructor for the cloned data skbs so that
* accounting is done at the correct time.
*/
void sctp_sock_rfree(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
struct sctp_ulpevent *event = sctp_skb2event(skb);
atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
/*
* Mimic the behavior of sock_rfree
*/
sk_mem_uncharge(sk, event->rmem_len);
}
/* Helper function to wait for space in the sndbuf. */
static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
size_t msg_len)
{
struct sock *sk = asoc->base.sk;
long current_timeo = *timeo_p;
DEFINE_WAIT(wait);
int err = 0;
pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
*timeo_p, msg_len);
/* Increment the association's refcnt. */
sctp_association_hold(asoc);
/* Wait on the association specific sndbuf space. */
for (;;) {
prepare_to_wait_exclusive(&asoc->wait, &wait,
TASK_INTERRUPTIBLE);
if (asoc->base.dead)
goto do_dead;
if (!*timeo_p)
goto do_nonblock;
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
goto do_error;
if (signal_pending(current))
goto do_interrupted;
if (msg_len <= sctp_wspace(asoc))
break;
/* Let another process have a go. Since we are going
* to sleep anyway.
*/
release_sock(sk);
current_timeo = schedule_timeout(current_timeo);
lock_sock(sk);
if (sk != asoc->base.sk)
goto do_error;
*timeo_p = current_timeo;
}
out:
finish_wait(&asoc->wait, &wait);
/* Release the association's refcnt. */
sctp_association_put(asoc);
return err;
do_dead:
err = -ESRCH;
goto out;
do_error:
err = -EPIPE;
goto out;
do_interrupted:
err = sock_intr_errno(*timeo_p);
goto out;
do_nonblock:
err = -EAGAIN;
goto out;
}
void sctp_data_ready(struct sock *sk)
{
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
EPOLLRDNORM | EPOLLRDBAND);
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
rcu_read_unlock();
}
/* If socket sndbuf has changed, wake up all per association waiters. */
void sctp_write_space(struct sock *sk)
{
struct sctp_association *asoc;
/* Wake up the tasks in each wait queue. */
list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
__sctp_write_space(asoc);
}
}
/* Is there any sndbuf space available on the socket?
*
* Note that sk_wmem_alloc is the sum of the send buffers on all of the
* associations on the same socket. For a UDP-style socket with
* multiple associations, it is possible for it to be "unwriteable"
* prematurely. I assume that this is acceptable because
* a premature "unwriteable" is better than an accidental "writeable" which
* would cause an unwanted block under certain circumstances. For the 1-1
* UDP-style sockets or TCP-style sockets, this code should work.
* - Daisy
*/
static int sctp_writeable(struct sock *sk)
{
int amt = 0;
amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
if (amt < 0)
amt = 0;
return amt;
}
/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
* returns immediately with EINPROGRESS.
*/
static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
{
struct sock *sk = asoc->base.sk;
int err = 0;
long current_timeo = *timeo_p;
DEFINE_WAIT(wait);
pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
/* Increment the association's refcnt. */
sctp_association_hold(asoc);
for (;;) {
prepare_to_wait_exclusive(&asoc->wait, &wait,
TASK_INTERRUPTIBLE);
if (!*timeo_p)
goto do_nonblock;
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
asoc->base.dead)
goto do_error;
if (signal_pending(current))
goto do_interrupted;
if (sctp_state(asoc, ESTABLISHED))
break;
/* Let another process have a go. Since we are going
* to sleep anyway.
