OpenCloudOS-Kernel/arch/sparc/mm/init.c

515 lines
14 KiB
C

/* $Id: init.c,v 1.103 2001/11/19 19:03:08 davem Exp $
* linux/arch/sparc/mm/init.c
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 2000 Anton Blanchard (anton@samba.org)
*/
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/initrd.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/bootmem.h>
#include <asm/system.h>
#include <asm/vac-ops.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/vaddrs.h>
#include <asm/pgalloc.h> /* bug in asm-generic/tlb.h: check_pgt_cache */
#include <asm/tlb.h>
#include <asm/prom.h>
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
unsigned long *sparc_valid_addr_bitmap;
unsigned long phys_base;
unsigned long pfn_base;
unsigned long page_kernel;
struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1];
unsigned long sparc_unmapped_base;
struct pgtable_cache_struct pgt_quicklists;
/* References to section boundaries */
extern char __init_begin, __init_end, _start, _end, etext , edata;
/* Initial ramdisk setup */
extern unsigned int sparc_ramdisk_image;
extern unsigned int sparc_ramdisk_size;
unsigned long highstart_pfn, highend_pfn;
pte_t *kmap_pte;
pgprot_t kmap_prot;
#define kmap_get_fixmap_pte(vaddr) \
pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr))
void __init kmap_init(void)
{
/* cache the first kmap pte */
kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN));
kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE);
}
void show_mem(void)
{
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n",
nr_swap_pages << (PAGE_SHIFT-10));
printk("%ld pages of RAM\n", totalram_pages);
printk("%ld free pages\n", nr_free_pages());
#if 0 /* undefined pgtable_cache_size, pgd_cache_size */
printk("%ld pages in page table cache\n",pgtable_cache_size);
#ifndef CONFIG_SMP
if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d)
printk("%ld entries in page dir cache\n",pgd_cache_size);
#endif
#endif
}
void __init sparc_context_init(int numctx)
{
int ctx;
ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL);
for(ctx = 0; ctx < numctx; ctx++) {
struct ctx_list *clist;
clist = (ctx_list_pool + ctx);
clist->ctx_number = ctx;
clist->ctx_mm = NULL;
}
ctx_free.next = ctx_free.prev = &ctx_free;
ctx_used.next = ctx_used.prev = &ctx_used;
for(ctx = 0; ctx < numctx; ctx++)
add_to_free_ctxlist(ctx_list_pool + ctx);
}
extern unsigned long cmdline_memory_size;
unsigned long last_valid_pfn;
unsigned long calc_highpages(void)
{
int i;
int nr = 0;
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
if (end_pfn <= max_low_pfn)
continue;
if (start_pfn < max_low_pfn)
start_pfn = max_low_pfn;
nr += end_pfn - start_pfn;
}
return nr;
}
unsigned long calc_max_low_pfn(void)
{
int i;
unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
unsigned long curr_pfn, last_pfn;
last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT;
for (i = 1; sp_banks[i].num_bytes != 0; i++) {
curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
if (curr_pfn >= tmp) {
if (last_pfn < tmp)
tmp = last_pfn;
break;
}
last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
}
return tmp;
}
unsigned long __init bootmem_init(unsigned long *pages_avail)
{
unsigned long bootmap_size, start_pfn;
unsigned long end_of_phys_memory = 0UL;
unsigned long bootmap_pfn, bytes_avail, size;
int i;
bytes_avail = 0UL;
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
end_of_phys_memory = sp_banks[i].base_addr +
sp_banks[i].num_bytes;
bytes_avail += sp_banks[i].num_bytes;
if (cmdline_memory_size) {
if (bytes_avail > cmdline_memory_size) {
unsigned long slack = bytes_avail - cmdline_memory_size;
bytes_avail -= slack;
end_of_phys_memory -= slack;
sp_banks[i].num_bytes -= slack;
if (sp_banks[i].num_bytes == 0) {
sp_banks[i].base_addr = 0xdeadbeef;
} else {
sp_banks[i+1].num_bytes = 0;
sp_banks[i+1].base_addr = 0xdeadbeef;
}
break;
}
}
}
/* Start with page aligned address of last symbol in kernel
* image.
