OpenCloudOS-Kernel/tools/power/cpupower/utils/cpufreq-info.c

669 lines
15 KiB
C

/*
* (C) 2004-2009 Dominik Brodowski <linux@dominikbrodowski.de>
*
* Licensed under the terms of the GNU GPL License version 2.
*/
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include "cpufreq.h"
#include "helpers/helpers.h"
#include "helpers/bitmask.h"
#define LINE_LEN 10
static unsigned int count_cpus(void)
{
FILE *fp;
char value[LINE_LEN];
unsigned int ret = 0;
unsigned int cpunr = 0;
fp = fopen("/proc/stat", "r");
if (!fp) {
printf(_("Couldn't count the number of CPUs (%s: %s), assuming 1\n"), "/proc/stat", strerror(errno));
return 1;
}
while (!feof(fp)) {
if (!fgets(value, LINE_LEN, fp))
continue;
value[LINE_LEN - 1] = '\0';
if (strlen(value) < (LINE_LEN - 2))
continue;
if (strstr(value, "cpu "))
continue;
if (sscanf(value, "cpu%d ", &cpunr) != 1)
continue;
if (cpunr > ret)
ret = cpunr;
}
fclose(fp);
/* cpu count starts from 0, on error return 1 (UP) */
return ret + 1;
}
static void proc_cpufreq_output(void)
{
unsigned int cpu, nr_cpus;
struct cpufreq_policy *policy;
unsigned int min_pctg = 0;
unsigned int max_pctg = 0;
unsigned long min, max;
printf(_(" minimum CPU frequency - maximum CPU frequency - governor\n"));
nr_cpus = count_cpus();
for (cpu = 0; cpu < nr_cpus; cpu++) {
policy = cpufreq_get_policy(cpu);
if (!policy)
continue;
if (cpufreq_get_hardware_limits(cpu, &min, &max)) {
max = 0;
} else {
min_pctg = (policy->min * 100) / max;
max_pctg = (policy->max * 100) / max;
}
printf("CPU%3d %9lu kHz (%3d %%) - %9lu kHz (%3d %%) - %s\n",
cpu , policy->min, max ? min_pctg : 0, policy->max,
max ? max_pctg : 0, policy->governor);
cpufreq_put_policy(policy);
}
}
static void print_speed(unsigned long speed)
{
unsigned long tmp;
if (speed > 1000000) {
tmp = speed % 10000;
if (tmp >= 5000)
speed += 10000;
printf("%u.%02u GHz", ((unsigned int) speed/1000000),
((unsigned int) (speed%1000000)/10000));
} else if (speed > 100000) {
tmp = speed % 1000;
if (tmp >= 500)
speed += 1000;
printf("%u MHz", ((unsigned int) speed / 1000));
} else if (speed > 1000) {
tmp = speed % 100;
if (tmp >= 50)
speed += 100;
printf("%u.%01u MHz", ((unsigned int) speed/1000),
((unsigned int) (speed%1000)/100));
} else
printf("%lu kHz", speed);
return;
}
static void print_duration(unsigned long duration)
{
unsigned long tmp;
if (duration > 1000000) {
tmp = duration % 10000;
if (tmp >= 5000)
duration += 10000;
printf("%u.%02u ms", ((unsigned int) duration/1000000),
((unsigned int) (duration%1000000)/10000));
} else if (duration > 100000) {
tmp = duration % 1000;
if (tmp >= 500)
duration += 1000;
printf("%u us", ((unsigned int) duration / 1000));
} else if (duration > 1000) {
tmp = duration % 100;
if (tmp >= 50)
duration += 100;
printf("%u.%01u us", ((unsigned int) duration/1000),
((unsigned int) (duration%1000)/100));
} else
printf("%lu ns", duration);
return;
}
/* --boost / -b */
static int get_boost_mode(unsigned int cpu)
{
int support, active, b_states = 0, ret, pstate_no, i;
/* ToDo: Make this more global */
unsigned long pstates[MAX_HW_PSTATES] = {0,};
if (cpupower_cpu_info.vendor != X86_VENDOR_AMD &&
cpupower_cpu_info.vendor != X86_VENDOR_INTEL)
return 0;
ret = cpufreq_has_boost_support(cpu, &support, &active, &b_states);
if (ret) {
printf(_("Error while evaluating Boost Capabilities"
" on CPU %d -- are you root?\n"), cpu);
return ret;
}
/* P state changes via MSR are identified via cpuid 80000007
on Intel and AMD, but we assume boost capable machines can do that
if (cpuid_eax(0x80000000) >= 0x80000007
&& (cpuid_edx(0x80000007) & (1 << 7)))
*/
printf(_(" boost state support:\n"));