*/
release_sock(sk);
current_timeo = schedule_timeout(current_timeo);
lock_sock(sk);
*timeo_p = current_timeo;
}
out:
finish_wait(&asoc->wait, &wait);
/* Release the association's refcnt. */
sctp_association_put(asoc);
return err;
do_error:
if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
err = -ETIMEDOUT;
else
err = -ECONNREFUSED;
goto out;
do_interrupted:
err = sock_intr_errno(*timeo_p);
goto out;
do_nonblock:
err = -EINPROGRESS;
goto out;
}
static int sctp_wait_for_accept(struct sock *sk, long timeo)
{
struct sctp_endpoint *ep;
int err = 0;
DEFINE_WAIT(wait);
ep = sctp_sk(sk)->ep;
for (;;) {
prepare_to_wait_exclusive(sk_sleep(sk), &wait,
TASK_INTERRUPTIBLE);
if (list_empty(&ep->asocs)) {
release_sock(sk);
timeo = schedule_timeout(timeo);
lock_sock(sk);
}
err = -EINVAL;
if (!sctp_sstate(sk, LISTENING))
break;
err = 0;
if (!list_empty(&ep->asocs))
break;
err = sock_intr_errno(timeo);
if (signal_pending(current))
break;
err = -EAGAIN;
if (!timeo)
break;
}
finish_wait(sk_sleep(sk), &wait);
return err;
}
static void sctp_wait_for_close(struct sock *sk, long timeout)
{
DEFINE_WAIT(wait);
do {
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
if (list_empty(&sctp_sk(sk)->ep->asocs))
break;
release_sock(sk);
timeout = schedule_timeout(timeout);
lock_sock(sk);
} while (!signal_pending(current) && timeout);
finish_wait(sk_sleep(sk), &wait);
}
static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
{
struct sk_buff *frag;
if (!skb->data_len)
goto done;
/* Don't forget the fragments. */
skb_walk_frags(skb, frag)
sctp_skb_set_owner_r_frag(frag, sk);
done:
sctp_skb_set_owner_r(skb, sk);
}
void sctp_copy_sock(struct sock *newsk, struct sock *sk,
struct sctp_association *asoc)
{
struct inet_sock *inet = inet_sk(sk);
struct inet_sock *newinet;
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
newsk->sk_type = sk->sk_type;
newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
newsk->sk_flags = sk->sk_flags;
newsk->sk_tsflags = sk->sk_tsflags;
newsk->sk_no_check_tx = sk->sk_no_check_tx;
newsk->sk_no_check_rx = sk->sk_no_check_rx;
newsk->sk_reuse = sk->sk_reuse;
newsk->sk_shutdown = sk->sk_shutdown;
newsk->sk_destruct = sctp_destruct_sock;
newsk->sk_family = sk->sk_family;
newsk->sk_protocol = IPPROTO_SCTP;
newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
newsk->sk_sndbuf = sk->sk_sndbuf;
newsk->sk_rcvbuf = sk->sk_rcvbuf;
newsk->sk_lingertime = sk->sk_lingertime;
newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
newsk->sk_sndtimeo = sk->sk_sndtimeo;
newsk->sk_rxhash = sk->sk_rxhash;
newinet = inet_sk(newsk);
/* Initialize sk's sport, dport, rcv_saddr and daddr for
* getsockname() and getpeername()
*/
newinet->inet_sport = inet->inet_sport;
newinet->inet_saddr = inet->inet_saddr;
newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
newinet->inet_dport = htons(asoc->peer.port);
newinet->pmtudisc = inet->pmtudisc;
newinet->inet_id = asoc->next_tsn ^ jiffies;
newinet->uc_ttl = inet->uc_ttl;
newinet->mc_loop = 1;
newinet->mc_ttl = 1;
newinet->mc_index = 0;
newinet->mc_list = NULL;
if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
net_enable_timestamp();
/* Set newsk security attributes from orginal sk and connection
* security attribute from ep.
*/
security_sctp_sk_clone(ep, sk, newsk);
}
static inline void sctp_copy_descendant(struct sock *sk_to,
const struct sock *sk_from)
{
int ancestor_size = sizeof(struct inet_sock) +
sizeof(struct sctp_sock) -
offsetof(struct sctp_sock, auto_asconf_list);
if (sk_from->sk_family == PF_INET6)
ancestor_size += sizeof(struct ipv6_pinfo);
__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
}
/* Populate the fields of the newsk from the oldsk and migrate the assoc
* and its messages to the newsk.
*/
static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
struct sctp_association *assoc,
enum sctp_socket_type type)
{
struct sctp_sock *oldsp = sctp_sk(oldsk);
struct sctp_sock *newsp = sctp_sk(newsk);
struct sctp_bind_bucket *pp; /* hash list port iterator */
struct sctp_endpoint *newep = newsp->ep;
struct sk_buff *skb, *tmp;
struct sctp_ulpevent *event;
struct sctp_bind_hashbucket *head;
/* Migrate socket buffer sizes and all the socket level options to the
* new socket.
*/
newsk->sk_sndbuf = oldsk->sk_sndbuf;
newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
/* Brute force copy old sctp opt. */
sctp_copy_descendant(newsk, oldsk);
/* Restore the ep value that was overwritten with the above structure
* copy.
*/
newsp->ep = newep;
newsp->hmac = NULL;
/* Hook this new socket in to the bind_hash list. */
head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
inet_sk(oldsk)->inet_num)];
spin_lock_bh(&head->lock);
pp = sctp_sk(oldsk)->bind_hash;
sk_add_bind_node(newsk, &pp->owner);
sctp_sk(newsk)->bind_hash = pp;
inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
spin_unlock_bh(&head->lock);
/* Copy the bind_addr list from the original endpoint to the new
* endpoint so that we can handle restarts properly
*/
sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
&oldsp->ep->base.bind_addr, GFP_KERNEL);
/* Move any messages in the old socket's receive queue that are for the
* peeled off association to the new socket's receive queue.
*/
sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
event = sctp_skb2event(skb);
if (event->asoc == assoc) {
__skb_unlink(skb, &oldsk->sk_receive_queue);
__skb_queue_tail(&newsk->sk_receive_queue, skb);
sctp_skb_set_owner_r_frag(skb, newsk);
}
}
/* Clean up any messages pending delivery due to partial
* delivery. Three cases:
* 1) No partial deliver; no work.