*/
start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end));
/* Now shift down to get the real physical page frame number. */
start_pfn >>= PAGE_SHIFT;
bootmap_pfn = start_pfn;
max_pfn = end_of_phys_memory >> PAGE_SHIFT;
max_low_pfn = max_pfn;
highstart_pfn = highend_pfn = max_pfn;
if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) {
highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
max_low_pfn = calc_max_low_pfn();
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
calc_highpages() >> (20 - PAGE_SHIFT));
}
#ifdef CONFIG_BLK_DEV_INITRD
/* Now have to check initial ramdisk, so that bootmap does not overwrite it */
if (sparc_ramdisk_image) {
if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE)
sparc_ramdisk_image -= KERNBASE;
initrd_start = sparc_ramdisk_image + phys_base;
initrd_end = initrd_start + sparc_ramdisk_size;
if (initrd_end > end_of_phys_memory) {
printk(KERN_CRIT "initrd extends beyond end of memory "
"(0x%016lx > 0x%016lx)\ndisabling initrd\n",
initrd_end, end_of_phys_memory);
initrd_start = 0;
}
if (initrd_start) {
if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
}
}
#endif
/* Initialize the boot-time allocator. */
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base,
max_low_pfn);
/* Now register the available physical memory with the
* allocator.
*/
*pages_avail = 0;
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
unsigned long curr_pfn, last_pfn;
curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
if (curr_pfn >= max_low_pfn)
break;
last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
if (last_pfn > max_low_pfn)
last_pfn = max_low_pfn;
/*
* .. finally, did all the rounding and playing
* around just make the area go away?
*/
if (last_pfn <= curr_pfn)
continue;
size = (last_pfn - curr_pfn) << PAGE_SHIFT;
*pages_avail += last_pfn - curr_pfn;
free_bootmem(sp_banks[i].base_addr, size);
}
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start) {
/* Reserve the initrd image area. */
size = initrd_end - initrd_start;
reserve_bootmem(initrd_start, size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
initrd_start = (initrd_start - phys_base) + PAGE_OFFSET;
initrd_end = (initrd_end - phys_base) + PAGE_OFFSET;
}
#endif
/* Reserve the kernel text/data/bss. */
size = (start_pfn << PAGE_SHIFT) - phys_base;
reserve_bootmem(phys_base, size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
/* Reserve the bootmem map. We do not account for it
* in pages_avail because we will release that memory
* in free_all_bootmem.
*/
size = bootmap_size;
reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
return max_pfn;
}
/*
* check_pgt_cache
*
* This is called at the end of unmapping of VMA (zap_page_range),
* to rescan the page cache for architecture specific things,
* presumably something like sun4/sun4c PMEGs. Most architectures
* define check_pgt_cache empty.
*
* We simply copy the 2.4 implementation for now.
*/
int pgt_cache_water[2] = { 25, 50 };
void check_pgt_cache(void)
{
do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);
}
/*
* paging_init() sets up the page tables: We call the MMU specific
* init routine based upon the Sun model type on the Sparc.