printf(_(" Supported: %s\n"), support ? _("yes") : _("no"));
printf(_(" Active: %s\n"), active ? _("yes") : _("no"));
if (cpupower_cpu_info.vendor == X86_VENDOR_AMD &&
cpupower_cpu_info.family >= 0x10) {
ret = decode_pstates(cpu, cpupower_cpu_info.family, b_states,
pstates, &pstate_no);
if (ret)
return ret;
printf(_(" Boost States: %d\n"), b_states);
printf(_(" Total States: %d\n"), pstate_no);
for (i = 0; i < pstate_no; i++) {
if (i < b_states)
printf(_(" Pstate-Pb%d: %luMHz (boost state)"
"\n"), i, pstates[i]);
else
printf(_(" Pstate-P%d: %luMHz\n"),
i - b_states, pstates[i]);
}
} else if (cpupower_cpu_info.caps & CPUPOWER_CAP_HAS_TURBO_RATIO) {
double bclk;
unsigned long long intel_turbo_ratio = 0;
unsigned int ratio;
/* Any way to autodetect this ? */
if (cpupower_cpu_info.caps & CPUPOWER_CAP_IS_SNB)
bclk = 100.00;
else
bclk = 133.33;
intel_turbo_ratio = msr_intel_get_turbo_ratio(cpu);
dprint (" Ratio: 0x%llx - bclk: %f\n",
intel_turbo_ratio, bclk);
ratio = (intel_turbo_ratio >> 24) & 0xFF;
if (ratio)
printf(_(" %.0f MHz max turbo 4 active cores\n"),
ratio * bclk);
ratio = (intel_turbo_ratio >> 16) & 0xFF;
if (ratio)
printf(_(" %.0f MHz max turbo 3 active cores\n"),
ratio * bclk);
ratio = (intel_turbo_ratio >> 8) & 0xFF;
if (ratio)
printf(_(" %.0f MHz max turbo 2 active cores\n"),
ratio * bclk);
ratio = (intel_turbo_ratio >> 0) & 0xFF;
if (ratio)
printf(_(" %.0f MHz max turbo 1 active cores\n"),
ratio * bclk);
}
return 0;
}
static void debug_output_one(unsigned int cpu)
{
char *driver;
struct cpufreq_affected_cpus *cpus;
struct cpufreq_available_frequencies *freqs;
unsigned long min, max, freq_kernel, freq_hardware;
unsigned long total_trans, latency;
unsigned long long total_time;
struct cpufreq_policy *policy;
struct cpufreq_available_governors *governors;
struct cpufreq_stats *stats;
if (cpufreq_cpu_exists(cpu))
return;
freq_kernel = cpufreq_get_freq_kernel(cpu);
freq_hardware = cpufreq_get_freq_hardware(cpu);
driver = cpufreq_get_driver(cpu);
if (!driver) {
printf(_(" no or unknown cpufreq driver is active on this CPU\n"));
} else {
printf(_(" driver: %s\n"), driver);
cpufreq_put_driver(driver);
}
cpus = cpufreq_get_related_cpus(cpu);
if (cpus) {
printf(_(" CPUs which run at the same hardware frequency: "));
while (cpus->next) {
printf("%d ", cpus->cpu);
cpus = cpus->next;
}
printf("%d\n", cpus->cpu);
cpufreq_put_related_cpus(cpus);
}
cpus = cpufreq_get_affected_cpus(cpu);
if (cpus) {
printf(_(" CPUs which need to have their frequency coordinated by software: "));
while (cpus->next) {
printf("%d ", cpus->cpu);
cpus = cpus->next;
}
printf("%d\n", cpus->cpu);
cpufreq_put_affected_cpus(cpus);
}
latency = cpufreq_get_transition_latency(cpu);
if (latency) {
printf(_(" maximum transition latency: "));
print_duration(latency);
printf(".\n");
}
if (!(cpufreq_get_hardware_limits(cpu, &min, &max))) {
printf(_(" hardware limits: "));
print_speed(min);
printf(" - ");
print_speed(max);
printf("\n");
}
freqs = cpufreq_get_available_frequencies(cpu);
if (freqs) {
printf(_(" available frequency steps: "));
while (freqs->next) {
print_speed(freqs->frequency);
printf(", ");
freqs = freqs->next;
}
print_speed(freqs->frequency);
printf("\n");
cpufreq_put_available_frequencies(freqs);
}
governors = cpufreq_get_available_governors(cpu);
if (governors) {
printf(_(" available cpufreq governors: "));
while (governors->next) {
printf("%s, ", governors->governor);
governors = governors->next;
}
printf("%s\n", governors->governor);
cpufreq_put_available_governors(governors);
}
policy = cpufreq_get_policy(cpu);
if (policy) {
printf(_(" current policy: frequency should be within "));