* 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
* 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
*/
skb_queue_head_init(&newsp->pd_lobby);
atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
struct sk_buff_head *queue;
/* Decide which queue to move pd_lobby skbs to. */
if (assoc->ulpq.pd_mode) {
queue = &newsp->pd_lobby;
} else
queue = &newsk->sk_receive_queue;
/* Walk through the pd_lobby, looking for skbs that
* need moved to the new socket.
*/
sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
event = sctp_skb2event(skb);
if (event->asoc == assoc) {
__skb_unlink(skb, &oldsp->pd_lobby);
__skb_queue_tail(queue, skb);
sctp_skb_set_owner_r_frag(skb, newsk);
}
}
/* Clear up any skbs waiting for the partial
* delivery to finish.
*/
if (assoc->ulpq.pd_mode)
sctp_clear_pd(oldsk, NULL);
}
sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
/* Set the type of socket to indicate that it is peeled off from the
* original UDP-style socket or created with the accept() call on a
* TCP-style socket..
*/
newsp->type = type;
/* Mark the new socket "in-use" by the user so that any packets
* that may arrive on the association after we've moved it are
* queued to the backlog. This prevents a potential race between
* backlog processing on the old socket and new-packet processing
* on the new socket.
*
* The caller has just allocated newsk so we can guarantee that other
* paths won't try to lock it and then oldsk.
*/
lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
sctp_assoc_migrate(assoc, newsk);
sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
/* If the association on the newsk is already closed before accept()
* is called, set RCV_SHUTDOWN flag.
*/
if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
inet_sk_set_state(newsk, SCTP_SS_CLOSED);
newsk->sk_shutdown |= RCV_SHUTDOWN;
} else {
inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
}
release_sock(newsk);
}
/* This proto struct describes the ULP interface for SCTP. */
struct proto sctp_prot = {
.name = "SCTP",
.owner = THIS_MODULE,
.close = sctp_close,
.disconnect = sctp_disconnect,
.accept = sctp_accept,
.ioctl = sctp_ioctl,
.init = sctp_init_sock,
.destroy = sctp_destroy_sock,
.shutdown = sctp_shutdown,
.setsockopt = sctp_setsockopt,
.getsockopt = sctp_getsockopt,
.sendmsg = sctp_sendmsg,
.recvmsg = sctp_recvmsg,
.bind = sctp_bind,
.backlog_rcv = sctp_backlog_rcv,
.hash = sctp_hash,
.unhash = sctp_unhash,
.get_port = sctp_get_port,
.obj_size = sizeof(struct sctp_sock),
.useroffset = offsetof(struct sctp_sock, subscribe),
.usersize = offsetof(struct sctp_sock, initmsg) -
offsetof(struct sctp_sock, subscribe) +
sizeof_field(struct sctp_sock, initmsg),
.sysctl_mem = sysctl_sctp_mem,
.sysctl_rmem = sysctl_sctp_rmem,
.sysctl_wmem = sysctl_sctp_wmem,
.memory_pressure = &sctp_memory_pressure,
.enter_memory_pressure = sctp_enter_memory_pressure,
.memory_allocated = &sctp_memory_allocated,
.sockets_allocated = &sctp_sockets_allocated,
};
#if IS_ENABLED(CONFIG_IPV6)
#include <net/transp_v6.h>
static void sctp_v6_destroy_sock(struct sock *sk)
{
sctp_destroy_sock(sk);
inet6_destroy_sock(sk);
}
struct proto sctpv6_prot = {
.name = "SCTPv6",
.owner = THIS_MODULE,
.close = sctp_close,
.disconnect = sctp_disconnect,
.accept = sctp_accept,
.ioctl = sctp_ioctl,
.init = sctp_init_sock,
.destroy = sctp_v6_destroy_sock,
.shutdown = sctp_shutdown,
.setsockopt = sctp_setsockopt,
.getsockopt = sctp_getsockopt,
.sendmsg = sctp_sendmsg,
.recvmsg = sctp_recvmsg,
.bind = sctp_bind,
.backlog_rcv = sctp_backlog_rcv,
.hash = sctp_hash,
.unhash = sctp_unhash,
.get_port = sctp_get_port,
.obj_size = sizeof(struct sctp6_sock),
.useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
.usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
offsetof(struct sctp6_sock, sctp.subscribe) +
sizeof_field(struct sctp6_sock, sctp.initmsg),
.sysctl_mem = sysctl_sctp_mem,
.sysctl_rmem = sysctl_sctp_rmem,
.sysctl_wmem = sysctl_sctp_wmem,
.memory_pressure = &sctp_memory_pressure,
.enter_memory_pressure = sctp_enter_memory_pressure,
.memory_allocated = &sctp_memory_allocated,
.sockets_allocated = &sctp_sockets_allocated,
};
#endif /* IS_ENABLED(CONFIG_IPV6) */