*
*/
extern void sun4c_paging_init(void);
extern void srmmu_paging_init(void);
extern void device_scan(void);
void __init paging_init(void)
{
switch(sparc_cpu_model) {
case sun4c:
case sun4e:
case sun4:
sun4c_paging_init();
sparc_unmapped_base = 0xe0000000;
BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000);
break;
case sun4m:
case sun4d:
srmmu_paging_init();
sparc_unmapped_base = 0x50000000;
BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000);
break;
default:
prom_printf("paging_init: Cannot init paging on this Sparc\n");
prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model);
prom_printf("paging_init: Halting...\n");
prom_halt();
};
/* Initialize the protection map with non-constant, MMU dependent values. */
protection_map[0] = PAGE_NONE;
protection_map[1] = PAGE_READONLY;
protection_map[2] = PAGE_COPY;
protection_map[3] = PAGE_COPY;
protection_map[4] = PAGE_READONLY;
protection_map[5] = PAGE_READONLY;
protection_map[6] = PAGE_COPY;
protection_map[7] = PAGE_COPY;
protection_map[8] = PAGE_NONE;
protection_map[9] = PAGE_READONLY;
protection_map[10] = PAGE_SHARED;
protection_map[11] = PAGE_SHARED;
protection_map[12] = PAGE_READONLY;
protection_map[13] = PAGE_READONLY;
protection_map[14] = PAGE_SHARED;
protection_map[15] = PAGE_SHARED;
btfixup();
prom_build_devicetree();
device_scan();
}
struct cache_palias *sparc_aliases;
static void __init taint_real_pages(void)
{
int i;
for (i = 0; sp_banks[i].num_bytes; i++) {
unsigned long start, end;
start = sp_banks[i].base_addr;
end = start + sp_banks[i].num_bytes;
while (start < end) {
set_bit(start >> 20, sparc_valid_addr_bitmap);
start += PAGE_SIZE;
}
}
}
void map_high_region(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long tmp;
#ifdef CONFIG_DEBUG_HIGHMEM
printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn);
#endif
for (tmp = start_pfn; tmp < end_pfn; tmp++) {
struct page *page = pfn_to_page(tmp);
ClearPageReserved(page);
init_page_count(page);
__free_page(page);
totalhigh_pages++;
}
}
void __init mem_init(void)
{
int codepages = 0;
int datapages = 0;
int initpages = 0;
int reservedpages = 0;
int i;
if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) {
prom_printf("BUG: fixmap and pkmap areas overlap\n");
prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n",
PKMAP_BASE,
(unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,
FIXADDR_START);
prom_printf("Please mail sparclinux@vger.kernel.org.\n");
prom_halt();
}
/* Saves us work later. */
memset((void *)&empty_zero_page, 0, PAGE_SIZE);
i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5);
i += 1;
sparc_valid_addr_bitmap = (unsigned long *)
__alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL);
if (sparc_valid_addr_bitmap == NULL) {
prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
prom_halt();
}
memset(sparc_valid_addr_bitmap, 0, i << 2);
taint_real_pages();
max_mapnr = last_valid_pfn - pfn_base;
high_memory = __va(max_low_pfn << PAGE_SHIFT);
totalram_pages = free_all_bootmem();
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT;
if (end_pfn <= highstart_pfn)
continue;
if (start_pfn < highstart_pfn)
start_pfn = highstart_pfn;
map_high_region(start_pfn, end_pfn);
}
totalram_pages += totalhigh_pages;
codepages = (((unsigned long) &etext) - ((unsigned long)&_start));
codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
datapages = (((unsigned long) &edata) - ((unsigned long)&etext));
datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin));
initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
/* Ignore memory holes for the purpose of counting reserved pages */
for (i=0; i < max_low_pfn; i++)
if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap)
&& PageReserved(pfn_to_page(i)))
reservedpages++;
printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT - 10),
codepages << (PAGE_SHIFT-10),
reservedpages << (PAGE_SHIFT - 10),
datapages << (PAGE_SHIFT-10),
initpages << (PAGE_SHIFT-10),
totalhigh_pages << (PAGE_SHIFT-10));
}
void free_initmem (void)
{
unsigned long addr;
addr = (unsigned long)(&__init_begin);
for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
struct page *p;
p = virt_to_page(addr);
ClearPageReserved(p);
init_page_count(p);
__free_page(p);
totalram_pages++;
num_physpages++;
}
printk (KERN_INFO "Freeing unused kernel memory: %dk freed\n", (&__init_end - &__init_begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk (KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
struct page *p = virt_to_page(start);
ClearPageReserved(p);
init_page_count(p);
__free_page(p);
num_physpages++;
}
}
#endif
void sparc_flush_page_to_ram(struct page *page)
{
unsigned long vaddr = (unsigned long)page_address(page);
if (vaddr)
__flush_page_to_ram(vaddr);
}