print_speed(policy->min);
printf(_(" and "));
print_speed(policy->max);
printf(".\n ");
printf(_("The governor \"%s\" may"
" decide which speed to use\n within this range.\n"),
policy->governor);
cpufreq_put_policy(policy);
}
if (freq_kernel || freq_hardware) {
printf(_(" current CPU frequency is "));
if (freq_hardware) {
print_speed(freq_hardware);
printf(_(" (asserted by call to hardware)"));
} else
print_speed(freq_kernel);
printf(".\n");
}
stats = cpufreq_get_stats(cpu, &total_time);
if (stats) {
printf(_(" cpufreq stats: "));
while (stats) {
print_speed(stats->frequency);
printf(":%.2f%%", (100.0 * stats->time_in_state) / total_time);
stats = stats->next;
if (stats)
printf(", ");
}
cpufreq_put_stats(stats);
total_trans = cpufreq_get_transitions(cpu);
if (total_trans)
printf(" (%lu)\n", total_trans);
else
printf("\n");
}
get_boost_mode(cpu);
}
/* --freq / -f */
static int get_freq_kernel(unsigned int cpu, unsigned int human)
{
unsigned long freq = cpufreq_get_freq_kernel(cpu);
if (!freq)
return -EINVAL;
if (human) {
print_speed(freq);
printf("\n");
} else
printf("%lu\n", freq);
return 0;
}
/* --hwfreq / -w */
static int get_freq_hardware(unsigned int cpu, unsigned int human)
{
unsigned long freq = cpufreq_get_freq_hardware(cpu);
if (!freq)
return -EINVAL;
if (human) {
print_speed(freq);
printf("\n");
} else
printf("%lu\n", freq);
return 0;
}
/* --hwlimits / -l */
static int get_hardware_limits(unsigned int cpu)
{
unsigned long min, max;
if (cpufreq_get_hardware_limits(cpu, &min, &max))
return -EINVAL;
printf("%lu %lu\n", min, max);
return 0;
}
/* --driver / -d */
static int get_driver(unsigned int cpu)
{
char *driver = cpufreq_get_driver(cpu);
if (!driver)
return -EINVAL;
printf("%s\n", driver);
cpufreq_put_driver(driver);
return 0;
}
/* --policy / -p */
static int get_policy(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_get_policy(cpu);
if (!policy)
return -EINVAL;
printf("%lu %lu %s\n", policy->min, policy->max, policy->governor);
cpufreq_put_policy(policy);
return 0;
}
/* --governors / -g */
static int get_available_governors(unsigned int cpu)
{
struct cpufreq_available_governors *governors =
cpufreq_get_available_governors(cpu);
if (!governors)
return -EINVAL;
while (governors->next) {
printf("%s ", governors->governor);
governors = governors->next;
}
printf("%s\n", governors->governor);
cpufreq_put_available_governors(governors);
return 0;
}
/* --affected-cpus / -a */
static int get_affected_cpus(unsigned int cpu)
{
struct cpufreq_affected_cpus *cpus = cpufreq_get_affected_cpus(cpu);
if (!cpus)
return -EINVAL;
while (cpus->next) {
printf("%d ", cpus->cpu);
cpus = cpus->next;
}
printf("%d\n", cpus->cpu);
cpufreq_put_affected_cpus(cpus);
return 0;
}
/* --related-cpus / -r */
static int get_related_cpus(unsigned int cpu)
{
struct cpufreq_affected_cpus *cpus = cpufreq_get_related_cpus(cpu);
if (!cpus)
return -EINVAL;
while (cpus->next) {
printf("%d ", cpus->cpu);
cpus = cpus->next;
}
printf("%d\n", cpus->cpu);
cpufreq_put_related_cpus(cpus);
return 0;
}
/* --stats / -s */
static int get_freq_stats(unsigned int cpu, unsigned int human)
{
unsigned long total_trans = cpufreq_get_transitions(cpu);
unsigned long long total_time;
struct cpufreq_stats *stats = cpufreq_get_stats(cpu, &total_time);
while (stats) {
if (human) {
print_speed(stats->frequency);
printf(":%.2f%%",
(100.0 * stats->time_in_state) / total_time);
} else
printf("%lu:%llu",
stats->frequency, stats->time_in_state);
stats = stats->next;
if (stats)
printf(", ");
}
cpufreq_put_stats(stats);
if (total_trans)
printf(" (%lu)\n", total_trans);
return 0;
}
/* --latency / -y */
static int get_latency(unsigned int cpu, unsigned int human)
{
unsigned long latency = cpufreq_get_transition_latency(cpu);
if (!latency)
return -EINVAL;
if (human) {
print_duration(latency);
printf("\n");
} else
printf("%lu\n", latency);
return 0;
}
static struct option info_opts[] = {
{ .name = "debug", .has_arg = no_argument, .flag = NULL, .val = 'e'},
{ .name = "boost", .has_arg = no_argument, .flag = NULL, .val = 'b'},
{ .name = "freq", .has_arg = no_argument, .flag = NULL, .val = 'f'},
{ .name = "hwfreq", .has_arg = no_argument, .flag = NULL, .val = 'w'},
{ .name = "hwlimits", .has_arg = no_argument, .flag = NULL, .val = 'l'},
{ .name = "driver", .has_arg = no_argument, .flag = NULL, .val = 'd'},
{ .name = "policy", .has_arg = no_argument, .flag = NULL, .val = 'p'},
{ .name = "governors", .has_arg = no_argument, .flag = NULL, .val = 'g'},
{ .name = "related-cpus", .has_arg = no_argument, .flag = NULL, .val = 'r'},
{ .name = "affected-cpus",.has_arg = no_argument, .flag = NULL, .val = 'a'},
{ .name = "stats", .has_arg = no_argument, .flag = NULL, .val = 's'},
{ .name = "latency", .has_arg = no_argument, .flag = NULL, .val = 'y'},
{ .name = "proc", .has_arg = no_argument, .flag = NULL, .val = 'o'},
{ .name = "human", .has_arg = no_argument, .flag = NULL, .val = 'm'},
{ },
};
int cmd_freq_info(int argc, char **argv)
{
extern char *optarg;
extern int optind, opterr, optopt;
int ret = 0, cont = 1;
unsigned int cpu = 0;
unsigned int human = 0;
int output_param = 0;
do {
ret = getopt_long(argc, argv, "oefwldpgrasmyb", info_opts, NULL);
switch (ret) {
case '?':
output_param = '?';
cont = 0;
break;
case -1:
cont = 0;
break;
case 'b':
case 'o':
case 'a':
case 'r':
case 'g':
case 'p':
case 'd':
case 'l':
case 'w':
case 'f':
case 'e':
case 's':
case 'y':
if (output_param) {
output_param = -1;
cont = 0;
break;
}
output_param = ret;
break;
case 'm':
if (human) {
output_param = -1;
cont = 0;
break;
}
human = 1;
break;
default:
fprintf(stderr, "invalid or unknown argument\n");
return EXIT_FAILURE;
}
} while (cont);
switch (output_param) {
case 'o':
if (!bitmask_isallclear(cpus_chosen)) {
printf(_("The argument passed to this tool can't be "
"combined with passing a --cpu argument\n"));
return -EINVAL;
}
break;
case 0:
output_param = 'e';
}
ret = 0;
/* Default is: show output of CPU 0 only */
if (bitmask_isallclear(cpus_chosen))
bitmask_setbit(cpus_chosen, 0);
switch (output_param) {
case -1:
printf(_("You can't specify more than one --cpu parameter and/or\n"
"more than one output-specific argument\n"));
return -EINVAL;
case '?':
printf(_("invalid or unknown argument\n"));
return -EINVAL;
case 'o':
proc_cpufreq_output();
return EXIT_SUCCESS;
}
for (cpu = bitmask_first(cpus_chosen);
cpu <= bitmask_last(cpus_chosen); cpu++) {
if (!bitmask_isbitset(cpus_chosen, cpu))
continue;
if (cpufreq_cpu_exists(cpu)) {
printf(_("couldn't analyze CPU %d as it doesn't seem to be present\n"), cpu);
continue;
}
printf(_("analyzing CPU %d:\n"), cpu);
switch (output_param) {
case 'b':
get_boost_mode(cpu);
break;
case 'e':
debug_output_one(cpu);
break;
case 'a':
ret = get_affected_cpus(cpu);
break;
case 'r':
ret = get_related_cpus(cpu);
break;
case 'g':
ret = get_available_governors(cpu);
break;
case 'p':
ret = get_policy(cpu);
break;
case 'd':
ret = get_driver(cpu);
break;
case 'l':
ret = get_hardware_limits(cpu);
break;
case 'w':
ret = get_freq_hardware(cpu, human);
break;
case 'f':
ret = get_freq_kernel(cpu, human);
break;
case 's':
ret = get_freq_stats(cpu, human);
break;
case 'y':
ret = get_latency(cpu, human);
break;
}
if (ret)
return ret;
}
return ret;
}